
Modern Processor Architectures
(A compiler writer’s perspective)

L25: Modern Compiler Design



The 1960s - 1970s

• Instructions took multiple cycles

• Only one instruction in flight at once

• Optimisation meant minimising the number of instructions
executed

• Sometimes replacing expensive general-purpose instructions
with specialised sequences of cheaper ones



The 1980s

• CPUs became pipelined

• Optimisation meant minimising pipeline stalls

• Dependency ordering such that results were not needed in the
next instruction

• Computed branches became very expensive when not correctly
predicted
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Fixing the Stall
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Is this a good solution?
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Note about efficiency

• In-order pipelines give very good performance per Watt at low
power

• Probably not going away any time soon (see ARM Cortex A7,
A53)

• Compiler optimisations can make a big difference!



The Early 1990s

• CPUs became much faster than memory

• Caches hid some latency

• Optimisation meant maximising locality of reference,
prefetching

• Sometimes, recalculating results is faster than fetching from
memory

• Note: Large caches consume a lot of power, but fetching a
value from memory can cost the same as several hundred ALU
ops



The Mid 1990s

• CPUs became superscalar
• Independent instructions executed in parallel

• CPUs became out-of-order
• Reordered instructions to reduce dependencies

• Optimisation meant structuring code for highest-possible ILP

• Loop unrolling no longer such a big win



Superscalar CPU Pipeline Example: Sandy Bridge

Can dispatch up to six instructions at once, via 6 pipelines:

1. ALU, VecMul, Shuffle, FpDiv, FpMul, Blend

2. ALU, VecAdd, Shuffle, FpAdd

3. Load / Store address

4. Load / Store address

5. Load / Store data

6. ALU, Branch, Shuffle, VecLogic, Blend



Branch Predictors

• Achieve 95+% accuracy on modern CPUs

• No cost when branch is correctly predicted

• Long and wide pipelines mean very expensive for the
remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches
roughly every 7 cycles, what’s the probability of filling the pipeline?

Only 35%!
Only 12% with a 90% hit rate!
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The Late 1990s

• SIMD became mainstream

• Factor of 2-4× speedup when used correctly

• Optimisation meant ensuring data parallelism

• Loop unrolling starts winning again, as it exposes later
optimisation opportunities



The Early 2000s

• (Homogeneous) Multicore became mainstream

• Power efficiency became important

• Parallelism provides both better throughput and lower power

• Optimisation meant exploiting fine-grained parallelism



The Late 2000s

• Programmable GPUs became mainstream

• Hardware optimised for stream processing in parallel

• Very fast for massively-parallel floating point operations

• Cost of moving data between CPU and CPU is high

• Optimisation meant offloading operations to the GPU



The 2010s

• Modern processors come with multiple CPU and GPU cores

• All cores behind the same memory interface, cost of moving
data between them is low

• Increasingly contain specialised accelerators

• Often contain general-purpose (programmable) cores for
specialised workload types (e.g. DSPs)

• Optimisation is hard.

• Lots of jobs for compiler writers!



Common Programming Models

• Sequential (can we automatically detect parallelism)?

• Explicit message passing (e.g. MPI, Erlang)

• Annotation-driven parallelism (e.g. OpenMP)

• Explicit task-based parallelism (e.g. libdispatch)

• Explicit threading (e.g. pthreads, shared-everything
concurrency)



Parallelising Loop Iterations

• Same techniques as for SIMD

• Looser constraints: data can be unaligned, flow control can be
independent

• Tighter constraints: loop iterations must be completely
independent

• (Usually) more overhead for creating threads than using SIMD
lanes



Communication and Synchronisation Costs

• Consider OpenMP’s parallel-for

• Spawn a new thread for each iteration?

• Spawn one thread per core, split loop iterations between
them?

• Spawn one thread per core, have each one start a loop
iteration and check the current loop induction variable before
doing the next one?

• Spawn one thread per core, pass batches of loop iterations to
each one?

• Something else?
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HELIX: Parallelising Sequential Segments in Loops

• Loop iterations each run a sequence of (potentially expensive)
steps

• Run each step on a separate core

• Each core runs the same number of iterations as the original
loop

• Use explicit synchronisation to detect barriers



Execution Models for GPUs

• GPUs have no standardised public instruction set

• Code shipped as source or some portable IR

• Compiled at install or load time

• Loaded to the device to run



SPIR

• Standard Portable Intermediate Representation

• Khronos Group standard, related to OpenCL

• Subsets of LLVM IR (one for 32-bit, one for 64-bit)

• Backed by ARM, AMD, Intel (everyone except nVidia)

• OpenCL programming model extensions as intrinsics

• Design by committee nightmare, no performance portability



SPIR-V

• Standard Portable Intermediate Representation (for Vulkan)

• Khronos Group standard, related to Vulkan

• Independent encoding, easy to map to/from LLVM IR

• Backed by ARM, AMD, Intel (everyone except nVidia)

• Intended as a compilation target for GLSL, OpenCL C, others



PTX

• Parallel Thread eXecution

• IR created by nVidia

• Semantics much closer to nVidia GPUs



HSAIL

• Heterogeneous Systems Architecture Intermediate Language

• Cross-vendor effort under the HSA umbrella

• More general than PTX (e.g. allows function pointers)



Single Instruction Multiple Thread (SIMT)

• SIMD with independent register sets, varying-sized vectors

• Program counter (PC) shared across threads

• All threads perform the same operation, but on different data

• Diverging threads get their own PC

• Only one PC used at a time

• Throughput halves for each divergent branch until only one
thread is running



Thread Groups

• GPU programs run the same code (kernel) on every element
in an input set

• Threads in a group can communicate via barriers and other
synchronisation primitives

• Thread groups are independent



GPU Memory Model

• Per-thread memory (explicitly managed, equivalent to CPU
cache)

• Shared memory between thread groups (equivalent to CPU
shared L3 cache)

• Global memory (read-write, cache coherent)

• Texture memory (read-only or write-only, non-coherent)



Costs for GPU Use

• Setup context (MMU mappings on GPU, command queue).
Typically once per application.

• Copying data across the bus is very expensive, may involve
bounce buffers

• Newer GPUs share a memory controller with the CPU (might
not share an address space, setting IOMMU mappings can be
expensive)

• Calling into the OS kernel to send messages (userspace
command submission helps here)

• Synchronisation (cache coherency) between CPU and GPU



Thought Experiment: memcpy(), memset()

• GPUs and DSPs are fast stream processors

• Ideal for things like memcpy(), memset()

• What bottlenecks prevent offloading all memset() / memcpy()
calls to a coprocessor?

• How could they be fixed?



Autoparallelisation vs Autovectorisation

• Autovectorisation is a special case of autoparallelisation

• Requires dependency, alias analysis between sections

• GPU SIMT processors are suited to the same sorts of
workloads as SIMD coprocessors

• (Currently) only sensible when working on large data or very
expensive calculations



Loop offloading

• Identify all inputs and outputs

• Copy all inputs to the GPU

• Run the loop as a GPU kernel

• Copy all outputs back to main memory

• Why can this go wrong?

• What happens if you have other threads accessing memory?

• Shared everything is hard to reason about



Loop offloading

• Identify all inputs and outputs

• Copy all inputs to the GPU

• Run the loop as a GPU kernel

• Copy all outputs back to main memory

• Why can this go wrong?

• What happens if you have other threads accessing memory?

• Shared everything is hard to reason about



Avoiding Divergent Flow Control: If Conversion

• Two threads taking different paths must be executed
sequentially

• Execute both branches

• Conditionally select the result

• Also useful on superscalar architectures - reduces branch
predictor pressure

• Early GPUs did this in hardware



OpenCL on the CPU

• Can SIMD emulate SIMT?

• Hardware is similar, SIMT is slightly more flexible

• Sometimes, OpenCL code runs faster on the CPU if data is
small

• Non-diverging flow is trivial

• Diverging flow requires special handling



Diverging Flow

• Explicit masking for if conversion

• Each possible path is executed

• Results are conditionally selected

• Significant slowdown for widely diverging code

• Stores, loads-after-stores require special handling



OpenCL Synchronisation Model

• Explicit barriers block until all threads in a thread group have
arrived.

• Atomic operations (can implement spinlocks)
• Why would spinlocks on a GPU be slow?

• Branches are slow, non-streaming memory-access is
expensive...

• Random access to workgroup-shared memory is cheaper than
texture memory
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Barriers and SIMD

• Non-diverging flow, barrier is a no-op

• Diverging flow requires rendezvous

• Pure SIMD implementation (single core), barrier is where start
of a basic block after taking both sides of a branch

• No real synchronisation required



OpenCL with SIMD on multicore CPUs

• Barriers require real synchronisation

• Can be a simple pthread barrier

• Alternatively, different cores can run independent thread
groups



Questions?


