Introduction to Syntax and Parsing ACS 2015/16 Stephen Clark L5: Categorial Grammar

Categorial Grammar (CG)

- Main responsibility for defining syntactic form is in the lexicon
- Hence CG is a lexicalized theory of grammar
 - along with other theories of grammar such as HPSG, TAG, LFG, ...
- Attractive linguistically because all language-dependent properties reside in the lexicon
 - small number of combination rules are language-invariant
- Also attractive computationally; e.g. supertagging for Categorial Grammar leads to highly efficient parsing (Clark and Curran, 2007)

Connection with Semantics

- Categorial Grammar has a strong commitment to Frege's Principle of Compositionality (along with Montague from the 70s):
- The meaning of a phrase is a function of the meanings of the parts of the phrase and how those parts are put together

Contrast with Phrase-Structure Rules

• Early Chomskian approach and much work in Generative Grammar uses rewrite rules or productions (as in a Context Free Grammar):

```
S \rightarrow NP \quad VP

VP \rightarrow TV \quad NP

TV \rightarrow \{likes, sees, \dots\}
```

- Categorial Grammar captures the same information by assigning a functional type, or *category*, to grammatical entities
- Has roots in early work by Polish mathematician Ajdukiewicz (1935) and even earlier in Russel's theory of types

Lexical Categories

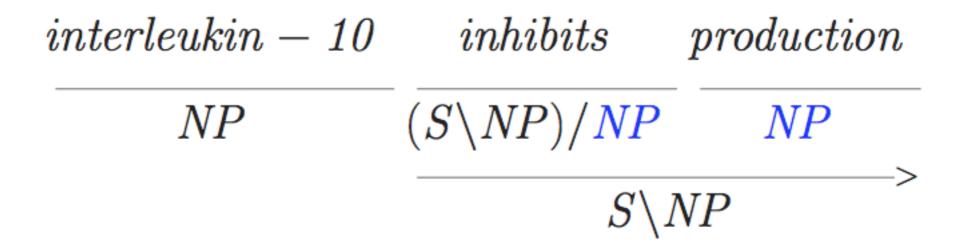
 An elementary syntactic structure – a lexical category – is assigned to each word in a sentence, eg:

walked: S\NP 'give me an NP to my left and I return a sentence'

• Think of the lexical category for a verb as a *function*: NP is the argument, S the result, and the slash indicates the direction of the argument

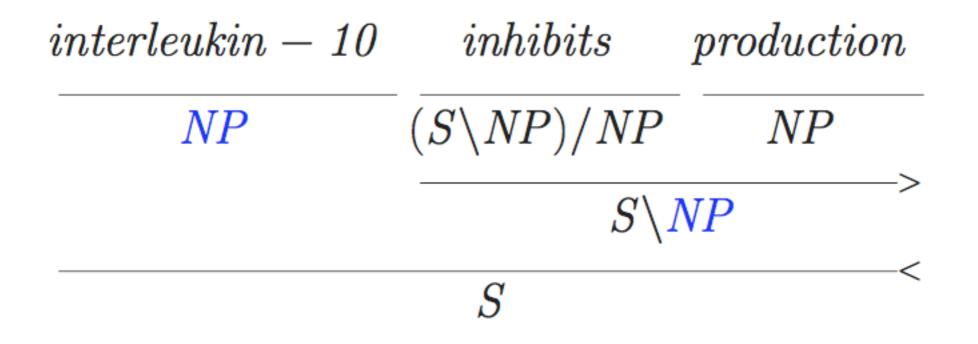
Lexical Categories

- Atomic categories: *S*, *N*, *NP*, *PP*, ... (not many more)
- Complex categories are built recursively from atomic categories and slashes
- Example complex categories for verbs:
 - intransitive verb: $S \setminus NP$ walked
 - transitive verb: $(S \setminus NP)/NP$ respected
 - ditransitive verb: $((S \setminus NP)/NP)/NP$ gave



A Simple CG Derivation

$\frac{interleukin - 10}{NP} \frac{inhibits}{(S \setminus NP)/NP} \frac{production}{NP}$


A Simple CG Derivation

Forward application

A Simple CG Derivation

Backward application

Combination Rules in CG

- Can think of the categories in blue as "cancelling"
 - early work in CG talks about "cancellation rules"
- Also looks a bit like multiplication and division
- But fundamentally the lexical category for the verb is a function which is applied to its argument

Classical Categorial Grammar

- 'Classical' Categorial Grammar only has application rules
- Classical Categorial Grammar is context free
- So what is different to CFG?
 - lexicalisation means that the information in CFG rewrite rules has been pushed down to the leaves of the derivation

