Exponentials
Given sets
$$X, Y \in Set$$
, we have
 $Y^{\times} \in Set$ set of all functions with
domain $X \notin codomain Y$
 $Y^{\times} = Set(X,Y) = \{f \subseteq X \times Y | f \text{ is single-valued}_{\& total}\}$
Aim to characterize Y^{\times}

Function application:

$$app \in Set(Y^{X} \times X, Y)$$

 $\gamma app(f, x) = fx$ ($f \in Y, x \in X$)
so $app \subseteq (Y^{X} \times X) \times Y$ is
 $\Im((f, x), y) \mid (x, y) \in f$

Function application:

$$app \in Set(Y^{\times} \times X, Y)$$

 $app(f, x) \triangleq fx \quad (f \in Y, x \in X)$

Function currying:

$$\frac{f \in Set(Z \times X, Y)}{Cur f \in Set(Z, Y^{X})}$$

$$cur f \neq x \triangleq f(Z, X) \quad (Z \in Z, X \in X)$$
So $Cur f Z = \{(x, y) \mid ((Z, x), y) \in f\}$

Function application:
app
$$\in$$
 Set $(Y^{X} \times X, Y)$
app $(f, x) \triangleq fx$ $(f \in Y, x \in X)$
Function currying:
 $f \in Set(Z \times X, Y)$
 $cur f \in Set(Z, Y^{X})$
 $cur f \neq f(Z, X)$ $(Z \in Z, X \in X)$
So $cur f \geq f(Z, X) | ((Z, x), Y) \in f$

Haskell Curry

Mathematician

Haskell Brooks Curry was an American mathematician and logician. Curry is best known for his work in combinatory logic; while the initial concept of combinatory logic was based on a single paper by ... Wikipedia

Born: September 12, 1900, Millis, Massachusetts, United States

Died: September 1, 1982, State College, Pennsylvania, United States

Parents: Samuel Silas Curry

Books: A Theory of Formal Deducibility, Foundations of Mathematical Logic

Education: University of Göttingen (1930), Harvard University

Given $f \in Set(ZXX,Y)$, get commutative diagram $Y \times X \xrightarrow{app} Y (curfz, x) \longrightarrow curfz x$ f(z, 1 curf xid. _____ (₹, ⊄ Ζx meet 2, qu. 1 (b) SP. P.

Given $f \in Set(ZXX,Y)$, get commutative diagram $Y \times X \xrightarrow{app} Y (curfz, x) \mapsto curfz x$ f(z,z)curf xidx Furthermore, if ge Set (Z,YX) also satisfies $Y \times X \xrightarrow{app}$ $g \times id_x \int f$ then g = curf, $Z \times X f$ because of function extensionality...

tunction extensionality Two functions $f,g \in Y^{\times}$ are equal if (and only if) $\nabla (\forall x \in X) f x = g x$ because this implies

because this implies $\begin{cases} (x_1, y_2) \mid x \in X \\ f = \left((x_1, y_2) \mid (x_2, y_2) \mid (x_3, y_1) \\ (x_3, y_1) \in f \\ f = g \end{cases}$ i.e. f = g

Exponentials
in any carlesian category C
An exponential for C-objects
$$X \notin Y$$

is specified by
object Y^{\times} + morphism app : $Y^{\times} \times \to Y$
with the universal property:
for all $f \in \mathbb{C}(\mathbb{Z} \times \mathbb{X}, \mathbb{Y})$ there is
a unique morphism $g \in \mathbb{C}(\mathbb{Z}, \mathbb{Y}^{\times})$
such that $Y^{\times} \times \propto \stackrel{\text{off}}{\longrightarrow} Y$
 $g \times id_{\mathbb{X}} \uparrow f$ commutes
 $\mathbb{Z} \times \mathbb{X} \to \mathbb{Y}$

Exponentials
in any carlesian category C
An exponential for C-objects
$$X \notin Y$$

is specified by
object Y^{\times} + morphism ap: $Y^{\times} \times \rightarrow Y$
with the universal property:
for all $f \in \mathbb{C}(\mathbb{Z} \times \mathbb{X}, Y)$ there is
a unique morphism $g \in \mathbb{C}(\mathbb{Z}, Y^{\times})$
such that $Y^{\times} \times \mathbb{Y}$ for this unique g
 $g \times id_{\mathbb{X}}^{\top}$ commutes

Exponentials
in any cartesian category C
The universal property of app:
$$Y \times X \rightarrow Y$$

says that there is a bijection:
 $\mathbb{C}(\mathbb{Z}, Y^{\times}) \cong \mathbb{C}(\mathbb{Z} \times X, Y)$
 $g \longmapsto \operatorname{app} \circ (g \times \operatorname{id}_X)$
 $\operatorname{cur} f \leftarrow f$
 $\operatorname{app} \circ (\operatorname{cur} f \times \operatorname{id}_X) = f$
 $\operatorname{cur}(\operatorname{app} \circ (g \times \operatorname{id}_X)) = g$
ex: my bes the universal property imply this?

Exponentials
in any carlesian category C
An exponential for C-objects X & Y
is specified by
object
$$Y^{\times}$$
 + morphism $app: Y^{\times} \times \rightarrow Y$
such that
 (Y, app) is terminal in the category with
 $-\delta bjects$ (Z,f) where $f \in C(Z \times \times, Y)$
- morphisms $g: (Z,f) \rightarrow (Z',f')$ are $g \in C(Z,Z')$
such that $f' \circ (g \times id_{X}) = f$
- composition & identities as in C

Exponentials
in any cartesian category C
An exponential for C-objects
$$X \notin Y$$

is specified by
object $Y \times +$ morphism app : $Y \times X \rightarrow Y$
such that
 $(Y_{,app})$ is terminal in the category with
 $-\delta bjects (Z,f)$ where $f \in C(Z \times X,Y)$
 $-morphisms g: (Z,f) \rightarrow (Z,f') are $g \in C(Z,Z')$
such that $f' \circ (g \times id_X) = f$
 $- composition & identities as in C$$

Ccc's

<u>Definition</u> A cartesian closed category (ccc) is a category (with } hence, all finite products jie. C is cartesian • a terminal object binang products • an exponential for every pair of objects

Examples of ccc's • Set is a ccc - as we've seen. • Pre is a ccc: the exponential of (P, \leq) and (Q, \leq) is $(P \rightarrow Q, \leq)$ where $P \rightarrow Q = \{f \in Q^{P} | (\forall p, p' \in P) p \leq p' \Rightarrow f p \leq f p' \}$ (This is just $\operatorname{Re}((P_{i} \leq), (Q_{i} \leq))$)

• Set is a ccc – as we've seen. • Pre is a ccc: the exponential of (P, \leq) and (Q, \leq) is $(P \rightarrow Q, \leq)$ $P \Rightarrow Q = \{f \in Q^P | (\forall p_i p' \in P) p \leq p' \Rightarrow fp \leq fp'\}$ with pre-order $f \leq f' \triangleq (\forall p \in P) f p \leq f p$ with application app $\in Pre((P_{2}Q_{1} \in) \times (P_{2} \in), (Q_{2} \in))$ $app(f,p) \triangleq fp$ Have to check this is monstone & has correct universal property...