
Chapter 8

Programming with GADTs

ML-style variants and records make it possible to define many different data
types, including many of the types we encoded in System F𝜔 in Chapter 2.4.1:
booleans, sums, lists, trees, and so on. However, types defined this way can lead
to an error-prone programming style. For example, the OCaml standard library
includes functions List.hd and List.tl for accessing the head and tail of a list:
val hd : 'a list → 'a
val tl : 'a list → 'a list

Since the types of hd and tl do not express the requirement that the argument
lists be non-empty, the functions can be called with invalid arguments, leading
to run-time errors:
List.hd [];;
Exception: Failure "hd".

In this chapter we introduce generalized algebraic data types (GADTs),
which support richer types for data and functions, avoiding many of the errors
that arise with partial functions like hd. As we shall see, GADTs offer a num-
ber of benefits over simple ML-style types, including the ability to describe the
shape of data more precisely, more informative applications of the propositions-
as-types correspondence, and opportunities for the compiler to generate more
efficient code.

8.1 Generalising algebraic data types
Towards the end of Chapter 2 we considered some different approaches to defin-
ing binary branching tree types. Under the following definition a tree is either
empty, or consists of an element of type 'a and a pair of trees:
type 'a tree =

Empty : 'a tree
| Tree : 'a tree * 'a * 'a tree → 'a tree

95

96 CHAPTER 8. PROGRAMMING WITH GADTS

T

E 1 T

E 2 T

E 3 E

Tree
(Empty,
1,
Tree
(Empty,
2,
Tree (Empty, 3, Empty)))

Figure 8.1: A right skewed tree value
T

T

T

E 1 E

2 E

3 E

Tree
(Tree

(Tree (Empty, 1, Empty),
2,
Empty),

3,
Empty)

Figure 8.2: A left skewed tree value
T

T

E 1 E

2 T

E 3 E

Tree
(Tree (Empty, 1, Empty),
2,
Tree (Empty, 3, Empty))

Figure 8.3: A balanced tree value

Using the constructors of tree we can build a variety of tree values. For
example, we can build trees that are skewed to the right (Figure 8.1) or to the
left (Figure 8.2), or whose elements are distributed evenly between left and right
(Figure 8.3).

Alternatively we can give a definition under which a tree is either empty, or
consists of an element of type 'a and a tree of pairs1:
type _ ntree =

EmptyN : 'a ntree
| TreeN : 'a * ('a * 'a) ntree → 'a ntree

The constructors of ntree severely constrain the shape of trees that can be
built. Since the element type of each subtree 'a*'a duplicates the element type
'a of the parent , the number of elements at each depth precisely doubles, and

1The perfect type of Chapter 2 defined trees with labels at the leaves rather than at the
branches. The definition of ntree given here makes it easier to compare the various tree types
in this chapter.

8.1. GENERALISING ALGEBRAIC DATA TYPES 97

T
1

E

T
2

T
(1, 3)

E

T
4

T
(3, 5)

T
((1, 2), (6, 7))

E

TreeN
(1, EmptyN)

TreeN
(2, TreeN

((1,3),
EmptyN))

TreeN
(4, TreeN

((3,5),
TreeN (((1,2),(6,7)),

EmptyN)))

Figure 8.4: Perfectly-balanced trees

the elements are distributed evenly to the left and to the right. As a result, the
only trees that can be built are perfectly balanced trees whose elements number
one less than a power of two (Figure 8.4).

The definition of ntree is non-regular because the type constructor it defines,
ntree, is not uniformly applied to its type parameters in the definition: instead,
it is instantiated with 'a * 'a in the argument of TreeN. We call such non-regular
types nested. Allowing the return types of constructors to vary in a similar way
gives us a variety of non-regular types known as generalized algebraic data types
(GADTs).

Our first example of a GADT definition involves a couple of auxiliary types
for natural numbers:
type z = Z : z
type 'n s = S : 'n → 'n s

For each natural number n, the types z and s allow us to construct a type
whose single inhabitant represents n. For example, the number three is repre-
sented by applying S three times to Z:
S (S (S Z));;
- : z s s s = S (S (S Z))

Initially we will be mostly interested in the types built from z and s rather
than the values which inhabit those types.

The types z and s are not themselves GADTs, but we can use them to build
a GADT, gtree, that represents perfect trees:
type ('a, _) gtree =

EmptyG : ('a,z) gtree
| TreeG : ('a,'n) gtree * 'a * ('a,'n) gtree → ('a,'n s) gtree

98 CHAPTER 8. PROGRAMMING WITH GADTS

T[1]

E 1 E

T[2]

T[1]

E 1 E

2 T[1]

E 3 E

T[3]

T[2]

T[1]

E 1 E

2 T[1]

E 3 E

4 T[2]

T[1]

E 5 E

6 T[1]

E 7 E

TreeG
(EmptyG,
1,
EmptyG)

TreeG
(TreeG (EmptyG,

1,
EmptyG),

2,
TreeG (EmptyG,

3,
EmptyG))

TreeG
(TreeG
(TreeG (EmptyG, 1, EmptyG),
2,
TreeG (EmptyG, 3, EmptyG)),

4,
TreeG
(TreeG (EmptyG, 5, EmptyG),
6,
TreeG (EmptyG, 7, EmptyG))

Figure 8.5: Perfect trees using GADTs

(The bracketed numbers indicate the depth of the subtree.)

The definition of gtree corresponds to the definition of tree, but with an
additional parameter for representing the depth of the tree. For the empty
tree EmptyG the parameter is instantiated to z, reflecting the fact that empty
trees have depth zero. For branching trees built with the TreeG constructor the
depth parameter is instantiated to 'n s, where 'n is the depth of each of the two
subtrees. There are two constraints introduced by this second instantiation:
first, the subtrees are constrained to have the same depth 'n; second, the depth
of the tree built with TreeG is one greater than the depth of its subtrees.

It is the different instantiations of the second type parameter in the return
types of EmptyG and TreeG which make gtree a GADT. We call parameters which
vary in constructor return types indexes.

As with ntree, the constructors of gtree constrain the trees that we can
build. Since both subtrees of each branch are constrained by the type of TreeG
to have the same depth, the only values of type gtree are perfectly balanced
trees. Figure 8.5 gives some examples.

8.1.1 Functions over GADTs
The gtree type illustrates how relaxing the regularity conditions on the types
of data type constructors make it possible to impose interesting constraints
on the shape of data. However, constructing data is somewhat less than half
the story: the most interesting aspects of GADT behaviour are associated with

8.1. GENERALISING ALGEBRAIC DATA TYPES 99

T

T

E a E

b E ⇝ 1 + max

(1 + max 0 0) 0

let rec depth : 'a.'a tree → int = function
Empty → 0

| Tree (l,_,r) → 1 + max (depth l) (depth r)

T

T

E a E

b E ⇝ Some b

let top : 'a.'a tree → 'a option = function
Empty → None

| Tree (_,v,_) → Some v

T

T

E a E

b E ⇝
T

E b T

E a E
let rec swivel : 'a.'a tree → 'a tree = function

Empty → Empty
| Tree (l,v,r) → Tree (swivel r, v, swivel l)

Figure 8.6: Functions over unconstrained binary trees

destructing values passed as function arguments. We will now consider a number
of functions which destruct trees passed as arguments to illustrate how GADTs
have certain clear advantages over regular and nested data types.

Functions over tree Figure 8.6 shows the implementations of three functions
over the regular tree type tree. The first, depth, computes the depth of a tree,
defined as zero if the tree is empty and the successor of the maximum of the
depths of the left and right subtrees otherwise. The second, top, retrieves the
element nearest the root of the argument tree, and returns an option value in
order to account for the case where argument is empty. The third, swivel, rotates
the tree around its central axis.

The types of depth, top and swivel are straightforward, but fairly uninfor-
mative. The type of depth tells us that the function accepts a tree and returns
an int, but there is nothing in the type that indicates how the two are related.

100 CHAPTER 8. PROGRAMMING WITH GADTS

It is possible to write functions of the same type that compute the number of
elements in the tree rather than the depth, or that compute the number of un-
balanced branches, or that simply return a constant integer. The type of swivel
is slightly more informative, since we can apply parametricity-style reasoning to
conclude that every element in the output tree must occur in the input tree, but
we cannot say much more than this. It is possible to write functions with the
same type as swivel that return an empty tree, ignoring the argument, or that
duplicate or exchange nodes, or that simply return the argument unaltered.

Functions over ntree Figure 8.7 shows the implementation of functions cor-
responding to depth, top and swivel for the ntree type.

The implementations of depthN and topN correspond quite directly to their
counterparts for the tree type. Since all values of type ntree are perfectly bal-
anced, it is sufficient for depthN to measure the spine rather than computing
the maximum depth of subtrees. One additional point is worth noting: since a
non-empty value of type 'a ntree has a subtree of type ('a * 'a) ntree, depthN is
an example of polymorphic recursion (Section 3.4.2).

The implementation of swivelN is less straightforward, since it deals recur-
sively with elements, and the element type changes as the depth increases. The
auxiliary function swiv accepts a function f which can be used to swivel elements
at a particular depth. At the point of descent to the next level, f is used to
construct a function fun (x,y) → (f y,f x) that can be used to swivel elements
one level deeper.

Functions over gtree Figure 8.8 shows the implementation of functions cor-
responding to depth, top and swivel for gtree.

Locally abstract types The first thing to observe is the new syntax in the
type signatures: the prefix type a n introduces two type names a and n that are
in scope both in the signature and in the accompanying definition. These names
denote so-called locally abstract types, and together with GADTs they support
type-checking behaviour known as type refinement.

Type refinement Under standard pattern matching behaviour, matching a
value against a series of patterns reveals facts about the structure of the value.
For example, in the depth function of Figure 8.6, matching the argument de-
termines whether it was constructed using Empty or Tree. It is only possible to
extract the element from the tree in the Tree branch, since the variable v which
binds the element is not in scope in the Empty branch.

Type refinement extends standard pattern matching so that matching re-
veals facts both about the structure of the value and about its type. Since the
constructors of a GADT value have different return types, determining which
constructor was used to build a value reveals facts about the type of the value
(and sometimes about other values, as we shall see later). Let’s consider the
implementation of depthG to see how refinement works.

8.1. GENERALISING ALGEBRAIC DATA TYPES 101

T
a

T
(b, c)

T
((d, e), (f, g))

E

⇝

1 +

1 +

1 +

0

let rec depthN : 'a.'a ntree → int =
function

EmptyN → 0
| TreeN (_,t) → 1 + depthN t

T
a

T
(b, c)

E

⇝ Some a

let rec topN : 'a.'a ntree → 'a option = function
EmptyN → None

| TreeN (v,_) → Some v

T
a

T
(b, c)

T
((d, e), (f, g))

E

⇝

T
a

T
(c, b)

T
((g, f), (e, d))

E

let rec swiv : 'a.('a→'a) → 'a ntree → 'a ntree =
fun f t → match t with

EmptyN → EmptyN
| TreeN (v,t) →

TreeN (f v, swiv (fun (x,y) → (f y, f x)) t)

let swivelN p = swiv id p

Figure 8.7: Functions over perfect trees

102 CHAPTER 8. PROGRAMMING WITH GADTS

T[2]

T[1]

E d E

b T[1]

E e E

⇝
S (depth

S (depth

Z))

let rec depthG : type a n.(a, n) gtree → n =
function

EmptyG → Z
| TreeG (l,_,_) → S (depthG l)

T[2]

T[1]

E b E

a T[1]

E c E

⇝ a

let topG : type a n.(a,n s) gtree → a =
function TreeG (_,v,_) → v

T[2]

T[1]

E b E

a T[1]

E c E

⇝
T[2]

T[1]

E c E

a T[1]

E b E

let rec swivelG : type a n.(a,n) gtree → (a,n) gtree =
function

EmptyG → EmptyG
| TreeG (l,v,r) → TreeG (swivelG r, v, swivelG l)

Figure 8.8: Functions over perfect trees using GADTs

8.1. GENERALISING ALGEBRAIC DATA TYPES 103

Here’s the signature of depthG:
type a n.(a, n) gtree → n

Knowing the interpretation of the second type parameter, we might read
this as follows: depthG takes a gtree with element type a and depth n and returns
the depth n. Thus for an empty tree we expect depthG to return Z, and for a tree
of depth three we expect it to return S (S (S Z)). However, these have different
(and incompatible) types, and the normal type checking rules require that every
branch of a match have the same type. Type refinement addresses exactly this
difficulty. The first branch is executed if the value was built with EmptyG:

EmptyG → Z

Looking back to the definition of EmptyG (page 97) we find the depth param-
eter instantiated with z:

EmptyG : ('a,z) gtree

It is therefore reasonable to draw the following conclusion: if the first branch
is executed, then the type equality n ≡ z must hold, and we can freely exchange
n and z in the types of any expression within this branch. In particular, the
expression Z, which has type z, can also be given the type n, which is exactly
what is needed to satisfy the signature.

Similarly, the second branch is executed if the value was built with TreeG:
| TreeG (l,_,_) → S (depthG l)

In the definition of TreeG the depth parameter is instantiated with 'n s:
| TreeG : ('a,'n) gtree * 'a * ('a,'n) gtree → ('a,'n s) gtree

If this branch is executed then we can draw the following series of conclusions:

1. The type equality n ≡ 'n s must hold for some unknown type variable 'n
and we can freely exchange n and z in the types of any expression within
this branch

2. According to the type of the TreeG constructor the first constructor argu-
ment l has type (a, 'n) gtree.

3. The recursive call depthG l therefore has type 'n.

4. The application of the S constructorS (depthG l) therefore has type 'n s.

5. Since n ≡ 'n s, the expression S (depthG l) can be given the type n, which
is exactly what is needed to satisfy the signature.

There’s quite a lot going on to type check such a simple definition! It is only
because we have specified the expected type of the function that type checking
succeeds; there is no hope of inferring a principal type. There are at least three
reasons why the type inference algorithm of Chapter 3 cannot be expected to
determine a type for depthG:

104 CHAPTER 8. PROGRAMMING WITH GADTS

1. The definition is polymorphic-recursive, since the argument passed to
depthG has a different type to the parameter in the definition. We saw
in Section 3.4.2 that polymorphic recursion is incompatible with type in-
ference.

2. The type of the variable l is existential, which is a more formal way of
saying the same thing as “for some unknown type variable ’n”’ above.
We saw in Chapter 6 that type inference for general existential types is
undecidable.

3. Type refinement is not generally compatible with inference, since the type
checker needs to know in advance what is being refined. We will cover this
point in more detail in Section 8.3.

The second function over gtree values, topG, illustrates an additional benefit
of type refinement. Although the gtree type has two constructors, the definition
of topG matches only TreeG. A pattern match that matches only a subset of
constructors for the matched type is usually a programming mistake which leads
to a warning from the compiler, as we see if we try to give a similar one-branch
definition for tree:
let top : 'a.'a tree → 'a option =

function Tree (_,v,_) → Some v;;
Characters 38-69:

function Tree (_,v,_) → Some v;;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Empty

However, the OCaml compiler accepts topG without warning. An analysis of the
type refinement that takes place in the definition shows why. Here is the type of topG:
type a n.(a,n s) gtree → a

As before, matching the TreeG branch refines the depth index type to 'n s
for some unknown type variable 'n. Combining this with the depth index n s
in the signature gives the type equality 'n s ≡ n s, (which is equivalent to the
simpler equation 'n ≡ n, since the type constructor s is injective). Similarly, if
we had a case for EmptyG we would again see the index type refined to z to give
the equation z ≡ n s. However, this last equation clearly has no solutions: there
is no value of n which can make the two sides the same! Since it is therefore
impossible to pass the value EmptyG to topG, there is no need to include a case for
EmptyG in the match.

In fact, the OCaml compiler goes a little further than simply accepting the
incomplete match without a warning. Since the EmptyG case is clearly impossible,
OCaml treats its inclusion as an error:
let topG : type a n.(a,n s) gtree → a = function

TreeG (_,v,_) → v
| EmptyG → assert false;;

Characters 75-81:

8.1. GENERALISING ALGEBRAIC DATA TYPES 105

| EmptyG → assert false;;
^^^^^^

Error: This pattern matches values of type (a, z) gtree
but a pattern was expected which matches values
of type (a, n s) gtree
Type z is not compatible with type n s

The final function in Figure 8.8, swivelG, illustrates building GADT values
in a context in which type equalities are known to hold. As with depthG, the
compiler deduces from the types of the constructors in the pattern match that
the equalities n ≡ z and n ≡ 'n s (for some 'n) hold in the EmptyG and TreeG
branches respectively. The following type assignments are therefore justified:

• The expression EmptyG can be given the type (a, n) gtree in the EmptyG
branch (since the EmptyG constructor has the type ('a, z) gtree for any 'a,
and we know that n ≡ z.

• The bound variables l and r are each given the types (a, 'n) gtree, since
the whole TreeG pattern has the type (a, 'n s) gtree.

• These types for l and r, together with the type of swivelG lead to the type
(a,'n) gtree for the recursive calls swivelG r and swivelG l.

• The expression TreeG (swivelG r, v, swivelG l) can be given the type (a, n
) gtree using the types of the arguments, the type of the TreeG constructor
and the type equality n ≡ 'n s.

The types for depthG, topG and swivelG are a little more complex than the types
for the corresponding functions over unconstrained trees (tree) and nested trees
(ntree). It is worth considering what we can learn about the functions from
their types alone.

While the types of depth and depthN told us relatively little about the be-
haviour of those functions, the type of depthG tells us precisely what the function
returns:
val depthG: ('a, 'n) gtree → 'n

Since the index 'n describes the depth of the tree, and the function returns a
value of type 'n, we can be sure that the value returned by depthG represents the
depth. For each value of type ('a, 'n) gtree there is exactly one corresponding
value of type 'n.

The type of topG also tells us more than the types of its counterparts top and
topN:
val topG : ('a,'n s) gtree → 'a

The instantiation of the depth index to 'n s tells us that only non-empty
trees can be passed to topG. The return type, 'a, tells us that topG always
returns an element of the tree, in contrast to top and topN, which might return
None. Unlike the type of depthG, however, the type of topG does not completely
specify the function. For example, a function which returned the leftmost or
rightmost element of a gtree would have the same type.

106 CHAPTER 8. PROGRAMMING WITH GADTS

T[2]

T[1]

E b E

a T[1]

E c E
T[2]

T[1]

E e E

d T[1]

E f E

⇝

T[2]

T[1]

E (b,e) E

(a,d) T[1]

E (c,f) E

let rec zipTree :
type a b n.(a,n) gtree → (b,n) gtree → (a * b,n) gtree =
fun x y → match x, y with

EmptyG, EmptyG → EmptyG
| TreeG (l,v,r), TreeG (m,w,s) →

TreeG (zipTree l m, (v,w), zipTree r s)

Figure 8.9: Zipping perfect trees using GADTs

Finally, the type of swivelG once again tells us more than the types of swivel
and swivelN:
val swivelG : ('a,'n) gtree → (a,n) gtree

Since the depth index is the same in the parameter and the result we can
conclude that swivelG preserves the depth of the tree passed as argument. Since
trees of type gtree are always balanced, we can also conclude that the tree
returned by swivelG always has the same number of elements as the input tree.
As with topG, however, the type is not sufficiently precise to completely specify
the behaviour. For one thing, the type of swivelG tells us nothing about swiveling:
the identity function can be given the same type!

Conversions between the two representations of perfect trees We have
shown two ways of representing perfect trees, using nested types and using
GADTs. We can demonstrate the interchangeability of the two representations
by defining an isomorphism between them. We will only give one half of the
isomorphism here; the other half is left as an exercise for the reader (Question 4,
page 130).

Figure 8.9 shows the implementation of a function zipTree, which turns a
pair of gtree values into a gtree of pairs. There are two cases: first, if both
input trees are empty, the result is an empty tree; second, if both trees are
branches, the result is built by pairing their elements and zipping their left and
right subtrees.

8.1. GENERALISING ALGEBRAIC DATA TYPES 107

T[2]

T[1]

E b E

a T[1]

E c E

⇝

T
a

T
(b, c)

E
let rec nestify : type a n.(a,n) gtree → a ntree =

function
EmptyG → EmptyN

| TreeG (l, v, r) →
TreeN (v, nestify (zipTree l r))

Figure 8.10: Converting a gtree to an ntree

As with topG, type refinement relieves us of the need to specify the other
cases, in which one tree is empty and the other non-empty. The type of zipTree
specifies that the two input trees have the same depth n. Consequently, if one
tree matches EmptyG, we know that the depth of both trees must be z. Similar
reasoning leads to the conclusion that if one tree is non-empty the other must
also be non-empty.

Figure 8.10 shows how zipTree can be used to build a function nestify, which
converts a gtree to an ntree. The depth information is discarded in the output,
and so the types do not guarantee that the structures of the input and out-
put trees correspond: we must examine the implementation of the function to
convince ourselves that it is correct.

8.1.2 Depth-indexing imperfect trees
The trees we have seen so far fall into two categories: trees without balancing
constraints implemented using standard variants, and perfect trees implemented
either with nested types or with GADTs. At this point the reader may be won-
dering whether GADTs are only useful for representing data with improbable
constraints which are unlikely to be useful in real programs. In this section
we provide evidence to the contrary in the form of a second implementation
of unbalanced trees, this time with an additional type parameter to track the
depth. As we shall see, this implementation combines benefits of both the un-
constrained and the depth-indexed trees from earlier in the chapter: the depth-
indexing provides extra information about the types to improve correctness and
performance, but we will be able to represent arbitrary binary branching struc-
ture.

The depth of an unbalanced tree is determined by the maximum depth of
its branches. In order to implement a depth-indexed unbalanced tree we will

108 CHAPTER 8. PROGRAMMING WITH GADTS

type (_,_,_) max =
MaxEq : 'a → ('a,'a,'a) max

| MaxFlip : ('a,'b,'c) max → ('b,'a,'c) max
| MaxSuc : ('a,'b,'a) max → ('a s,'b,'a s) max

let rec max : type a b c. (a, b, c) max → c = function
MaxEq x → x

| MaxSuc m → S (max m)
| MaxFlip m → max m

Figure 8.11: A max function for type-level natural numbers

need some way of constructing a type denoting this maximum.
Figure 8.11 defines a type max2 that represents the maximum of two numbers.

Following the propositions-as-types correspondence described in Chapter 4 we
will interpret the type constructor max as a three-place predicate which we will
write max(−, −) = −, the type (a, b, c) max as the proposition max(𝑎, 𝑏) = 𝑐,
and a value of the type as a proof of the proposition. Viewed this way the types
of the three constructors for max become inference rules for constructing proofs.
There are three rules, each of which is consistent with the notion that max
defines a notion of maximum.

The first rule, max-eq, says that the maximum of a value 𝑎 and the same
value 𝑎 is 𝑎.

𝑎 max-eq
max(𝑎, 𝑎) = 𝑎

The premise 𝑎 in the inference rule, corresponding to the argument of the
constructor MaxEq, stipulates that the max-eq rule only applies if we have evi-
dence for 𝑎; this will make it easier to write the max function described below,
which produces the maximum value 𝑐 from a proof that max(𝑎, 𝑏) = 𝑐.

The second rule, max-flip, says that max is commutative.

max(𝑎, 𝑏) = 𝑐
max-flip

max(𝑏, 𝑐) = 𝑎

The third rule, max-suc, says that the maximum of two values remains the
maximum if we increment it.

max(𝑎, 𝑏) = 𝑎 max-suc
max(𝑎 + 1, 𝑏) = 𝑎 + 1

2The definition of max used here is simpler and supports more efficient function definitions
than the definition presented in lectures.

8.1. GENERALISING ALGEBRAIC DATA TYPES 109

These rules represent just one of many possible ways of defining the maxi-
mum predicate. The definition given here is convenient for our purposes, and
allows us to build proofs for the maximum of any two natural numbers. For
example, we can construct a proof for the proposition max(1, 3) = 3 as follows:

1 max-eq
max(1, 1) = 1 max-suc
max(2, 1) = 2 max-suc
max(3, 1) = 3

max-flip
max(1, 3) = 3

Translating the proof back to OCaml, turning each rule application into a
constructor application gives us a value of type (z s, z s s s, z s s s) max:
MaxFlip (MaxSuc (MaxSuc (MaxEq (S Z))));;
- : (z s, z s s s, z s s s) max = …

Figure 8.11 also defines the function max, which builds a value of type c from
a value of type (a,b,c) max. For example, when given our proof of max(1, 3) = 3
the max function will return 3:
max (MaxFlip (MaxSuc (MaxSuc (MaxEq (S Z)))));;
- : z s s s = S (S (S Z))

Now that we have defined the max type we can move on to the definition of
the trees themselves. Starting from the tree type that represents unbalanced
trees two changes are needed. First, we must add a type parameter representing
the depth. Second, we must store in each non-empty tree a value which relates
the depths of the subtrees to the depth of the tree. Here is the definition:
type ('a,_) dtree =

EmptyD : ('a,z) dtree
| TreeD : ('a,'m) dtree * 'a * ('a,'n) dtree * ('m,'n,'o) max

→ ('a,'o s) dtree

The EmptyD constructor is straightforward: an empty tree has depth zero. In
the definition of TreeD the depth indexes of the subtrees ('m and 'n) and in the
return type ('o) are all different, but the relation between them is represented by
an additional value of type ('m,'n,'o) max. As we have seen, this value represents
the fact that 'o is the maximum of 'm and 'n; further, since the depth index in
the return type of TreeD is 'o s we have captured the desired property that the
depth of a non-empty tree is one greater than the maximum depth of its subtrees
(Figure 8.12).

Figure 8.13 shows the implementation of functions corresponding to depth,
top and swivel for dtree.

The depthD function computes the depth of a depth-indexed unbalanced tree.
The max value stored in each non-empty node supports a relatively efficient
implementation, since it allows us to retrieve the depth of the deeper subtree
without inspecting the subtrees themselves.

110 CHAPTER 8. PROGRAMMING WITH GADTS

T[1]
max(0, 0) = 0

E 1 E

T[2]
max(1, 0) = 1

T[1]
max(0, 0) = 0

E 1 E

2 E

T[3]
max(2, 1) = 2

T[2]
max(1, 0) = 1

T[1]
max(0, 0) = 0

E 1 E

2 E

T[1]
max(0, 0) = 0

E 3 E

Figure 8.12: Depth-indexed unbalanced trees

The topD function retrieves the topmost element of a non-empty tree. As
with topG, the type refinement that takes place when the function matches the
argument determines that only the TreeD constructor can occur.

The swivelD function rotates a tree around its central axis. Exchanging
the left and right subtrees requires updating the max value which records which
subtree is deeper: we must replace a proof max(𝑙, 𝑟) = 𝑡 with a proof max(𝑟, 𝑙) =
𝑡.

8.1.3 GADTs and efficiency
As we saw when considering topG (page 104), the extra type information intro-
duced by GADT indexes enable the compiler to detect match cases that can
never be executed. In addition to allowing the programmer to omit unreachable
branches, this analysis also makes it possible for the compiler to generate more
efficient code. If type checking a match reveals that only one of the construc-
tors of the scrutinee value type can ever occur then the generated code need not
examine the value at all, leading to simpler generated code and faster execution.

Here is the definition of top from Figure 8.6:
let top : 'a.'a tree → 'a option = function

Empty → None
| Tree (_,v,_) → Some v

Passing the -dlambda option to the OCaml compiler causes it to print out
an intermediate representation of the code3:

(function p
(if p

(makeblock 0 (field 1 p))
0a))

3Some names in the code below have been changed to improve legibility.

8.1. GENERALISING ALGEBRAIC DATA TYPES 111

T[2]
max(1, 0) = 1 (𝑝2)

T[1]
max(0, 0) = 0 (𝑝3)

E a E

b E
⇝ S (max (max(1, 0) = 1)

let rec depthD : type a n.(a,n) dtree → n = function
EmptyD → Z

| TreeD (l,_,r,mx) → S (max mx)

T[2]
max(1, 0) = 1 (𝑝2)

T[1]
max(0, 0) = 0 (𝑝3)

E a E

b E
⇝ b

let topD : type a n.(a,n s) dtree → a =
function TreeD (_,v,_,_) → v

T[2]
max(1, 0) = 1

T[1]
max(0, 0) = 0

E a E

b E ⇝

T[2]
max(0, 1) = 1

E b T[1]
max(0, 0) = 0

E a E

let rec swivelD : type a n.(a,n) dtree → (a,n) dtree = function
EmptyD → EmptyD

| TreeD (l,v,r,m) → TreeD (swivelD r, v, swivelD l, MaxFlip m)

Figure 8.13: Functions over depth-indexed unbalanced trees

112 CHAPTER 8. PROGRAMMING WITH GADTS

This intermediate representation corresponds quite closely to the source.
The value of top is a function with a parameter p. There is a branch if p to
determine whether the constructor is Tree or Empty; if it is Tree then makeblock
is called to allocate a Some value, passing the first field (called v in the definition
of top) as an argument. If p is determined to be Empty then the function returns
0a, which is the intermediate representation for None.

Here is the definition of topG from Figure 8.8:
let topG : type a n.(a,n s) gtree → a =

function TreeG (_,v,_) → v

This time the code printed out when we pass -dlambda is much simpler:

(function p
(field 1 p))

The call to makeblock has disappeared, since the more precise typing allows
topG to return an a rather than an a option. Additionally, the compiler has
determined that the Empty constructor can never be passed as an argument to
topG, and so no branch has been generated. The source language types have
made it possible for the compiler to emit significantly simpler and faster code.

Let’s consider one more example. The zipTree function of Figure 8.10 tra-
verses two gtree values in parallel. The lambda code for zipTree is a little more
complicated than the code for topG, mostly as a result of the recursion in the
input definition:

(letrec
(zipTree

(function x y
(if x
(makeblock 0
(apply zipTree (field 0 x) (field 0 y))
(makeblock 0 (field 1 x) (field 1 y))
(apply zipTree (field 2 x) (field 2 y)))

0a)))
(apply (field 1 (global Toploop!)) "zipTree" zipTree))

Of particular interest is the generated branch if x. A match for two values,
each with two possible constructors, will typically generate code with three
branches to determine which of the four possible pairs of constructors has been
passed as input. However, the type for zipTree constrains the types of the
arguments so that both must be EmptyG or both TreeG. As there are only two
cases to distinguish the compiler can generate a single branch if x to determine
the constructors for both arguments.

8.2 GADTs and type equality
We have seen the central role that type equalities play in programs involv-
ing GADTs. The type refinement that is associated with pattern matching on

8.2. GADTS AND TYPE EQUALITY 113

type (_, _) eql = Refl : ('a, 'a) eql

Figure 8.14: The equality GADT
let symm : type a b.(a, b) eql → (b, a) eql =

fun Refl → Refl

let trans : type a b c.(a, b) eql → (b, c) eql → (a, c) eql =
fun Refl Refl → Refl

module Lift (T : sig type _ t end) :
sig

val lift : ('a,'b) eql → ('a T.t,'b T.t) eql
end =
struct

let lift : type a b.(a, b) eql → (a T.t, b T.t) eql =
fun Refl → Refl

end

let cast : type a b.(a,b) eql → a → b =
fun Refl x → x

Figure 8.15: Some properties of type equality

GADT values introduces type equalities that follow the types of the constructors
in the match. We now consider the definition of a GADT eql which captures
the idea of a type equality, and outline how every other GADT value can be
straightforwardly encoded using non-GADT variant types together with eql.

Figure 8.14 gives a definition of the eql type, which has two type param-
eters and a single constructor with no arguments. The parameters of eql are
instantiated to the same type 'a, enforcing the constraint that Refl can only be
used with a type (a,b) eql when the types a and b are known to be equal. For
example, we can use Refl at type (int,int) eql, since the types int and int are
known to be equal:
(Refl : (int, int) eql);;
- : (int, int) eql = Refl

Similarly, since a type alias declaration simply introduces a new name for
an existing type, we can instantiate the parameters of Refl with a type and its
alias:
type t = int;;
type t = int
(Refl : (t, int) eql);;
- : (t, int) eql = Refl

However, if we hide the representation of t behind the signature of a module
M then the fact that t is equal to int is hidden and attempting to build a value

114 CHAPTER 8. PROGRAMMING WITH GADTS

of type (M.t, int) eql meets with failure:
module M : sig type t end = struct type t = int end;;
module M : sig type t end
(Refl : (M.t, int) eql);;
Characters 1-5:

(Refl : (M.t, int) eql);;
^^^^

Error: This expression has type (M.t, M.t) eql
but an expression was expected of type (M.t, int) eql
Type M.t is not compatible with type int

This last example gives a clue to how we might use eql. Since modules and
other abstraction mechanisms make different type equalities visible at different
parts of a program it is useful to have a means of passing equalities around as
values. From a Curry-Howard (Propositions as Types) perspective, we can view
a value of type (a,b) eql as a proof of the proposition that a and b are equal.
Looked at this way, eql and other GADTs are a convenient way of programming
with proofs as first-class objects.

We first introduced a representation for type equalities in Chapter 2, where
we used Leibniz’s principle of substitution in a context to construct values rep-
resenting equality of types. In addition to the equality type itself we introduced
a number of functions representing various properties of type equality: symme-
try, transitivity, and so on. Figure 8.15 gives implementations of a number of
these properties for the eql GADT:

• symm encodes the symmetry property of ≡: if a ≡ b then b ≡ a.

• trans encodes the transitivity property of ≡: if a ≡ b and b ≡ c then a ≡ c.

• Lift lifts equality through type contexts: if a ≡ b then for any context - t
we have a t ≡ b t

• Finally, the type of cast tells us that if a ≡ b then we can convert a value
of type a to a value of type b.

As the figure shows, the implementations of these properties for the eql
GADTs are significantly simpler than the corresponding implementations of
equality in System F𝜔. In System F𝜔 we had to find a suitable type context
argument to pass to the encoding of equality; with GADTs we simply match on
Refl and rely on type refinement to ensure that the types match up. It is worth
examining the type checking of one of these equality property functions to see
the type refinement in action. The signature for symm is as follows:
type a b.(a, b) eql → (b, a) eql

The signature dictates a simple implementation: we only have a single con-
structor Refl for eql, which we must use in as the pattern and the body of the
function:
fun Refl → Refl

8.3. GADTS AND TYPE INFERENCE 115

In the signature for symm we have two distinct locally abstract types a and
b. Matching against Refl reveals that we must have a ≡ b, since the two type
parameters in the definition of Refl are the same. The type equality a ≡ b
justifies giving the Refl in the body the type b ≡ a, which is just what is needed
to satisfy the signature.

8.2.1 Encoding other GADTs with eql

We can use eql together with a standard (non-GADT) OCaml data type to
build a data type that behaves like gtree. Here is the definition:
type ('a,'n) etree =

EmptyE : ('n,z) eql → ('a,'n) etree
| TreeE : ('n,'m s) eql *

('a,'m) etree * 'a * ('a,'m) etree → ('a,'n) etree

Each constructor of etree has an additional argument which represents an
instantiation of the second type parameter. The EmptyE constructor has an ar-
gument of type ('n,z) eql, reflecting the instantiation of the depth parameter
to z in the original definition of EmptyG. Similarly the TreeE constructor has an
additional argument of type ('n, 'm s) eql, where the existential type variable
'm is the depth of the two subtrees, reflecting the instantiation of the depth
parameter to 'n s in the definition of TreeG.

For each function involving gtree we can write a corresponding function for
etree. Here is an implementation of the depth operation:
let rec depthE : type a n.(a, n) etree → n =

function
EmptyE Refl → Z

| TreeE (Refl, l,_,_) → S (depthE l)

In contrast to depthG, no type refinement takes place when EmptyE and TreeE
are matched. However, matching the GADT constructor Refl introduces the
same type equalities as for depthG, namely n ≡ z in the first branch and n ≡ 'm s
in the second.

Implementing equivalents of topG and swivelG is left as an exercise (Ques-
tion 1, page 128).

8.3 GADTs and type inference
We have mentioned in passing that it is not possible in general to infer types
for functions involving GADTs, as we shall now show with a simple example.
The following function matches a value of type eql and returns an int:
let match_eql = function Refl → 3

We can ascribe a number of types to match_eql, including the following:
let match_eql1 : type a.(int,a) eql → a = function Refl → 3
let match_eql2 : type a b.(a,b) eql → int = function Refl → 3

116 CHAPTER 8. PROGRAMMING WITH GADTS

json ::= string | number | true | false | null
[] | [json-seq]

json-seq ::= json
json , json-seq

Figure 8.16: A grammar for JSON, without objects

However, neither of these is a substitution instance (Section 3.3) of the other,
and there is no valid type for match_eql that generalises both. Without the
principal types property we cannot infer types without sacrificing generality.

8.4 GADT programming patterns
Up to this point we have focused on what GADTs are, and on how to understand
the behaviour of the OCaml compiler on programs involving GADTs. However,
there is more to programming than simply understanding the mechanics of
type checking: using GADTs effectively requires a rather different programming
style than programming with simpler types. We will now look at a number of
programming patterns that emerge when using GADTs in real programs.

In order to illustrate the various programming patterns we’ll use the running
example of representing JSON-like data4. Figure 8.16 gives a grammar for a
subset of JSON expressions. For the sake of simplicity we have omitted object
expressions.

Here is a typical JSON value:
["one", true, 3.4, [["four"], [null]]]

We will start with the following “untyped”5 representation of JSON data:
type ujson =

UStr : string → ujson
| UNum : float → ujson
| UBool : bool → ujson
| UNull : ujson
| UArr: ujson list → ujson

We can use ujson to represent the JSON value above as follows:
UArr [UStr "one"; UBool true; UNum 3.4;

UArr [UArr [UStr "four"]; UArr [UNull]]];;
- : ujson = …

4http://json.org/
5 The use of “untyped” to oppose the richly-typed data descriptions available with GADTs

is a little tongue-in-cheek, but the ujson type actually bears quite a strong similarity to the
kind of tagged universal data representation used in the implementations of “dynamically-
typed” languages.

http://json.org/

8.4. GADT PROGRAMMING PATTERNS 117

8.4.1 Pattern: richly typed data
Data may have finer structure than algebraic data types can express.
GADT indexes allow us to specify constraints more precisely.

Defining GADTs can be challenging because there are typically many ways
to embellish a data type with additional information. In some cases we might
wish to expose some particular aspect of a data structure, such as the depth
of a tree, to the type level (Section 8.1). In other cases we may wish to use
indexes of a type to propagate information about some other type, as we saw
with max (Section 8.1.2), whose indexes store information about a relationship
between triples of natural numbers, although the numbers themselves are not
stored within max values. The eql type (Section 8.2) is perhaps the most striking
example of the way that GADTs make it possible to define arbitrary relation-
ships between types and data. At the data level its single nullary constructor
gives eql the same representation as OCaml’s unit type, which is so lacking in
information that matching a value of type unit reveals nothing new at all. How-
ever, the type indexes of eql make it sufficiently powerful that it can be used to
encode any other GADT (Section 8.2.1).

One common use of GADTs is giving rich types to data whose structure is
specified externally. For such data the most common choice is to expose the
general structure in the type indexes, after abstracting some details. Here is the
example JSON datum again:
["one", true, 3.4, [["four"], [null]]]

When defining a GADT to represent JSON we might like to expose some or
all of the following facts about the structure of this value:

• The value contains null.

• The value contains five primitive subvalues

• When we ignore the distinction between primitive values, writing • in
place of every primitive, the following structure remains:
[•, •, •, [[•], [•]]]

• If we represent only the types of primitives, not their values, the following
structure remains:
[string, bool, number, [[string], [null]]]

There are many other possibilities, ranging from ignoring all distinctions and
giving the same type to every value to attempting to give every JSON value a
distinct type. We will take a middle ground, ignoring the distinctions between
primitive values of a particular type, but reflecting the larger structure of values
in the type level. Here are the resulting definitions for the types of JSON values
and arrays of JSON values:

118 CHAPTER 8. PROGRAMMING WITH GADTS

type _ tjson =
Str : string → string tjson

| Num : float → float tjson
| Bool : bool → bool tjson
| Null : unit tjson
| Arr : 'a tarr → 'a tjson

and _ tarr =
Nil : unit tarr

| :: : 'a tjson * 'b tarr → ('a*'b) tarr

Using tjson we can represent our example JSON value and see its structure
exposed in the types:
Arr (Str "one" :: Bool true :: Num 3.4 ::

Arr (Arr (Str "four" :: Nil) :: Null :: Nil) :: Nil);;
- : (string * (bool * (float * (((string * unit) * (unit * unit)) * unit))))

tjson
= …

As we saw with functions over trees, we can learn more from the types of
functions over richly typed data than from functions over types without indexes.
For example, consider the following function type:
val utransform : ujson → ujson

We can learn almost nothing from this type about the behaviour of the
function. Among the many other functions of this type are the identity function
and the function which returns Null for every input. A similar function over tjson
tells us a great deal more:
val ttransform : 'a tjson → 'a tjson

The fact that input and output indexes are the same allows us to deduce that
ttransform preserves the general structure. It is not possible to write a function of
this type that performs structure changing operations such as replacing numbers
with strings or changing the lengths of list nodes.

8.4.2 Pattern: building GADT values
It’s not always possible to determine index types statically.
For example, the depth of a tree might depend on user input.

In the first part of this chapter we considered various functions whose argu-
ments are trees defined using GADTs. Each of these functions follows a similar
approach: the input tree has a type whose depth index involves universally
quantified type variables which may also occur in the function’s return type.
Pattern matching on the input tree reveals equalities between the type indexes
which can be used when constructing the return value. In this way we can write
a wide variety of functions whose types connect together the shapes of the input
and result types in some way.

8.4. GADT PROGRAMMING PATTERNS 119

The combination of polymorphism in the depth index together with type
refinement makes it straightforward to write functions which accept and scru-
tinise trees of different depths. However, writing functions which return trees
of different depths introduces new difficulties. Here is a function which builds
a tree without depth constraints from an option value:
let tree_of_option : 'a. 'a option → 'a tree =

function
None → Empty

| Some v → Tree (Empty, v, Empty)

If we try to write a corresponding function for depth-indexed trees we soon
run into difficulty. As a first attempt we might start to write
let dtree_of_option : type a n. a option → (a, n) dtree =

but we will soon discover that this is not what we want: the type says that
the function returns a value of type (a,n) dtree for all n, but the specification
of the function requires that it return a tree indexed by some particular depth
— either (a,z) dtree or type (a,z s) dtree — not a value that is polymorphic in
the depth.

To state the problem is, in this case, to give the solution. The return value
has some depth, not all depths, so the appropriate quantifier is existential, not
universal. We have seen how to define existential types in OCaml in Chapter 6:
we must define a variant type whose definition involves more type variables than
type parameters. It is the depth index that we want to conceal, so we define
the following type, which has 'a but not 'n as a parameter:
type 'a edtree = E : ('a, 'n) dtree → 'a edtree

Hiding the depth of trees with edtree allows us to return trees of different
depths in different branches, and so to write dtree_of_option:
let dtree_of_option : type a n. a option → a edtree =

function
None → E EmptyD

| Some v → E (TreeD (EmptyD, v, EmptyD, MaxEq Z))

The depth information is hidden, but not gone forever. Other parts of the
program can recover the depth by unpacking the existential and matching on
the dtree constructors in the usual way.

Chapter 6 highlighted the duality of existential and universal quantification
that allows us to move between abstraction and parametricity. It is therefore no
surprise to discover that there is a second approach to building depth-indexed
trees of unknown depth using universals rather than existentials. We can pass
a value of polymorphic type as an argument using a record with a polymorphic
field:
type ('a, 'k) adtree = { k: 'n. ('a, 'n) dtree → 'k }

The type of adtree might be read as follows: a value of type ('a,'k) adtree is
a (record containing a) function which accepts a tree of any depth with element
type 'a and returns a value of type 'k.

120 CHAPTER 8. PROGRAMMING WITH GADTS

type etjson = ETJson : 'a tjson → etjson
type etarr = ETArr : 'a tarr → etarr

let rec tjson_of_ujson : ujson → etjson = function
UStr s → ETJson (Str s)

| UNum u → ETJson (Num u)
| UBool b → ETJson (Bool b)
| UNull → ETJson Null
| UArr arr →

let ETArr arr' = tarr_of_uarr arr in
ETJson (Arr arr')

and tarr_of_uarr : ujson list → etarr = function
[] → ETArr Nil

| j :: js →
let ETJson j' = tjson_of_ujson j in
let ETArr js' = tarr_of_uarr js in
ETArr (j' :: js')

Figure 8.17: Building typed JSON from untyped JSON using existentials

Equipped with adtree we can give an alternative implementation of dtree_of_option
which accepts a function wrapped as an adtree to which it passes the constructed
tree. The depth polymorphism in the definition of adtree ensures that it is able
to accept any tree, regardless of depth.
let dtree_of_option_k : type a k. a option → (a, k) adtree → k =

fun opt {k} → match opt with
None → k EmptyD

| Some v → k (TreeD (EmptyD, v, EmptyD, MaxEq Z))

Both the approach using existentials and the approach using universals ex-
tend well to more complex uses. Figure 8.17 shows how to use existential types
to build a typed JSON representation from an untyped JSON representation.
There are two new existential types, etjson and etarr, which hide the index of
the tjson and tarr types, enabling us to return trees with different structure
from the same function. The functions tjson_of_json and tarr_of_uarr traverse a
ujson value to build a tjson value with the same structure.

Similarly, Figure 8.18 shows how to use polymorphism to building a typed
JSON representation from an untyped JSON representation. There are two
new polymorphic record types, atjson and atarr, whose single function mem-
bers can accept arbitrary tjson and tarr values as arguments, enabling us to
pass values with different indexes to the same function. The implementations
of tjson_of_json and tarr_of_uarr in Figure 8.18 traverse a ujson value to build a
tjson value with the same structure. The functions are written in a continuation-
passing style: where there are multiple subnodes (as in the second case of
tarr_of_uarr) the function passes the result of converting the first subnode to a
continuation function which converts the second subnode and passes the result

8.4. GADT PROGRAMMING PATTERNS 121

type 'k atjson = {k: 'a. 'a tjson → 'k}
type 'k atarr = {k: 'a. 'a tarr → 'k}

let rec tjson_of_ujson : ujson → 'k atjson → 'k =
fun j {k=return} → match j with

UStr s → return (Str s)
| UNum u → return (Num u)
| UBool b → return (Bool b)
| UNull → return Null
| UArr arr →

tarr_of_uarr arr {k = fun arr'
return (Arr arr') }

and tarr_of_uarr : ujson list → 'k atarr → 'k =
fun jl {k=return} → match jl with

[] → return Nil
| j :: js →

tjson_of_ujson j {k = fun j' →
tarr_of_uarr js {k = fun js' →
return (j' :: js') }}

Figure 8.18: Building typed JSON from untyped JSON using polymorphism

to a second continuation function, and so on until the last subnode is converted
and the result of combining all the subnodes is passed to the function passed as
argument.

8.4.3 Pattern: singleton types
Without dependent types we can’t write predicates involving data.
Using one type per value allows us to simulate value indexing.

We saw in Chapter 4 that the types in non-dependently-typed languages
such as System F correspond to propositions in a logic without quantification
over objects. The System F type language has no constructs for referring to
individual values, so there is a syntactic barrier to even forming types which
corresponding to propositions involving individuals.

However, we have seen in Section 8.1.2 that we can apparently form propo-
sitions involving individuals. For instance, we can use max to form types which
correspond to predicates like max(1, 3) = 3, which mention the individual
numbers 1 and 3, not just sets like ℕ. This appears to conflict with our claims
above, and might lead us to wonder whether the extra expressive power that
comes with GADTs allows us to write dependently typed programs in OCaml.

In fact there is no conflict. GADTs do not allow us to write dependently-
typed programs and types like (z, z s s, z s s) max correspond to propositions

122 CHAPTER 8. PROGRAMMING WITH GADTS

in a logic without quantification over individual objects. The key to under-
standing types like max is the observation that types such as z and z s s are
so-called singleton types — i.e. they each have a single inhabitant. When there
is only one value of each type the type can act as a proxy for the value in type
expressions and we can simulate the quantification over individuals which the
type language does not support directly.

Here is an additional example. We can represent equations of the form
𝑎 + 𝑏 = 𝑐 using the following GADT definition:
type (_,_,_) add =

AddZ : 'n → (z,'n,'n) add
| AddS : ('m,'n,'o) add → ('m s,'n,'o s) add

As we saw in Section 8.1.2 we can read the types of the constructors of add
as inference rules for constructing proofs:

n add-z0 + 𝑛 = 𝑛
m+n=0 add-s(1 + 𝑚) + 𝑛 = 1 + 𝑜

Then each value of type add corresponds to a proof of some fact about addi-
tion. For example, we can build a value corresponding to a proof that 2+1 = 3:
AddS (AddS (AddZ (S Z)));;
- : (z s s, z s, z s s s) add = AddS (AddS (AddZ (S Z)))

The singleton pattern works well for simple data such as natural numbers,
and can sometimes be extended to more complex data. The further reading
section (page 132) lists a number of papers which explore how singletons support
encoding dependently-typed programs in languages without dependent types.

8.4.4 Pattern: separating types and data
Entangling proofs and data can lead to redundant, inefficient code.
Separate proofs make data reusable and help avoid slow traversals.

The tjson type combines type-level descriptions of JSON data structures with
constructors for building values of those structures. It is sometimes helpful to
treat the type-level and value-level components separately, since the information
they carry often becomes available at different times in a program’s execution.
For example, when we write bindings to an API that uses JSON we typically
know the general structure of the values that will be passed back and forth,
such as which fields are numbers or booleans. However, it is only when we
actually make calls to the API that we have full information about the values
that populate this structure.

We can separate out the the type-level and value-level components of tjson
and tarr by eliminating the value arguments from constructor definitions, leav-
ing only arguments which relate to type structure. The resulting type definitions
have a similar structure and similar indexes to the original types, but have no
way of storing primitive values:

8.4. GADT PROGRAMMING PATTERNS 123

type _ tyjson =
TyStr : string tyjson

| TyNum : float tyjson
| TyBool : bool tyjson
| TyNull : 'a tyjson → 'a option tyjson
| TyArr: 'a tyarr → 'a tyjson

and _ tyarr =
TyNil : unit tyarr

| :: : 'a tyjson * 'b tyarr → ('a * 'b) tyarr

We give the tjson style the slightly pejorative name entangled and call the
tyjson style disentangled.

We have made one additional change to the type structure. Whereas tjson
represents null as a primitive value, the TyNull constructor of the tyjson type
describes nullable data. We are now indexing descriptions of data rather than
particular data, and whereas a particular value is always null or not null, in a
general description the idea of “possibly null” is much more useful than “defi-
nitely null”.

We can use tyjson to represent our example JSON datum as a pair of values.
The first describes the shape of the datum using the constructors and type
indexes of tyjson. The second is built from standard OCaml types — bools,
pairs, and so on — and contains the actual values of the datum. Comparing
the types of the two constituents of the pair reveals that the type of the second
matches the type index of the first:
(TyArr (TyStr :: TyBool :: TyNum ::

TyArr (TyArr (TyStr :: TyNil)
:: TyNull TyBool :: TyNil) :: TyNil),

("one", (true, (3.4, (((("four", ()), (None, ())), ()))))));;
- : (string *

(bool * (float * (((string * unit) * (bool option * unit)) * unit))))
tyjson *
(string *
(bool * (float * (((string * unit) * ('a option * unit)) * unit))))

= …

Functions in the entangled and disentangled styles As long as we deal
with data descriptions and data together there is not a great deal of difference
between the entangled and disentangled styles. Figures 8.19 and 8.20 show two
implementations of a function which traverses a JSON structure negating every
boolean node. The entangled implementation traverses the input value to find
bool subnodes, passing everything else through unchanged. The disentangled
implementation, negateD, is similar, but matches the description and the value
in parallel, relying on type refinement to support writing patterns of different
types, such as true and None in the value position.

The real difference between the entangled and disentangled styles appears
when we need to write functions which examine the type structure before there
is a value available. In the entangled style it is simply impossible to write such
functions, since the type and value components are inextricably linked. In the

124 CHAPTER 8. PROGRAMMING WITH GADTS

let rec negate : type a.a tjson → a tjson = function
Bool b → not b

| Arr arr → Arr (negate_arr arr)
| v → v

and negate_arr : type a.a tarr → a tarr = function
Nil → Nil

| j :: js → negate j :: negate_arr js

Figure 8.19: The negate function, entangled
let rec negateD : type a.a tyjson → a → a =

fun t v → match t, v with
TyBool, true → false

| TyBool, false → true
| TyArr a, arr → negate_arrD a arr
| TyNull j, Some v → Some (negateD j v)
| TyNull _, None → None
| _, v → v

and negate_arrD : type a.a tyarr → a → a =
fun t v → match t, v with
TyNil, () → ()

| j :: js, (a, b) → (negateD j a, negate_arrD js b)

Figure 8.20: The negate function, disentangled
let id x = x
let map_option f = function None → None | Some x → Some (f x)

let rec negateDS : type a.a tyjson → a → a = function
TyBool → not

| TyArr a → negate_arrDS a
| TyNull j → map_option (negateDS j)
| _ → id

and negate_arrDS : type a.a tyarr → a → a = function
TyNil → id

| j :: js → let n = negateDS j
and ns = negate_arrDS js in

(fun (a, b) → (n a, ns b))

Figure 8.21: The negate function, disentangled and “staged”

8.4. GADT PROGRAMMING PATTERNS 125

let rec unpack_ujson :
type a.a tyjson → ujson → a option =
fun ty v → match ty, v with

TyStr, UStr s → Some s
| TyNum, UNum u → Some u
| TyBool, UBool b → Some b
| TyNull _, UNull → Some None
| TyNull j, v → (match unpack_ujson j v with

Some v → Some (Some v)
| None → None)

| TyArr a, UArr arr → unpack_uarr a arr
| _ → None

and unpack_uarr :
type a.a tyarr → ujson list → a option =
fun ty v → match ty, v with

TyNil, [] → Some ()
| j :: js, v :: vs →

(match unpack_ujson j v, unpack_uarr js vs with
Some v', Some vs' → Some (v', vs')

| _ → None)
| _ → None

Figure 8.22: Building disentangled typed JSON from untyped JSON

disentangled style we can traverse the description of the structure to build a
specialised function which operates only on data with the shape described.

Figure 8.21 gives a third implementation of negate, written in this style.
The negateDS function has the same signature as negateD: its first argument is a
description of data and its second argument a value matching the description.
However, unlike negateD, negateDS is designed for partial application. Rather
than matching on the description and the value in parallel it matches on the first
argument as soon as that argument is received and returns a specialised function
which operates on the type of data that the argument describes. Dividing the
execution in this way offers potential for efficiency improvements, particularly
when examining the description is an expensive operation.

We call the implementation of negateDS staged to reflect the fact that differ-
ent parts of the computation potentially take place at different stages of the
program’s execution. We will return to this idea in Chapter 13, where we will
examine staging as a first-class language feature.

Building typed values in the disentangled style There are further advan-
tages to separating out descriptions of data from the actual data. It is typically
easier to verify that data matches a particular shape than to determine the
shape of arbitrary data. In particular, if we know the expected shape of data
in advance then we can pass the shape as an argument to functions which con-
struct typed data and avoid the tricks with existentials and polymorphism that

126 CHAPTER 8. PROGRAMMING WITH GADTS

we used in Section 8.4.2.
Figure 8.22 shows a function, unpack_ujson, which builds a typed JSON value

from an ujson value and a description of the expected shape. As is common in
the disentangled style, unpack_ujson matches description and value in parallel,
relying on type refinement to support the differently-typed branches such as
Some s, which has type string option, and Some u, which has type float option.

8.4.5 Pattern: building evidence
With type refinement we learn about types by inspecting values.
Predicates should return useful evidence rather than true or false.

In a typical program many constraints on data are not captured in the types.
The programmer might ensure through careful programming that a certain list
is always kept in sorted order or that a file handle is not accessed after it is
closed, but since the information is not made available to the type checker there
is no way for the compiler either to ensure that the constraint is maintained or
to make use of it to generate more efficient code.

For example, if we wish to ensure that our program never attempts to re-
trieve the top element of an empty tree we might write a predicate that test for
emptiness
let is_empty : 'a .'a tree → bool =

function
Empty → true

| Tree _ → false

and then use the predicate to test trees before passing them to top:
if not (is_empty t) then

f (top t)
else

None

There is potential both for error and for inefficiency here. Although the
programmer knows that the bool returned by is_empty is intended to indicate
whether the tree was determined to be empty, the type checker does not, and
so would have no cause for complaint if we were to switch the two branches of
the if expression or omit the call to the not function. Further, there is nothing
in the types which allows the top function to skip the test for emptiness, so the
generated code tests for emptiness twice, once in the condition of the if and
once in top.

GADTs offer a solution to this unsatisfactory state of affairs. The problem
lies in the type of the predicate function, which tells us nothing about the facts
that the predicate was able to discover. If we arrange for our predicates to have
return types more informative than bool then the facts which the predicates
discover can flow through the types to the rest of the program.

8.4. GADT PROGRAMMING PATTERNS 127

In the example above is_empty checks whether a tree is empty or non-empty
— that is, whether its depth is zero or non-zero. We can capture this property
in a type that, like bool, has two nullary constructors like bool but, unlike bool,
is indexed by what could be determined about the depth:
type _ is_zero =

Is_zero : z is_zero
| Is_succ : _ s is_zero

We can use the is_zero type to write a predicate that builds evidence for the
emptiness or non-emptiness of its argument:
let is_emptyD : type a n.(a,n) dtree → n is_zero =

function
EmptyD → Is_zero

| TreeD _ → Is_succ

As with is_empty, we can branch on the result of is_emptyD to determine
whether it is safe to call topD:
match is_emptyD t with

Is_succ → f (topD t)
| Is_zero → None

Whereas calling is_empty communicated no information to the type checker
about the depth of the tree, examining the result of is_emptyD reveals whether
the depth is z or 'n s (for some type 'n). It is only in the second case that the
type checker will allow the call to topD. Switching the two branches leads to a
type error, since Is_zero reveals that the depth of the tree is z, and the type of
topD demands a non-zero depth index. Further, as we have seen in Section 8.1.3,
there is no need for topD to repeat the test for emptiness once we have captured
the fact that the tree is non-empty in its type.

Representing types built from strings and arrays The simple is_zero
type is a useful replacement for bool in the return type of is_empty. As our
predicates become more sophisticated our evidence becomes correspondingly
more structured. The following example builds an inductive structure which
offers evidence about the shape of a JSON value.

The tyjson type allows us to represent a wide variety of structures. It is
sometimes helpful to work in a subspace of the possible representable values:
for example, we might like to write functions that deal only with null-free JSON
values, or with JSON values which do not contain numbers. The types str_tyjs
and str_tyarr represent one such subset, namely the set of all JSON values which
can be built from strings and arrays.
type _ str_tyjs =

SStr : string str_tyjs
| SArr : 'a str_tyarr → 'a str_tyjs

and 'a str_tyarr =
SNil : unit str_tyarr

| :: : 'a str_tyjs * 'b str_tyarr → ('a*'b) str_tyarr

128 CHAPTER 8. PROGRAMMING WITH GADTS

The str_tyjs type has two constructors for representing the types of JSON
strings and JSON arrays. The str_tyarr, like the tyarr type, has two constructors
corresponding to an empty array and a cons operation for building arrays of
JSON values. Using these constructors we can build a type that (for example)
represents the structure of the value of an two element array which contains a
string and an empty array:
SArr (SStr :: SArr SNil :: SNil);;
- : (string * (unit * unit)) str_tyjs = …

Figure 8.23 gives the implementation of a predicate which checks whether a
JSON type is “stringy” — i.e. whether it involves only strings and arrays. If
is_stringy is able to determine that the input type is stringy then it returns a
value of the is_stringy type to serve as evidence. If the stringiness of the argu-
ment cannot be established then is_stringy returns None. The stringyV function
in Figure 8.24 is similar to is_stringy, but operates on JSON values rather than
on JSON types.

We can use the evidence returned by is_stringy and is_stringyV to reveal
facts about a JSON value, just as we used is_empty to expose facts about trees.
For example, suppose we have a function that operates only on stringy data:
val show_stringy : type a. a str_tyjs → a → string

Then we can pass a JSON value v to show_stringy only once we have estab-
lished that the value is stringy.
let show_stringy : type a. a tyjson → a → string =

fun ty v →
match is_stringy ty with

None → "(value cannot be displayed)"
| Some evidence → show_stringy evidence v

This time it is not type refinement that ensures that we can only call
show_stringy in the branch, but the fact that only in the second branch is the
evidence available.

8.5 Exercises
1. [H] Implement the functions corresponding to top and swivel for etree

(Section 8.2.1).

2. [H] It is sometimes convenient to work with a GADT for natural numbers,
indexed by z and s:
type _ nat =

Z : z nat
| S : 'n nat → 'n s nat

Use nat to write a function of the following type:
val unit_gtree_of_depth : 'n nat → (unit, 'n) gtree

8.5. EXERCISES 129

let rec is_stringy : type a.a tyjson → a str_tyjs option =
function

TyStr → Some SStr
| TyNum → None
| TyBool → None
| TyNull _ → None
| TyArr arr → match is_stringy_array arr with

None → None
| Some sarr → Some (SArr sarr)

and is_stringy_array :
type a.a tyarr → a str_tyarr option =
function

TyNil → Some SNil
| x :: xs →

match is_stringy x, is_stringy_array xs with
Some x, Some xs → Some (x :: xs)

| _ → None

Figure 8.23: Building evidence that a JSON type involves only arrays and
strings

let rec is_stringyV : type a.a tjson → a str_tyjs option =
function

Str _ → Some SStr
| Num _ → None
| Bool _ → None
| Null → None
| Arr arr → match is_stringy_arrayV arr with

None → None
| Some sarr → Some (SArr sarr)

and is_stringy_arrayV :
type a.a tarr → a str_tyarr option =
function

Nil → Some SNil
| x :: xs →

match is_stringyV x, is_stringy_arrayV xs with
Some x, Some xs → Some (x :: xs)

| _ → None

Figure 8.24: Building evidence that a JSON value involves only arrays and
strings

130 CHAPTER 8. PROGRAMMING WITH GADTS

3. [HH] Write a second function
val int_gtree_of_depth : 'n nat → (int, 'n) gtree

which, for a given natural number n, builds a tree populated with the
numbers 0 … 2𝑛−1 in left-to-right order.

4. [HH] Write a inverse for zipTree:
val unzipTree : ('a * 'b,n) gtree → ('a,'n) gtree → ('b,'n) gtree

and use it to write an inverse for nestify that converts an ntree to a gtree,
using an existential for the return type.

5. [HH] Define a type of length-indexed vectors using GADTS:
type ('a, _) vec = ...

A vector is either empty, in which case its length is zero, or consists of a
cons cell with an element and a tail, in which case its length is one greater
than the tail.
Write analogues of the list-processing functions head, tail, map and rev for
your vec type.

6. [HHH] The following code shows a common way of efficiently implement-
ing queues in functional languages using a pair of lists:
module type QUEUE =
sig

type _ t
val empty: _ t
val push : 'a → 'a t → 'a t
val pop : 'a t → 'a option * 'a t
val size: 'a t → int

end

module Queue : QUEUE =
struct

type 'a t = {
inbox: 'a list;
outbox: 'a list;

}
let empty = { inbox = []; outbox = [] }
let push v q = {q with inbox = v :: q.inbox }
let pop q = match q with

{ outbox = x :: xs } → Some x, { q with outbox = xs }
| { outbox = [] } →

match List.rev q.inbox with
[] → None, empty

| x :: xs → Some x, { outbox = xs; inbox = [] }
let size {inbox;outbox} = List.length inbox + List.length outbox

end

Show how to implement the following signature of length-indexed queues
by taking a similar approach, but using a pair of vectors (Question 5)
rather than a pair of lists as the underlying data structure:

8.5. EXERCISES 131

module type LQUEUE = sig
type (_,_) t
val empty: (_,z) t
val push : 'a → ('a, 'n) t → ('a, 'n s) t
val pop : ('a, 'n s) t → 'a * ('a, 'n) t
val size : ('a, 'n) t → 'n

end

7. [HHHH] Here is an alternative definition of the equality type of Fig-
ure 8.14:
type ('a, 'b) eql_iso = {

a_of_b : 'b → 'a;
b_of_a : 'a → 'b;

}

It is possible to define a number of the equality operations for eql_iso,
including refl and symm:
let refl : 'a. ('a, 'a) eql_iso =

{ a_of_b = (fun x → x); b_of_a = (fun x → x) }

let symm : 'a 'b. ('a, 'b) eql_iso → ('b, 'a) eql_iso =
fun { a_of_b; b_of_a } → { a_of_b = b_of_a; b_of_a = a_of_b }

Is it possible to define analogues of all the functions in Figure 8.15 for
eql_iso? Is it possible to encode arbitrary GADT types in the style of
Section 8.2.1 using eql_iso instead of eql?

8. [HHHH] Here is a function which turns a proof of equality for list types
into a proof of equality for their element types:
let eql_of_list_eql : type a b.(a list,b list) eql → (a,b) eql =

fun Refl → Refl

Here is a similar function for option:
let eql_of_option_eql : type a b.(a option,b option) eql → (a,b)

eql =
fun Refl → Refl

Rather than writing such a function for every type constructor we would
like to give a single definition which could be reused. However, the fol-
lowing attempt is rejected by OCaml. Can you explain why?
module Eql_of_t_eql(T: sig type 'a t end) =
struct

let eql_of_t_eql : type a b.(a T.t,b T.t) eql → (a,b) eql =
fun Refl → Refl

end

132 CHAPTER 8. PROGRAMMING WITH GADTS

Further reading

• The following paper describes a number of GADT programming pat-
terns realised in the language Ωmega. Features similar to those used
in the paper, namely GADTs and extensible kinds, have found their
way into recent versions of the Glasgow Haskell Compiler:
Putting Curry-Howard to work
Tim Sheard
Haskell Workshop (2005)

• A number of papers investigate how to simulate dependently-typed
programming using GADTs and other features of functional program-
ming languages (typically Haskell). Here are a few examples:
Faking It (Simulating Dependent Types in Haskell)
Conor McBride
Journal of Functional Programming (2003)
Dependently typed programming with Singletons
Richard A. Eisenberg and Stephanie Weirich
Haskell Symposium (2012)
Hasochism: the pleasure and pain of dependently typed Haskell pro-
gramming
Sam Lindley and Conor McBride
Haskell Symposium (2013)

• The following paper shows how to encode dynamic types in a
statically-typed functional language using many of the techniques de-
scribed in this chapter and elsewhere in the notes. Since the paper
predates the introduction of GADTs into functional languages it uses
an encoding of Leibniz equality to perform a similar function.
Typing dynamic typing
Arthur I. Baars and S. Doaitse Swierstra
International Conference on Functional Programming (2002)

• There is an interesting correspondence between various number sys-
tems and tree types, which can be realised using nested types, as the
following paper shows:
Numerical Representations as Higher-Order Nested Datatypes
Ralf Hinze
Technical Report (1998)

• There have been a number of papers over the last decade or so propos-
ing algorithms for type-checking GADTs. One of the more straight-
forward, which describes the approach taken in OCaml, is described
in the following paper:

8.5. EXERCISES 133

Ambivalent types for principal type inference with GADTs
Jacques Garrigue and Didier Rémy
Asian Symposium on Programming Languages and Systems (2013)

• As types become richer, the inhabitants (i.e. the terms having those
types) becomes fewer; and in many cases (such as the polymorphic
compose function (Chapter 2) and the trans function (page 113) the
type is sufficiently descriptive that there is only a single inhabitant.
The following paper investigates the question of when a type has a
unique inhabitant:
Which simple types have a unique inhabitant?
Gabriel Scherer and Didier Rémy
International Conference on Functional Programming (2015)

