
Machine Learning for Language Processing

Lecture 2: POS Tagging with HMMs

Stephen Clark

October 6, 2015

The POS Tagging Problem We can’t solve the problem by simply com-
piling a tag dictionary for words, in which each word has a single POS tag.
Like most NLP problems, ambiguity is the souce of the difficulty, and must be
resolved using the context surrounding each word. Try inputting I can can a
can into a POS tagger.

Probabilistic Formulation We’ll formalise the problem as finding the most
probable tag sequence, given the word sequence as input. In early debates
regarding statistical methods in AI, the rule-based adherents would always say
sure, but where do the probabilities come from? We now know the answer to this
question: probabilities are estimated from data. However, in the general case,
the difficulty of finding appropriate data should not be underestimated. In the
POS tagging case, creating manually annotated data, in order to do supervised
machine learning, is not too expensive, and is a task a trained linguist can do
relatively quickly.

The second question is how to find the arg max, or what’s the search algo-
rithm? For HMMs there is a very nice dynamic programming solution to the
problem of finding the highest scoring tag sequence: the Viterbi algorithm (for
sequences).

HMM Tagging Model We’ll rewrite the conditional probability of tag se-
quence given word sequence using Bayes theorem, thereby reversing the direction
of the conditional. The reason for doing this is that the likelihood P (W |T), and
the prior P (T), are easier to factorise into probabilities that we can estimate
than the original conditional, P (T |W). The denominator P (W) can be ignored
since W is a constant for the elements of the set we’re finding the arg max over.

In order to factorise the two probabilities we first apply the chain rule. Note
that the application of the chain rule is exact, so no advantage has been gained
at this point in terms of ease of estimation: Estimating P (tn|tn−1, . . . , t1) is
no easier than estimating the full joint probability P (t1, . . . , tn). However, the
application of the chain rule allows us to make independence assumptions.

For the tag sequence probability, we assume that the probability of a tag
is only dependent on the previous n − 1 tags; such a model is called an n-

1

gram model. For the equation on the slide, the probability of a tag is only
dependent on the previous tag, giving a bigram model. Note that P (ti|ti−1)
is much easier to estimate than the full conditional probability. For the word
emission probabilities, we assume that the probability of a word only depends
on its corresponding tag.

Clearly both independence assumptions are somewhat drastic. However,
relaxing the independence assumptions leads to probabilities which are a) harder
to estimate; and b) less efficient to compute with. There is a large literature
on exploring this trade-off, for example investigating whether accuracies can be
improved by increasing the size of the n-gram for the tag sequence probabilities.
Here we find that moving beyond a trigram does not typically help for POS
tagging (at least with the sizes of supervised training data available).

N-gram Generative Taggers Note that the HMM is a generative model,
since we’re effectively using the joint distribution: P (W |T)P (T) = P (W,T).
Intuitively the model generates both words and tags according to some stochas-
tic process (even though the words are given as input).

Another solution is to use a conditional, or discriminative, model. The ad-
vantage of such models is that they are more flexible and do not rely so heavily on
independence assumptions. One example of such a model is a maximum entropy
tagger, or a tagger based on conditional random fields. We’ll encounter such
models later in the course. The downside is that the parameters of such models
are typically harder to estimate, often requiring numerical methods rather than
having a closed-form solution.

Parameter Estimation For an HMM tagger there are two sets of prob-
abilities that need estimating: the tag transition probabilities and the word
emission probabilities. Note that the model does not contain paramaters of the
form P (ti|wi) (because of the application of Bayes theorem), which could be
considered counter-intuitive given that the goal is to estimate P (T |W).

There has been lots of work on attempting to build taggers using raw data,
treating the problem as an unsupervised machine learning problem, effectively
trying to learn clusters of words which correspond to linguistically plausible
parts of speech. However, by far the most popular approach to POS tagging is
to treat it as a supervised machine learning problem, in which we assume the
existence of a manually labelled training set.

Relative Frequency Estimation Suppose I toss a coin 1000 times, and it
comes up heads 480 times. An intuitive, and statistically reasonable, estimate
of the probability of heads for this coin would be 480/1000 = 0.48. It turns
out that, for the coin tossing case, the relative frequency estimate is also the
maximum likelihood estimate: 0.48 is the value which makes it most likely that,
out of 1000 tosses, heads will appear 480 times. (It is easy to show this formally
with some high school calculus.)

2

The tagging scenario is similar, but with a move from the Bernoulli case,
where the value of the relevant random variable (the coin toss) is zero or one,
to the Categorical case, where the random variable can take a number of values
from a finite set (for the tag transition probabilities it’s the tag set; for the word
emission probabilities it’s the word vocabulary). It turns out that the same
mathematics applies to the more general case, and relative frequency estimates
for the HMM parameters are maximum likelihood estimates here also. Collins’
thesis [2] (Section 2.3) has a very nice presentation of this result.

Smoothing for Tagging There is one aspect of the language estimation prob-
lem which is crucially different from the coin tossing scenario. It is easy to toss
a coin many times, in order to get a reliable estimate. If a coin has been tossed
1,000 times, we’d be reasonably confident of the relative frequency estimate.
However, suppose the coin has only been tossed 5 times, and it came out heads
once. How confident would you be now in an estimate of 1/5 for the probability
of heads?

What makes statistical modelling difficult in the language case is that we
often find ourselves in this sparse data position. Since many words are observed
rarely, relative frequency estimates are often unreliable. This unreliability is an
instance of the machine learning problem of overfitting where, intuitively, we’re
making the probability estimates look too much like the data; we’re trusting the
data too much.

An extreme version of the overfitting problem occurs when events are entirely
unseen in the training data, giving frequencies of zero. In the case when the
conditioning event has not occurred, the relative frequency estimate is undefined,
since the denominator is zero (f(ti−1) = 0 for estimating P (ti|ti−1)). When
the event being generated has not occurred, the relative frequency estimate is
zero (f(ti−1, ti) = 0 leads to P̂ (ti|ti−1) = 0).1 Zero estimates are problematic
because they propagate through the product, giving a zero probability for the
whole sequence.

The solution to the overfitting problem is to use smoothing techniques, where
we take some of the probability mass from the seen events in the training data,
and give it to rare and unseen events. Many of the smoothing techniques used
in NLP were originally developed for language modelling for speech recognition
[1].

The solution on the slide is an example of the linear interpolation smoothing
technique. The idea is to use progressively more general conditioning events,
so that the chances of obtaining zero estimates is reduced. There are various
methods available for estimating the λ’s. One useful intuition is that we’d like
higher values for the relevant λ when the corresponding conditioning event has
occurred frequently (the analogue of having tossed the coin many times).

Another related solution is backing off. Here, we will use just one of the
estimates, rather than mix them, with the decision of which level to use based

1P̂ is used to denote a (maximum likelihood) estimate of P .

3

on the frequencies in the relative frequency estimate (e.g. use the first estimate
which is not zero).

Better Handling of Unknown Words Suppose we wish to tag a word
not seen in training data, e.g. Trumpington or googling. The capital T in
Trumpington — assuming it’s not the first word in the sentence, and we’re
tagging English — is a strong clue the tag should be NNP. Similarly, the ing
suffix in googling is a strong clue the tag should be VBG. One way to adapt the
HMM to incorporate such clues is to modify the generative process so that, for
unknown words, various features of the word are generated, rather than the word
itself. However, making sensible independence assumptions, and deciding which
features to generate, is difficult. This difficulty is one of the main motivations
for using discriminative models, which allow us to model such features directly.

The Search Problem for Tagging When performing the arg max, the num-
ber of tag sequences being searched over grows exponentially with the length of
the sentence; simply enumerating all sequences and picking the highest scoring
one is not going to work. For a unigram model, there is a trivial solution which
is efficient and optimal: pick the most probable tag for each word, according to
the probability P (t)P (w|t). This algorithm is linear in both the length of the
sentence and the size of the tagset.

A Non-Trivial Search Problem Consider now a bigram tagger. Suppose
we try and use a similar solution to that for the unigram tagger, picking the most
probable tag for each word wi, according to the probability P (ti|ti−1)P (wi|ti)
(where ti−1 was the tag chosen for the previous word). The example on the
slide is designed to show that this algorithm is not optimal. The intuition is
that, because of the dependence on the previous tag, the highest scoring tag at
any particular point in the left-to-right tagging process could be overtaken by
a lower scoring tag when the rest of the sentence is considered. (This intuition
does not hold in the unigram case: there is no way that the highest-scoring tag
for a word can be overtaken by another tag, because the probability does not
depend on the previous tag.)

The Viterbi Algorithm The Viterbi algorithm is a dynamic programming
(DP) algorithm, so like all DP algorithms requires the optimal sub-problem
property. What this means in practice is that we need to break the larger
problem into smaller sub-problems, such that the sub-problems can be solved in
the same way (eventually “bottoming out” in a base case which can be solved
trivially).

A useful intuition is the following: suppose we want to find the highest-
scoring sequence ending at word wn. Suppose further that we know the highest-
scoring (sub-)sequences ending at wn−1 for each tag. So we know the highest-
scoring sequence ending at wn−1 ending in DT; and the highest-scoring sequence
ending at wn−1 ending in VBG; and the highest-scoring sequence ending at wn−1

4

ending in NNP; and so on for all tags. From there we need O(T 2) calculations
(where T is the size of the tagset), based on the tag transition probabilities
between wn−1 and wn, and the word emission probabilities at wn, to calculate
the highest-scoring sequence ending at wn.

Now apply this idea recursively to find the highest-scoring sequence ending
at word wn−1 (for each tag). For the base case, calculating the highest-scoring
sequence ending at w1 for each tag is trivial, since there are no previous tags.

Viterbi for a Bigram Tagger The recursion on the slide formalises the
intuition given above. In practice, the recursion is implemented by keeping
track of the highest-scoring sub-sequences, for each tag and each position, as
the tagger moves from left to right (by recording pointers to previous tags);
and then the final step is to follow one set of these pointers from the end of
the sentence to the start, tracing out the highest-scoring sequence for the whole
sentence.

The algorithm is linear in the length of the sentence and quadratic in the
size of the tagset. For a trigram tagger, the algorithm is cubic in the size of the
tagset (and quartic for a 4-gram tagger, and so on).

Practicalities Taggers based on HMMs can be made highly accurate; e.g.
the TnT tagger, which is now over 15 years old, is still competitive, and very
fast. In particular, the training can be performed extremely efficiently on large
datasets, since the training is essentially just counting. However, the ease of
including rich, overlapping features into taggers using discriminative models —
the topic of the next lecture — mean that HMM-based taggers are no longer
the method of choice.

Readings for Today’s Lecture

• Chapters 9 (Markov Models) and 10 (Part-of-Speech Tagging) of Manning
and Schütze’s Foundations of Statistical NLP; and Chapters 5 (Part-of-
Speech Tagging) and 6 (Hidden Markov and Maximum Entropy Models)
of Jurafsky and Martin (2nd. Ed.)

References

[1] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. Technical report, 1998.

[2] Michael Collins. Head-Driven Statistical Models for Natural Language Pars-
ing. PhD thesis, University of Pennsylvania, 1999.

5

