
Interactive Formal Verification (L21)

Exercises

Prof. Lawrence C Paulson
Computer Laboratory, University of Cambridge

Lent Term, 2016

Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you can
complete in an hour. You are not required to complete these exercises; they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/. Note that many of these on-line ex-
amples are very simple, the assessed exercises are considerably harder. You
are strongly encouraged to attempt a variety of exercises, and perhaps to
develop your own.

The handouts for the last two practical sessions will be assessed to de-
termine your final mark (50% each). For each assessed exercise, please
complete the indicated tasks and write a brief document explaining your
work. You may prepare these documents using Isabelle’s theory presenta-
tion facility (See section 4.2 of the Isabelle/HOL manual) but this is not
required. You can combine the resulting output with a document produced
using your favourite word processing package. Please ensure that your spec-
ifications are correct (because proofs based on incorrect specifications could
be worthless) and that your Isabelle theory actually runs.

Each assessed exercise is worth 100 marks.

• 50 marks are for completing the tasks. Proofs should be competently
done and tidily presented. Be sure to delete obsolete material from
failed proof attempts. Excessive length (within reason) is not pe-
nalised, but slow or redundant proof steps may be.

• 20 marks are for a clear, basic write-up. It can be just a few pages,
and probably no longer than 6 pages. It should explain your proofs,
preferably displaying these proofs if they are not too long. It could
perhaps outline the strategic decisions that affected the shape of your
proof and include notes about your experience in completing it.

• The final 30 marks are for exceptional work. To earn some of these
marks, you may need to vary your proof style, maybe expanding some

1

http://isabelle.in.tum.de/exercises/


apply-style proofs into structured proofs. The point is not to make
your proofs longer (brevity is a virtue) but to demonstrate a variety
of Isabelle skills, perhaps even techniques not covered in the course.
An exceptional write-up also gains a few marks in this category, while
untidy proofs will lose marks. Very few students will gain more than
half of these marks, but note that 85% is a very high score.

Isabelle theory files for all four sessions can be downloaded from the course
materials website. These files contain necessary Isabelle declarations that
you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
not permitted. Here are the deadline dates. Exercises are due at 12 noon.

• 1st exercise: Tuesday, 16th February 2016

• 2nd exercise: Thursday, 3rd March 2016

Please deliver a printed copy of each completed exercise to student adminis-
tration, and also send the corresponding theory file to lp15@cam.ac.uk. The
latter should be enclosed in a directory bearing your name.

2

lp15@cam.ac.uk


1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts del1 :: "’a ⇒ ’a list ⇒ ’a list"
delall :: "’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"

3



2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions.
Determine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between sum and Sum? Prove the following equa-
tion, suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j]

on lists in theory List.

4



3 Assessed Exercise I: The Exponent Function

This Exercise concerns elementary properties of prime numbers, leading up
to a function denoting the exponent of a prime p in the factorisation of a
given number s.

3.1 Prime numbers

Task 1 The theorem prime_dvd_mult_eq_nat asserts a fundamental prop-
erty of prime numbers: prime p =⇒ (p dvd m * n) = (p dvd m ∨ p dvd n).
Prove the following generalisation of that property: [5 marks]

lemma prime_dvd_cases:
assumes pk: "p*k dvd m*n" and p: "prime p"
shows "(∃ x. k dvd x*n ∧ m = p*x) ∨ (∃ y. k dvd m*y ∧ n = p*y)"

Task 2 Now prove the following result by a precisely formulated induction:
[10 marks]

lemma prime_power_dvd_prod:
assumes pc: "p^c dvd m*n" and p: "prime p"
shows "∃ a b. a+b = c ∧ p^a dvd m ∧ p^b dvd n"

Task 3 Therefore obtain the following corollary: [5 marks]

lemma prime_power_dvd_cases:
"[[p^c dvd m * n; a + b = Suc c; prime p]] =⇒ p^a dvd m ∨ p^b dvd n"

3.2 The exponent function

Now we define the exponent of a prime power in the factorisation of s.

definition
exponent :: "nat ⇒ nat ⇒ nat" where
"exponent p s = (if prime p then (GREATEST r. p^r dvd s) else 0)"

Task 4 For this definition to make sense, we need an upper bound on n such
that pn dvd a. Prove the following. Why is 0 < a necessary? [7 marks]

lemma power_dvd_bound: "[[p ^ n dvd a; Suc 0 < p; 0 < a]] =⇒ n < a"

Task 5 Then prove these fundamental properties of exponent p s. The
theorems GreatestI and Greatest_le allow reasoning about GREATEST.

[7 marks]

5



lemma exponent_eq_0 [simp]: "¬ prime p =⇒ exponent p s = 0"

lemma exponent_ge:
assumes "p ^ k dvd n" "prime p" "0 < n"

shows "k ≤ exponent p n"

lemma power_exponent_dvd: "p ^ exponent p s dvd s"

lemma exponent_equalityI:
"(

∧
r. p ^ r dvd a ←→ p ^ r dvd b) =⇒ exponent p a = exponent p b"

Task 6 Now for our main result: the exponent of p in the product is the
sum of the exponents of p in the two factors. Prove it. [16 marks]

theorem exponent_mult_add:
assumes "a > 0" "b > 0"

shows "exponent p (a * b) = (exponent p a) + (exponent p b)"

6



4 Assessed Exercise II: Propositional Logic

In this Exercise, we formalise a fragment of propositional logic along with a
proof system for it. We prove soundness and the deduction theorem.

4.1 Propositional formulas

We begin by defining the datatype of formulas, comprising atoms (proposi-
tional letters), disjunctions and negations. Atoms are designated by natural
numbers.

datatype fm =
Atom nat

| Disj fm fm (infixr "OR" 130)
| Neg fm

Task 1 Define a function subst of type fm ⇒ nat ⇒ fm ⇒ fm to substitute
a given formula X for a particular atom i in the formula A. All occurrences
of Atom i should be replaced by X, while other Atoms should be preserved;
disjunctions and negations should be transformed recursively.

Also, define a function vars of type nat set to return the set of all
Atoms in a given formula A. Then prove the three statements below. If your
definitions are correct, each should be trivial by induction. [7 marks]

lemma vars_subst:
"vars (subst X i A) =
(if i ∈ vars A then vars X ∪ (vars A - {i}) else vars A)"

lemma subst_trivial [simp]: "i /∈ vars A =⇒ subst X i A = A"

lemma subst_idem [simp]:
"i /∈ vars X =⇒ subst X i (subst X i A) = subst X i A"

The semantics of propositional logic is simple: a formula is evaluated
recursively using standard truth tables. The values of the atoms are given
with respect to an environment, which maps each atom to true or false. Here
is the null environment:

definition e0 :: "nat ⇒ bool" where "e0 ≡ λk. False"

Task 2 Define a function eval of type (nat ⇒ bool) ⇒ fm ⇒ bool to eval-
uate the formula A with respect to the environment e. Check your definition
by proving the statement below, which again should be a trivial induction.

[4 marks]

lemma eval_subst: "eval e (subst X i A) = eval (e (i:= eval e X)) A"

7



4.2 Propositional axioms and rules

We use a Hilbert system for propositional logic, involving five axiom schemes:

A→ A
A→ (A ∨B)
(A ∨A)→ A
(A ∨ (B ∨ C))→ ((A ∨B) ∨ C)
(C ∨A)→ (((¬C) ∨B)→ (A ∨B))

Thus, the axioms include everything of the form A→ A (where A is replaced
by any propositional formula), and so forth for the other four schemes. The
following abbreviation is helpful for expressing the axioms in Isabelle.

abbreviation Imp :: "fm ⇒ fm ⇒ fm" (infixr "IMP" 125)
where "Imp A B ≡ Disj (Neg A) B"

Task 3 Define the set of axioms as a constant boolax of type fm set in
Isabelle. Validate the definition by proving that all axioms evaluate to true,
as stated below: [7 marks]

lemma boolax_hold: "A ∈ boolax =⇒ eval e A"

We could now obtain a classic Hilbert system by adding in the rule of
Modus Ponens, but a more flexible approach is to define deducibility from a
set H of formulas.

A ∈ H
H ` A

A ∈ boolax
H ` A

H ` A→ B H ′ ` A
H ∪H ′ ` B

Task 4 Define this relation in Isabelle by completing the following inductive
definition. Then prove the soundness theorem given below: [7 marks]

inductive ded :: "fm set ⇒ fm ⇒ bool" (infixl "`" 55)

theorem ded_sound:
assumes "H ` A"

shows "(∀ B∈H. eval e B) =⇒ eval e A"

4.3 The Deduction Theorem

The deduction theorem states that {A} ∪H ` B implies H ` A → B.
Although it may look natural, it is not always easy to prove. We begin by
proving two lemmas, then set up the induction.

8



Task 5 Prove these lemmas. [10 marks]

lemma S:
assumes "H ` A IMP (B IMP C)" "H’ ` A IMP B"

shows "H ∪ H’ ` A IMP C"

lemma Imp_triv_I: "H ` B =⇒ H ` A IMP B"

Task 6 Finally, prove the deduction theorem. The first statement is in a
form suitable for induction. It easily implies the second statement.

[15 marks]

lemma deduction_Diff: assumes "H ` B" shows "H - {C} ` C IMP B"

theorem deduction: "insert A H ` B =⇒ H ` A IMP B"

Remark : no proof should require much more than a dozen lines. Proving
suitably chosen lemmas can simplify your work.

9


	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: The Exponent Function
	Prime numbers
	The exponent function

	Assessed Exercise II: Propositional Logic
	Propositional formulas
	Propositional axioms and rules
	The Deduction Theorem


