Lambda calculus (Advanced Functional Programming)

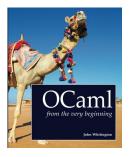
Jeremy Yallop

Computer Laboratory University of Cambridge

January 2016

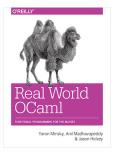
Course outline

Books



OCaml from the very beginning John Whitington

Coherent Press (2013)



Real World OCaml

Yaron Minsky, Anil Madhavapeddy & Jason Hickey O'Reilly Media (2013)

Types and Programming Languages Benjamin C. Pierce MIT Press (2002)

OPAM OCaml package manager

 $\mathbf{F}\omega$ F ω interpreter

Philosophy and approach

- practical: with theory as necessary for understanding
- real-world: patterns and techniques from real applications
- reusable: general, widely applicable techniques
- current: topics of ongoing research

Philosophy and approach

- practical: with theory as necessary for understanding
- real-world: patterns and techniques from real applications
- reusable: general, widely applicable techniques
- current: topics of ongoing research
- opinionated (but you don't have to agree)

Mailing list

cl-acs-28@lists.cam.ac.uk

Announcements, questions and discussion. Feel free to post!

Have a question but feeling shy? Mail me directly and I'll anonymise and post your question:

jeremy.yallop@cl.cam.ac.uk

Unassessed exercises:

Useful preparation for the assessed exercises, so we recommend that you work through them. Hand in for feedback, discuss freely on the mailing list.

Assessed exercises:

Mon 25 Jan	Thu 11 Feb	Mon 7 Mar
\downarrow	\downarrow	\downarrow
Mon 8 Feb	Thu 25 Feb	Fri 25 Apr

Course structure

Technical background

Lambda calculus; type inference

Themes

Propositions as types; parametricity and abstraction

(Fancy) types

Higher-rank and higher-kinded polymorphism; modules and functors; generalised algebraic types

Patterns and techniques

Monads, applicatives, arrows, etc.; datatype-generic programming; staged programming

Applications

Functional programming at scale with unikernels; concurrency and reagents

Motivation & background

System $F\omega$

Function composition in OCaml:

 $fun fg x \rightarrow f(g x)$

Function composition in System $F\omega$:

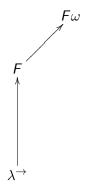
```
\begin{array}{l} \Lambda \alpha :: * \, \cdot \\ \Lambda \beta :: * \, \cdot \\ \Lambda \gamma :: * \, \cdot \\ \lambda \mathbf{f} : \alpha \to \beta \, \cdot \\ \lambda \mathbf{g} : \gamma \to \alpha \, \cdot \\ \lambda \mathbf{x} :: \gamma \, \cdot \mathbf{f} \quad (\mathbf{g} \ \mathbf{x}) \end{array}
```

What's the point of System $F\omega$?

A framework for understanding language features and programming patterns:

- the elaboration language for type inference
- the proof system for reasoning with propositional logic
- the background for parametricity properties
- the language underlying higher-order polymorphism in OCaml
- the elaboration language for modules
- the core calculus for GADTs

Roadmap



Inference rules

premise 1 premise 2 premise N conclusion rule name

Inference rules

premise 1 premise 2 premise N conclusion rule name all M are Pall S are Mall S are P modus barbara

Inference rules

premise 1 premise 2 premise N conclusion rule name all *M* are *P* all *S* are <u>M</u> all *S* are *P*

all programs are buggy all functional programs are programs all functional programs are buggy modus barbara

Typing rules

$$\begin{array}{c} \Gamma \vdash M : A \rightarrow B \\ \hline \Gamma \vdash N : A \\ \hline \Gamma \vdash M N : B \end{array} \rightarrow \text{-elim} \end{array}$$

Terms, types, kinds

Kinds: K, K₁, K₂, ...

K is a kind

Environments: **Г**

 Γ is an environment

Types: A, B, C, ...**Terms:** L, M, N, ... $\Gamma \vdash A :: K$ $\Gamma \vdash M : A$

(simply typed lambda calculus)

λ^{\rightarrow} by example

Kinds in λ^{\rightarrow}

* is a kind *-kind

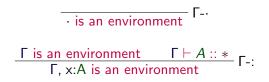
Kinding rules (type formation) in $\lambda^{
ightarrow}$

$$\overline{\Gamma \vdash \mathcal{B} :: *}$$
 kind- \mathcal{B}

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash A \to B :: *} \text{ kind} \rightarrow$$

A kinding derivation

Environment formation rules



Typing rules (term formation) in λ^{\rightarrow}

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \text{ tvar}$$

$$\frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash \lambda x:A.M:A \to B} \to \text{-intro} \qquad \begin{array}{c} \Gamma \vdash M:A \to B \\ \frac{\Gamma \vdash N:A}{\Gamma \vdash M N:B} \to \text{-elim} \end{array}$$

A typing derivation for the identity function

$$\frac{\cdot, x : A \vdash x : A}{\cdot \vdash \lambda x : A x : A \to A} \to -intro$$

Products by example

In λ^{\rightarrow} with products: In OCaml: $\lambda p: (A \rightarrow B) \times A$. fun (f,p) -> f p fst p (snd p) $\lambda \mathbf{x} : \mathbf{A} . \langle \mathbf{x}, \mathbf{x} \rangle$ $fun x \rightarrow (x, x)$ $\lambda f : A \rightarrow C$. $fun fg(x,y) \rightarrow (fx,gy)$ $\lambda g . B \rightarrow C$. $\lambda p.A \times B.$ $\langle f (fst p), \rangle$ g (snd p) \rangle $fun(x,y) \rightarrow (y,x)$ $\lambda p.A \times B. \langle snd p, fst p \rangle$

Kinding and typing rules for products

$$\frac{\Gamma \vdash A :: * \quad \Gamma \vdash B :: *}{\Gamma \vdash A \times B :: *} \text{ kind-} \times$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash N : B} \times -intro$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{fst } M : A} \times \text{-elim-1}$$
$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{snd } M : B} \times \text{-elim-2}$$

25/63

Sums by example

In λ^{\rightarrow} with sums:

 $\begin{array}{c} \lambda \mathbf{f}: \mathbf{A} \to \mathbf{C} \, . \\ \lambda \mathbf{g}: \mathbf{B} \to \mathbf{C} \, . \\ \lambda \mathbf{s}: \mathbf{A} + \mathbf{B} \, . \\ \mathbf{case \ s \ of} \\ \mathbf{x} \, . \, \mathbf{f} \ \mathbf{x} \\ \mathbf{J} \ \mathbf{y} \, . \, \mathbf{g} \ \mathbf{y} \end{array}$ $\begin{array}{c} \lambda \mathbf{s}: \mathbf{A} + \mathbf{B} \, . \\ \mathbf{case \ s \ of} \\ \mathbf{x} \, . \, \mathbf{inr} \ \mathbf{[B]} \ \mathbf{x} \\ \mathbf{J} \ \mathbf{y} \, . \, \mathbf{inl} \ \mathbf{[A]} \ \mathbf{y} \end{array}$

In OCaml:

fun f g s ->
 match s with
 Inl x -> f x
 Inr y -> g y

function
 Inl x -> Inr x
| Inr y -> Inl y

Kinding and typing rules for sums

$$\frac{\Gamma \vdash A :: * \quad \Gamma \vdash B :: *}{\Gamma \vdash A + B :: *} \text{ kind} +$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \text{inl } [B] \ M : A + B} + \text{-intro-1} \qquad \begin{array}{c} \Gamma \vdash L : A + B \\ \overline{\Gamma \vdash \text{inl } [B] \ M : A + B} \end{array} + \text{-intro-2} \qquad \begin{array}{c} \Gamma \vdash C \\ \overline{\Gamma \vdash \text{case } L \text{ of } x.M \mid y.N : C} \end{array} + \text{-elim}$$

System F

(polymorphic lambda calculus)

System F by example

 $\Lambda \alpha : : * . \lambda x : \alpha . x$

 $\begin{array}{l}
\Lambda \alpha :: * : & \\
\Lambda \beta :: * : & \\
\Lambda \gamma :: * : & \\
\lambda f : \beta \to \gamma . \\
\lambda g : \alpha \to \beta . \\
\lambda x : \alpha . f (g x)
\end{array}$

 $\Lambda \alpha : :* \, . \, \Lambda \beta : :* \, . \, \lambda \mathtt{p} : (\alpha \to \beta) \times \alpha \, . \, \mathtt{fst p (snd p)}$

New kinding rules for System F

$$\frac{\Gamma, \alpha :: \mathcal{K} \vdash \mathcal{A} :: *}{\Gamma \vdash \forall \alpha :: \mathcal{K}. \mathcal{A} :: *} \text{ kind-} \forall$$

$$\frac{\alpha:: \mathbf{K} \in \mathbf{\Gamma}}{\mathbf{\Gamma} \vdash \alpha :: \mathbf{K}}$$
tyvar

New environment rule for System F

$\frac{\Gamma \text{ is an environment}}{\Gamma, \alpha :: K \text{ is an environment}} \frac{K \text{ is a kind}}{\Gamma \cdot ::}$

New typing rules for System F

$$\frac{[\Gamma, \alpha:: K \vdash M : A]}{[\Gamma \vdash \Lambda \alpha:: K.M : \forall \alpha:: K.A]} \forall \text{-intro}$$

$$\frac{[\Gamma \vdash M : \forall \alpha:: K.A]}{[\Gamma \vdash M : B] : A[\alpha::=B]} \forall \text{-elim}$$

Existential types

What's the point of existentials?

- ∀ and ∃ in logic are closely connected to polymorphism and existentials in type theory
- ▶ As in logic, \forall and \exists for types are closely related to each other
- Module types can be viewed as a kind of existential type
- OCaml's variant types now support existential variables

Existential intuition

Existentials correspond to **abstract types** Kinding rules for existentials

$$\frac{\Gamma, \alpha :: \mathcal{K} \vdash A :: *}{\Gamma \vdash \exists \alpha :: \mathcal{K}.A :: *} \text{ kind-} \exists$$

Typing rules for existentials

$$\frac{\Gamma \vdash M : A[\alpha ::=B]}{\Gamma \vdash \text{pack } B, M \text{ as } \exists \alpha ::K.A : \exists \alpha ::K.A} \exists \text{-intro}$$

$$\frac{\Gamma \vdash M : \exists \alpha ::K.A}{\frac{\Gamma, \alpha ::K, x : A \vdash M' : B}{\Gamma \vdash \text{ open } M \text{ as } \alpha, x \text{ in } M' : B} \exists \text{-elim}$$