Lambda calculus

(Advanced Functional Programming)

Jeremy Yallop

Computer Laboratory
University of Cambridge

January 2016

1/ 63

Course outline

2/ 63

Books

OREILLY

Types and
Programming

Languages

(4

Real World
OCaml

Varon Minsky, Anil Madhavapeddy
& Jason Hickey

Benjamin C. Pierce

OCaml from the very Real World OCaml Types and Programming
beginning Yaron Minsky, Languages

John Whitington Anil Madhavapeddy & Benjamin C. Pierce
Coherent Press (2013) Jason Hickey MIT Press (2002)

O'Reilly Media (2013)

3/ 63

Tooling

]
OPAM
OCaml package manager

10 [+:]:Notepad

1I0Caml

locaml

Linux / OSX / VirtualBox

Fw

Fw interpreter

4/ 63

Philosophy and approach

v

practical: with theory as necessary for understanding

v

real-world: patterns and techniques from real applications

v

reusable: general, widely applicable techniques

> current: topics of ongoing research

5/ 63

Philosophy and approach

» practical: with theory as necessary for understanding

» real-world: patterns and techniques from real applications
» reusable: general, widely applicable techniques

> current: topics of ongoing research

» opinionated (but you don’t have to agree)

5/ 63

Mailing list

cl-acs-28@lists.cam.ac.uk
Announcements, questions and discussion. Feel free to post!
Have a question but feeling shy? Mail me directly and I'll
anonymise and post your question:

jeremy.yallop@cl.cam.ac.uk

6/ 63

Exercises assessed and unassessed

Unassessed exercises:

Useful preparation for the assessed exercises, so we recommend
that you work through them. Hand in for feedback, discuss freely

on the mailing list.

Assessed exercises:

Mon 25 Jan Thu 11 Feb Mon 7 Mar
{ { 1
Mon 8 Feb Thu 25 Feb Fri 25 Apr

7/ 63

Course structure

» Technical background
Lambda calculus; type inference

» Themes
Propositions as types; parametricity and abstraction

» (Fancy) types
Higher-rank and higher-kinded polymorphism; modules and
functors; generalised algebraic types

» Patterns and techniques
Monads, applicatives, arrows, etc.; datatype-generic
programming; staged programming

» Applications
Functional programming at scale with unikernels; concurrency
and reagents

8/ 63

Motivation & background

System Fw

Function composition in OCaml:

funf gx ->f (gx)

Function composition in System Fw:
AR
NG
Ny,
AMia— (.
Ag:iy =«
Ax::y.f (g x)

10/ 63

What's the point of System Fw?

A framework for understanding language features and
programming patterns:

>

the elaboration language for type inference

the proof system for reasoning with propositional logic

the background for parametricity properties

the language underlying higher-order polymorphism in OCaml
the elaboration language for modules

the core calculus for GADTs

11/ 63

Roadmap

Fw

~n

)\—>

12/ 63

Inference rules

premise 1
premise 2

premise N

- rule name
conclusion

13/ 63

Inference rules

premise 1
premise 2

premise N

conclusion

rule name

all M are P

allSare M

all S are P

modus barbara

13/ 63

Inference rules

premise 1 all M are P
; all S are M
premise 2 ————="————modus barbara
all S are P
premise N
———————rule name
conclusion

all programs are buggy

all functional programs are programs
- modus barbara
all functional programs are buggy

13/ 63

Typing rules

rN-mM:A—B
Fr’EN:A

TrMN.g —elim

14/ 63

Terms, types, kinds

Kinds: K, Kj, Ko, ...

K is a kind

Types: A, B, C, ...

MrMN-A: K

Environments: [

[is an environment

Terms: L, M, N, ...

r’-=mM:A

15/ 63

)\—>

(simply typed lambda calculus)

16/ 63

A~ by example

In \7: In OCaml:

Ax:A.x fun x -> x

Af:B—C. funfgx -> £ (gx)
Ag:A —B.

Ax:A.f (g x)

17/ 63

Kinds in A~

% is a kind +-kind

18/ 63

Kinding rules (type formation) in A\~

TFB - B

M=A:x =B : *
r=A— B:x

kind-—

19/ 63

A kinding derivation

kind-B

- kind-B
= kind-—

-8B =B«
r-B—B:*
N=(B—B)— B:x

e kind-B
FEB % (g —

20/ 63

Environment formation rules

- IS an environment

" is an environment M= Az ox
I, x:A is an environment

21/ 63

Typing rules (term formation) in A~

x:Ael tvar
N-=x:A

ITEM:A— B
Nx:A-M:B r’EN:A

- wAM: A B intro TEMN:B o eim

22/ 63

A typing derivation for the identity function

wx:AFEXx: A
EXMAX A=A

—-intro

23/ 63

Products by example

In A\~ with products: In OCaml:

Ap:(A—B) xA. fun (f,p) -> fp
fst p (snd p)

Ax:A.(x,x) fun x -> (x, x)
Af:A—C. fun f g (x,y) -> (fx,gy)
Ag.B—C.
Ap.AXB.
(f (fst p),
g (snd p))

fun (x,y) -> (y,x)
Ap.AXB.(snd p, fst p)

24/ 63

Kinding and typing rules for products

M=A:x [+ B:: %

F-AxB - x kind-x
FT-M:A EM:AxB ..
r-N:B . TEfstM:A &M
X-Intro
[F (M, N):AxB
r-M:AxB .
x-elim-2

[snd M: B

25/ 63

Sums by example

In A\~ with sums: In OCaml:
Af:A—C. fun f g s ->
Ag:B—C. match s with
As:A+B. Inl x -> f x
case s of | Inr vy -> g vy
x.f x
l vy.8 vy
As:A+B. function
case s of Inl x -> Inr x
x.inr [B] x | Intr y -> Inl y
| y.inl [A] ¥y

26/ 63

Kinding and typing rules for sums

MN=A:x B ::*

FCA+ B« kind-+
FrEM:A L r-L:A+B
Frinl[B|M:AtB ol Fox:AEM:C
My:BEN:C]
r'N-N:B +-elim

T inr[A|N:A+ B +-intro-2 [t case Lof x.M | y.N: C

27/ 63

System F

(polymorphic lambda calculus)

28/ 63

System F by example

ANa::ix. Ax:a.x

YRR
NG
Ny:ox.
A8 = .
Agia— (.
Ax:a.f (g x)

Aa::ix . AB::x.Ap:(a—) X a.fst p (snd p)

29/ 63

New kinding rules for System F

Maoa:KEA:« a:Kerl
J : e = tyvar
N-Va:K.A::x kind-¥ lN-a:K Y

30/ 63

New environment rule for System F

I is an environment K is a kind

. . M-:
I, a::K is an environment

31/ 63

New typing rules for System F

Ma:KEFM:A
M= Aa:K.M:Va:K.A

V-intro

EM:Va:K.A r=B: K
=M [B]: Alo::=B]

V-elim

32/ 63

Existential types

What's the point of existentials?

v

V and 3 in logic are closely connected to polymorphism and
existentials in type theory

v

As in logic, ¥V and 3 for types are closely related to each other

v

Module types can be viewed as a kind of existential type

v

OCaml’s variant types now support existential variables

34/ 63

Existential intuition

Existentials
correspond to
abstract types

35/ 63

Kinding rules for existentials

Ioa:KEA:x
FJa:K.A %

kind-3

36/ 63

Typing rules for existentials

=M : Alo:=B] MN-3aK.A

[pack B, M as Ja::K.A: Ja:K.A -intro
M- M™:3Ja:K.A
NNo:K,x:A-M:B ‘
J-elim

I+-open Masa,xin M : B

37/ 63

