
Lambda calculus
(Advanced Functional Programming)

Jeremy Yallop

Computer Laboratory
University of Cambridge

January 2016

1/ 63



Course outline

2/ 63



Books

OCaml from the very
beginning
John Whitington

Coherent Press (2013)

Real World OCaml
Yaron Minsky,
Anil Madhavapeddy &
Jason Hickey

O’Reilly Media (2013)

Types and Programming
Languages
Benjamin C. Pierce

MIT Press (2002)

3/ 63



Tooling

OPAM
OCaml package manager

IOCaml

Linux / OSX / VirtualBox

Fω
Fω interpreter

4/ 63



Philosophy and approach

▶ practical: with theory as necessary for understanding

▶ real-world: patterns and techniques from real applications

▶ reusable: general, widely applicable techniques

▶ current: topics of ongoing research

▶ opinionated (but you don’t have to agree)

5/ 63



Philosophy and approach

▶ practical: with theory as necessary for understanding

▶ real-world: patterns and techniques from real applications

▶ reusable: general, widely applicable techniques

▶ current: topics of ongoing research

▶ opinionated (but you don’t have to agree)

5/ 63



Mailing list

cl-acs-28@lists.cam.ac.uk

Announcements, questions and discussion. Feel free to post!

Have a question but feeling shy? Mail me directly and I’ll
anonymise and post your question:

jeremy.yallop@cl.cam.ac.uk

6/ 63



Exercises assessed and unassessed

Unassessed exercises:

Useful preparation for the assessed exercises, so we recommend
that you work through them. Hand in for feedback, discuss freely
on the mailing list.

Assessed exercises:

Mon 25 Jan
↓

Mon 8 Feb

Thu 11 Feb
↓

Thu 25 Feb

Mon 7 Mar
↓

Fri 25 Apr

7/ 63



Course structure

▶ Technical background
Lambda calculus; type inference

▶ Themes
Propositions as types; parametricity and abstraction

▶ (Fancy) types
Higher-rank and higher-kinded polymorphism; modules and
functors; generalised algebraic types

▶ Patterns and techniques
Monads, applicatives, arrows, etc.; datatype-generic
programming; staged programming

▶ Applications
Functional programming at scale with unikernels; concurrency
and reagents

8/ 63



Motivation & background

9/ 63



System Fω

Function composition in OCaml:

fun f g x -> f (g x)

Function composition in System Fω:

Λα::∗.
Λβ::∗.

Λγ::∗.
λf:α → β.

λg:γ → α.
λx::γ.f (g x)

10/ 63



What’s the point of System Fω?

A framework for understanding language features and
programming patterns:

▶ the elaboration language for type inference

▶ the proof system for reasoning with propositional logic

▶ the background for parametricity properties

▶ the language underlying higher-order polymorphism in OCaml

▶ the elaboration language for modules

▶ the core calculus for GADTs

11/ 63



Roadmap

Fω

F

??��������

λ→

OO

12/ 63



Inference rules

premise 1

premise 2
. . .

premise N
rule name

conclusion

13/ 63



Inference rules

premise 1

premise 2
. . .

premise N
rule name

conclusion

all M are P
all S are M

modus barbara
all S are P

13/ 63



Inference rules

premise 1

premise 2
. . .

premise N
rule name

conclusion

all M are P
all S are M

modus barbara
all S are P

all programs are buggy

all functional programs are programs
modus barbara

all functional programs are buggy

13/ 63



Typing rules

Γ ⊢ M : A → B
Γ ⊢ N : A →-elim

Γ ⊢ M N : B

14/ 63



Terms, types, kinds

Kinds: K, K1, K2, . . .

K is a kind

Types: A, B, C, . . .

Γ ⊢ A :: K

Environments: Γ

Γ is an environment

Terms: L, M, N, . . .

Γ ⊢ M : A

15/ 63



λ→

(simply typed lambda calculus)

16/ 63



λ→ by example

In λ→:

λx:A.x

λf:B → C.

λg:A → B.

λx:A.f (g x)

In OCaml:

fun x -> x

fun f g x -> f (g x)

17/ 63



Kinds in λ→

∗-kind∗ is a kind

18/ 63



Kinding rules (type formation) in λ→

kind-B
Γ ⊢ B :: ∗

Γ ⊢ A :: ∗ Γ ⊢ B :: ∗
kind-→

Γ ⊢ A → B :: ∗

19/ 63



A kinding derivation

kind-B
Γ ⊢ B :: ∗ kind-B

Γ ⊢ B :: ∗
kind-→

Γ ⊢ B → B :: ∗ kind-B
Γ ⊢ B :: ∗

kind-→
Γ ⊢ (B → B) → B :: ∗

20/ 63



Environment formation rules

Γ-·· is an environment

Γ is an environment Γ ⊢ A :: ∗
Γ-:

Γ, x:A is an environment

21/ 63



Typing rules (term formation) in λ→

x : A ∈ Γ
tvar

Γ ⊢ x : A

Γ, x : A ⊢ M : B
→-intro

Γ ⊢ λx:A.M : A → B

Γ ⊢ M : A → B
Γ ⊢ N : A →-elim

Γ ⊢ M N : B

22/ 63



A typing derivation for the identity function

·, x : A ⊢ x : A
→-intro· ⊢ λx:A.x : A → A

23/ 63



Products by example

In λ→ with products:

λp:(A → B)× A.

fst p (snd p)

λx:A.⟨x,x⟩

λf:A → C.

λg.B → C.

λp.A× B.

⟨f (fst p),

g (snd p)⟩

λp.A× B.⟨snd p, fst p⟩

In OCaml:

fun (f,p) -> f p

fun x -> (x, x)

fun f g (x,y) -> (f x, g y)

fun (x,y) -> (y,x)

24/ 63



Kinding and typing rules for products

Γ ⊢ A :: ∗ Γ ⊢ B :: ∗
kind-×

Γ ⊢ A× B :: ∗

Γ ⊢ M : A
Γ ⊢ N : B ×-intro

Γ ⊢ ⟨M, N⟩ : A× B

Γ ⊢ M : A× B ×-elim-1
Γ ⊢ fst M : A

Γ ⊢ M : A× B ×-elim-2
Γ ⊢ snd M : B

25/ 63



Sums by example

In λ→ with sums:

λf:A → C.

λg:B → C.

λs:A+ B.

case s of

x.f x

| y.g y

λs:A+ B.

case s of

x.inr [B] x

| y.inl [A] y

In OCaml:

fun f g s ->

match s with

Inl x -> f x

| Inr y -> g y

function

Inl x -> Inr x

| Inr y -> Inl y

26/ 63



Kinding and typing rules for sums

Γ ⊢ A :: ∗ Γ ⊢ B :: ∗
kind-+

Γ ⊢ A+ B :: ∗

Γ ⊢ M : A +-intro-1
Γ ⊢ inl [B] M : A+ B

Γ ⊢ N : B +-intro-2
Γ ⊢ inr [A] N : A+ B

Γ ⊢ L : A+ B
Γ, x : A ⊢ M : C

Γ, y : B ⊢ N : C
+-elim

Γ ⊢ case L of x .M | y .N : C

27/ 63



System F

(polymorphic lambda calculus)

28/ 63



System F by example

Λα::∗.λx:α.x

Λα::∗.
Λβ::∗.

Λγ::∗.
λf:β → γ.

λg:α → β.
λx:α.f (g x)

Λα::∗.Λβ::∗.λp:(α → β)× α.fst p (snd p)

29/ 63



New kinding rules for System F

Γ, α::K ⊢ A :: ∗
kind-∀

Γ ⊢ ∀α::K .A :: ∗
α::K ∈ Γ tyvar
Γ ⊢ α :: K

30/ 63



New environment rule for System F

Γ is an environment K is a kind
Γ-::

Γ, α::K is an environment

31/ 63



New typing rules for System F

Γ, α::K ⊢ M : A
∀-intro

Γ ⊢ Λα::K .M : ∀α::K .A

Γ ⊢ M : ∀α::K .A Γ ⊢ B :: K ∀-elim
Γ ⊢ M [B] : A[α::=B]

32/ 63



Existential types

33/ 63



What’s the point of existentials?

▶ ∀ and ∃ in logic are closely connected to polymorphism and
existentials in type theory

▶ As in logic, ∀ and ∃ for types are closely related to each other

▶ Module types can be viewed as a kind of existential type

▶ OCaml’s variant types now support existential variables

34/ 63



Existential intuition

Existentials
correspond to
abstract types

35/ 63



Kinding rules for existentials

Γ, α::K ⊢ A :: ∗
kind-∃

Γ ⊢ ∃α::K .A :: ∗

36/ 63



Typing rules for existentials

Γ ⊢ M : A[α::=B] Γ ⊢ ∃α::K .A :: ∗
∃-intro

Γ ⊢ pack B,M as ∃α::K .A : ∃α::K .A

Γ ⊢ M : ∃α::K .A
Γ, α :: K , x : A ⊢ M ′ : B

∃-elim
Γ ⊢ open M as α, x in M ′ : B

37/ 63


