L41: Lab 4 - The TCP State Machine

Dr Robert N. M. Watson

29 January 2016
L41: Lab 4 - The TCP State Machine

- The TCP state machine
- Setting the MTU, IPFW, and DUMMYNET
- TCP mode for the IPC benchmark
- DTrace probes of interest
- Experimental and exploratory questiond
Lect 6: The Transmission Control Protocol (TCP)

Lect 6: TCP goals and properties

- Network may delay, (reorder), drop, corrupt packets
- TCP: Reliable, ordered, stream transport protocol over IP
- Three-way handshake: SYN / SYN-ACK / ACK (mostly!)
- Sequence numbers ACK’d; data retransmitted on loss
- Round-Trip Time (RTT) measured to time out loss
- Flow control via advertised window size in ACKs
- Congestion control (‘fairness’) via packet loss and ECN
Introduction

Loopback interface, IPFW, and DUMMYNET

- Network-stack features to configure **once per boot**
- Loopback interface
 - Simulated local network interface: packets “loop back”
 - Interface name `lo0`
 - Assigned IPv4 address `127.0.0.1`
 - Numbered rules classify packets and perform actions
 - Actions include accept, reject, inject into DUMMYNET ...
 - We will match lab flows using the TCP port number `10141`

- Configure (and reconfigure) **for each experiment**
- DUMMYNET - link simulation tool by Rizzo, et al.
 - Widely used in network research
 - Impose simulated network conditions – delay, bandwidth, loss, ...
TCP in the IPC benchmark

root@beaglebone:/data/ipc # ./ipc-static
ipc-static [-Bqsv] [-b buffersize] [-i pipe|local|tcp] [-p tcp_port]
 [-P l1d|l1i|l2|mem|tlb|axi] [-t totalsize] mode

Modes (pick one - default 1thread):
1thread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:
-B Run in bare mode: no preparatory activities
-i pipe|local|tcp Select pipe, local sockets, or TCP (default: pipe)
-p tcp_port Set TCP port number (default: 10141)
-P l1d|l1i|l2|mem|tlb|axi Enable hardware performance counters
-q Just run the benchmark, don’t print stuff out
-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description
-b buffersize Specify a buffer size (default: 131072)
-t totalsize Specify total I/O size (default: 16777216)

► tcp IPC type
► -p argument to set the port number
DTrace probes

Described in more detail in the lab assignment:

- `fbt::syncache_add:entry`: TCP segment installs new SYN-cache entry
- `fbt::syncache_expand:entry`: TCP segment converts SYN-cache entry to full connection
- `fbt::tcp_do_segment:entry`: TCP segment received post-SYN cache
- `fbt::tcp_state_change:entry`: TCP state transition

We are using implementation-specific probes (FBT) rather than portable TCP probes due to a bug in the FreeBSD/armv7 implementation of DTrace – the last (and most critical!) argument goes missing: the TCP header! We will fix this .. but not today.
Exploratory questions

- Trace state transitions occurring in test TCP connections
- Identify causes of transitions – packets, system calls (etc)
- Varying one-way latency, explore performance of the benchmark with TCP
Experimental questions for the lab report

- Plot a TCP state-transition diagram for both directions of a flow
- Label the state-transition diagram with causes
- Compare the diagram with RFC 793
- Begin performance analysis of TCP latency vs. throughput

In the next lab, we will start a causal analysis of why latency affects bandwidth in the way that it does
This lab session

- Set up IPFW, DUMMYNET, and loopback MTU (see notes)
- Ask us if you have any questions or need help
- Start with the TCP state machine analysis