
Modern Processor Architectures
(A compiler writer’s perspective)

L25: Modern Compiler Design



The 1960s - 1970s

• Instructions took multiple cycles

• Only one instruction in flight at once

• Optimisation meant minimising the number of instructions
executed

• Sometimes replacing expensive general-purpose instructions
with specialised sequences of cheaper ones



The 1980s

• CPUs became pipelined

• Optimisation meant minimising pipeline stalls

• Dependency ordering such that results were not needed in the
next instruction

• Computed branches became very expensive when not correctly
predicted



Stall Example

Fetch

Fetch

Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add

add add add addjne jne jne jne jne

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

...

add r1 , r1 , -1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add

add

add add add

jne

jne jne jne jne

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

...

add r1 , r1 , -1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add add

add

add addjne

jne

jne jne jne

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

...

add r1 , r1 , -1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch DecodeDecode Register FetchRegister Fetch

Register FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add add add

add

addjne jne

jne

jne jne

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

...

add r1 , r1 , -1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode Register Fetch

Register Fetch

Register Fetch

Register Fetch Execute

Execute

ExecuteExecute

Writeback

WritebackWriteback

add add add add

add

jne jne

jne

jne jne

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

...

add r1 , r1 , -1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode Register Fetch

Register FetchRegister Fetch

Register Fetch

ExecuteExecute

Execute

Execute Writeback

Writeback

Writeback

add add add add addjne jne jne

jne

jne

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

...

add r1 , r1 , -1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode Register Fetch

Register FetchRegister Fetch

Register Fetch

ExecuteExecuteExecute

Execute

WritebackWriteback

Writeback

add add add add addjne jne jne jne

jne

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

...

add r1 , r1 , -1

jne r1 , 0, start 	� �



Fixing the Stall

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

add r1 , r1 , -1

...

jne r1 , 0, start 	� �

Is this a good solution?



Fixing the Stall

�
(int i=100 ; i!=0 ; i--)

... 	� ��
start:

add r1 , r1 , -1

...

jne r1 , 0, start 	� �
Is this a good solution?



Note about efficiency

• In-order pipelines give very good performance per Watt at low
power

• Probably not going away any time soon (see ARM Cortex A7,
A53)

• Compiler optimisations can make a big difference!



The Early 1990s

• CPUs became much faster than memory

• Caches hid some latency

• Optimisation meant maximising locality of reference,
prefetching

• Sometimes, recalculating results is faster than fetching from
memory

• Note: Large caches consume a lot of power, but fetching a
value from memory can cost the same as several hundred ALU
ops



The Mid 1990s

• CPUs became superscalar
• Independent instructions executed in parallel

• CPUs became out-of-order
• Reordered instructions to reduce dependencies

• Optimisation meant structuring code for highest-possible ILP

• Loop unrolling no longer such a big win



Superscalar CPU Pipeline Example: Sandy Bridge

Can dispatch up to six instructions at once, via 6 pipelines:

1. ALU, VecMul, Shuffle, FpDiv, FpMul, Blend

2. ALU, VecAdd, Shuffle, FpAdd

3. Load / Store address

4. Load / Store address

5. Load / Store data

6. ALU, Branch, Shuffle, VecLogic, Blend



Branch Predictors

• Achieve 95+% accuracy on modern CPUs

• No cost when branch is correctly predicted

• Long and wide pipelines mean very expensive for the
remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches
roughly every 7 cycles, what’s the probability of filling the pipeline?

Only 35%!
Only 12% with a 90% hit rate!



Branch Predictors

• Achieve 95+% accuracy on modern CPUs

• No cost when branch is correctly predicted

• Long and wide pipelines mean very expensive for the
remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches
roughly every 7 cycles, what’s the probability of filling the pipeline?

Only 35%!

Only 12% with a 90% hit rate!



Branch Predictors

• Achieve 95+% accuracy on modern CPUs

• No cost when branch is correctly predicted

• Long and wide pipelines mean very expensive for the
remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches
roughly every 7 cycles, what’s the probability of filling the pipeline?

Only 35%!
Only 12% with a 90% hit rate!



The Late 1990s

• SIMD became mainstream

• Factor of 2-4× speedup when used correctly

• Optimisation meant ensuring data parallelism

• Loop unrolling starts winning again, as it exposes later
optimisation opportunities



The Early 2000s

• (Homogeneous) Multicore became mainstream

• Power efficiency became important

• Parallelism provides both better throughput and lower power

• Optimisation meant exploiting fine-grained parallelism



The Late 2000s

• Programmable GPUs became mainstream

• Hardware optimised for stream processing in parallel

• Very fast for massively-parallel floating point operations

• Cost of moving data between CPU and CPU is high

• Optimisation meant offloading operations to the GPU



The 2010s

• Modern processors come with multiple CPU and GPU cores

• All cores behind the same memory interface, cost of moving
data between them is low

• Increasingly contain specialised accelerators

• Often contain general-purpose (programmable) cores for
specialised workload types (e.g. DSPs)

• Optimisation is hard.

• Lots of jobs for compiler writers!



Common Programming Models

• Sequential (can we automatically detect parallelism)?

• Explicit message passing (e.g. MPI, Erlang)

• Annotation-driven parallelism (e.g. OpenMP)

• Explicit task-based parallelism (e.g. libdispatch)

• Explicit threading (e.g. pthreads, shared-everything
concurrency)



Parallelising Loop Iterations

• Same techniques as for SIMD

• Looser constraints: data can be unaligned, flow control can be
independent

• Tighter constraints: loop iterations must be completely
independent

• (Usually) more overhead for creating threads than using SIMD
lanes



Communication and Synchronisation Costs

• Consider OpenMP’s parallel-for

• Spawn a new thread for each iteration?

• Spawn one thread per core, split loop iterations between
them?

• Spawn one thread per core, have each one start a loop
iteration and check the current loop induction variable before
doing the next one?

• Spawn one thread per core, pass batches of loop iterations to
each one?

• Something else?



Communication and Synchronisation Costs

• Consider OpenMP’s parallel-for

• Spawn a new thread for each iteration?

• Spawn one thread per core, split loop iterations between
them?

• Spawn one thread per core, have each one start a loop
iteration and check the current loop induction variable before
doing the next one?

• Spawn one thread per core, pass batches of loop iterations to
each one?

• Something else?



HELIX: Parallelising Sequential Segments in Loops

• Loop iterations each run a sequence of (potentially expensive)
steps

• Run each step on a separate core

• Each core runs the same number of iterations as the original
loop

• Use explicit synchronisation to detect barriers



Execution Models for GPUs

• GPUs have no standardised public instruction set

• Code shipped as source or some portable IR

• Compiled at install or load time

• Loaded to the device to run



SPIR

• Standard Portable Intermediate Representation

• Khronos Group standard, related to OpenCL

• Subsets of LLVM IR (one for 32-bit, one for 64-bit)

• Backed by ARM, AMD, Intel (everyone except nVidia)

• OpenCL programming model extensions as intrinsics

• Design by committee nightmare, no performance portability



SPIR-V

• Standard Portable Intermediate Representation (for Vulkan)

• Khronos Group standard, related to Vulkan

• Independent encoding, easy to map to/from LLVM IR

• Backed by ARM, AMD, Intel (everyone except nVidia)

• Intended as a compilation target for GLSL, OpenCL C, others



PTX

• Parallel Thread eXecution

• IR created by nVidia

• Semantics much closer to nVidia GPUs



HSAIL

• Heterogeneous Systems Architecture Intermediate Language

• Cross-vendor effort under the HSA umbrella

• More general than PTX (e.g. allows function pointers)



Single Instruction Multiple Thread (SIMT)

• SIMD with independent register sets, varying-sized vectors

• Program counter (PC) shared across threads

• All threads perform the same operation, but on different data

• Diverging threads get their own PC

• Only one PC used at a time

• Throughput halves for each divergent branch until only one
thread is running



Thread Groups

• GPU programs run the same code (kernel) on every element
in an input set

• Threads in a group can communicate via barriers and other
synchronisation primitives

• Thread groups are independent



GPU Memory Model

• Per-thread memory (explicitly managed, equivalent to CPU
cache)

• Shared memory between thread groups (equivalent to CPU
shared L3 cache)

• Global memory (read-write, cache coherent)

• Texture memory (read-only or write-only, non-coherent)



Costs for GPU Use

• Setup context (MMU mappings on GPU, command queue).
Typically once per application.

• Copying data across the bus is very expensive, may involve
bounce buffers

• Newer GPUs share a memory controller with the CPU (might
not share an address space, setting IOMMU mappings can be
expensive)

• Calling into the OS kernel to send messages (userspace
command submission helps here)

• Synchronisation (cache coherency) between CPU and GPU



Thought Experiment: memcpy(), memset()

• GPUs and DSPs are fast stream processors

• Ideal for things like memcpy(), memset()

• What bottlenecks prevent offloading all memset() / memcpy()
calls to a coprocessor?

• How could they be fixed?



Autoparallelisation vs Autovectorisation

• Autovectorisation is a special case of autoparallelisation

• Requires dependency, alias analysis between sections

• GPU SIMT processors are suited to the same sorts of
workloads as SIMD coprocessors

• (Currently) only sensible when working on large data or very
expensive calculations



Loop offloading

• Identify all inputs and outputs

• Copy all inputs to the GPU

• Run the loop as a GPU kernel

• Copy all outputs back to main memory

• Why can this go wrong?

• What happens if you have other threads accessing memory?

• Shared everything is hard to reason about



Loop offloading

• Identify all inputs and outputs

• Copy all inputs to the GPU

• Run the loop as a GPU kernel

• Copy all outputs back to main memory

• Why can this go wrong?

• What happens if you have other threads accessing memory?

• Shared everything is hard to reason about



Avoiding Divergent Flow Control: If Conversion

• Two threads taking different paths must be executed
sequentially

• Execute both branches

• Conditionally select the result

• Also useful on superscalar architectures - reduces branch
predictor pressure

• Early GPUs did this in hardware



OpenCL on the CPU

• Can SIMD emulate SIMT?

• Hardware is similar, SIMT is slightly more flexible

• Sometimes, OpenCL code runs faster on the CPU if data is
small

• Non-diverging flow is trivial

• Diverging flow requires special handling



Diverging Flow

• Explicit masking for if conversion

• Each possible path is executed

• Results are conditionally selected

• Significant slowdown for widely diverging code

• Stores, loads-after-stores require special handling



OpenCL Synchronisation Model

• Explicit barriers block until all threads in a thread group have
arrived.

• Atomic operations (can implement spinlocks)
• Why would spinlocks on a GPU be slow?

• Branches are slow, non-streaming memory-access is
expensive...

• Random access to workgroup-shared memory is cheaper than
texture memory



OpenCL Synchronisation Model

• Explicit barriers block until all threads in a thread group have
arrived.

• Atomic operations (can implement spinlocks)
• Why would spinlocks on a GPU be slow?
• Branches are slow, non-streaming memory-access is

expensive...
• Random access to workgroup-shared memory is cheaper than

texture memory



Barriers and SIMD

• Non-diverging flow, barrier is a no-op

• Diverging flow requires rendezvous

• Pure SIMD implementation (single core), barrier is where start
of a basic block after taking both sides of a branch

• No real synchronisation required



OpenCL with SIMD on multicore CPUs

• Barriers require real synchronisation

• Can be a simple pthread barrier

• Alternatively, different cores can run independent thread
groups



Questions?


