
Machine Learning for Language Processing

Lecture 1: Classification

Stephen Clark

October 3, 2015

The ML Revolution in NLP The plot on the slide shows the percentage of
papers at the main ACL conference which report research on statistical NLP.
Today, in 2015, the figure would be close to 100%. Before 1990, research in NLP
was rule-based, where the rules were written by domain experts (for example
translators, for machine translation). The limitations of rule-based systems are
well-documented: large and complex rule sets which are difficult to modify and
maintain; expensive human input needed to create the rule sets; and difficulty
in adapting rule sets designed for one language domain, e.g. finance, to another,
e.g. biomedical text.

However, there are advantages to rule-based systems, and it is important
to maintain some balance in the debate regarding rule-based vs. statistical.
Many commercial NLP systems still use rule-based approaches, for the following
reasons. One, they are typically high precision, meaning that, if a rule, or set
of rules, does fire, the rule will probably give the right answer; and two, the
rules are easy to inspect manually to determine why a system made a particular
decision. The second reason is especially valued in the context of safety-criticial
systems: if an automatic air traffic control system instructs two planes to land
at the same time on the same runway, explaining that ten layers of a deep neural
network made the decsision is going to provide little comfort.

So why did machine learning take over NLP (and other related disciplines
such as speech recognition and computer vision)? The main reason is that ML
provides a principled means of learning the required knowledge for intelligent
behaviour (assuming we can provide appropriate training data and an appropri-
ate learning objective). The amount of knowledge required is huge, and varies
for each domain, so it is unlikely that we could ever solve this problem through
hand-written rules.

Some History In the 1950s, the disciplines related to the cognitive sciences,
such as psychology and linguistics, were dominated by ideas from empricism, the
philosophical doctrine which states that all knowledge is based on experience
derived from the senses. Shannon had also recently published his theory of
communication, based on information theoretic ideas grounded in probability
theory.

1



In 1957, Chomsky effectively founded the modern discipline of linguistics,
with the publication of Syntactic Structures. This book took a more rationalist
approach, with the key data source for linguistic theories being the introspective
judgements of native speakers. In 1969, Minsky and Papert published Percep-
trons, which was a criticism of Rosenblatt’s perceptron (a simple form of neural
network), arguing for more traditional, knowledge-based approaches to AI. Both
books were enormously influential, and rationalist approaches took over from
empiricism.

The tide began to turn again in the 1980s. The IBM group, led by Fred
Jelinek, had already been successful at applying statistical methods to automatic
speech recognition.1 Neural networks were back on the agenda with the work of
the PDP group, although it would take many more years, and the availability of
large datasets and powerful machines, before neural networks could become the
dominant force they are in 2015. Finally, the IBM group started to apply the
same statistical techniques that had been successful for speech recognition to the
machine translation problem (before many of that group, including Peter Brown
and Bob Mercer, went to Wall Street to found Renaissance Technologies2).

For an interesting perspective on machine learning research in NLP, see [1].
This paper takes the position that perhaps empiricism has been too successful
in NLP, and some combination of empiricism and rationalism is required.

Statistical NLP not Science? The rejected COLING 1988 submission re-
ferred to on the slide is the original conference paper describing IBM’s approach
to statistical machine translation, which is now the dominant approach to MT.3

The rather hostile tone taken in the review was not uncommon at the time, and
can be interpreted as reflecting a general misunderstanding of how probabilistic
and machine learning approaches are used in science and engineering. For a
recent defence of statistical methods in NLP, see [2].

Text Classification Text classification is the problem of, given a linguistic
unit as input (word, sentence, document), assign a discrete label from a finite
set to that input. The classic text classification problem is, given a document as
input, assign a label to it which specifies the document’s topic. For example, we
may wish to classify newspaper reports according to the section of the newspaper
they are in, in which case the labels would be politics, finance, sport, gardening,
travel, cookery, and so on. Another text classification problem is spam detection.
Here the inputs are emails, and the output is a single label from the set { spam,
not-spam }. A final example is sentiment analysis, where the input could be a
document, an email, a tweet, or a smaller input such as a sentence or word (in
context). The labels in this case would be { positive, negative }.

1“Every time I fire a linguist ...”
2http://cs.jhu.edu/∼post/bitext/
3http://www.statmt.org/

2



Machine Learning Framework Any machine learning framework relies on
the notion of features, which can be thought of as the way that the input is
represented mathematically in order to perform the classification. We’ll be
more precise later about how features are defined mathematically, but for now
a useful intuition is to think of features as patterns in the input which we think
will be useful for making the classification decision. If the input is a sentence,
a feature could be a word in the sentence, or a sequence of words, or a 〈word,
part-of-speech tag〉 pair, or a more complex pattern such as part of a parse tree.
The set of features for a particular input will be represented as a feature vector.

Training and Test Data Training data is used to train the classifier. We’ll
mostly be concerned with the supervised setting, where each instance of the
data also comes with a manually assigned label (for example a set of documents
where the correct topic label for each document has been given). Unsupervised
training is the general problem of finding structure in the input data, often
framed as a clustering task, where the cluster labels — or even the number of
clusters in the most general case — are not provided in advance.

Finally, there is also reinforcement learning, where the training signal is
provided in the form of a reward after a number of actions have been taken by
the system being trained. One application where reinforcement learning is used
in NLP is dialogue modelling. Here, the problem is to learn a dialogue system
which knows how to respond to utterances from the user, for example in order to
book airline tickets, but the only signal provided during training is whether the
required flight was successfully booked, after a number of interactions between
the user and system have taken place.

The goal of the training process is to learn a classifier that generalises well to
unseen data, i.e. instances not observed in the training set. Hence it is important
that the training data and test data — the latter used to evaluate the accuracy
of the classifier — are distinct. It is also important that the test data is not
used “too often”, or more directly to tune the value of a hyperparameter. A
separate test set, called a development set, is often held out for this purpose.

Machine Learning-based Decisions One way to partition the options avail-
able for building a classifier is as follows. First, there are the generative models:
joint probability distributions over the input and output. Second, there are the
discriminative models, conditional probability distributions of the output given
the input. And third, there is a more general class of discriminative functions,
which do not attempt to learn probability distributions, but learn the mapping
from inputs to outputs more directly (support vector machines are an example).

We’ll encounter all three approaches during the course. All three have ad-
vantages and disadvantages, and which one to apply depends on various factors.

Naive Bayes Classifier Suppose we are interested in the conditional prob-
ability of a class given a document. Rewrite this using Bayes theorem, so that
it is proportional to the product of the conditional probability of the document

3



given the class (the likelihood) and the marginal probability of the class (the
prior). The advantage of writing it this way is that there is an easy way to
factor the likelihood.

Bag of Words Model Suppose we model a document as just a set of words,
i.e. using a vector of indicator functions, where each component of the vector (a
feature) corresponds to a word.4 Now assume that each word is conditionally
independent given the class. Then the conditional probability of the words
(the features) given the class is just the product of the probabilities of each
word given the class. The advantage of this formulation is that the component
probabilities are easy to estimate.

Probability Estimation Estimating the prior probability of P (cj) is easy:
just count the number of documents in the training data that have been given
label cj and divide by the total number of documents.

Estimating the likelihood probability of P (fi|cj) is equally easy: just count
the number of times that word fi appears in documents assigned class cj and
divide by the number of documents assigned class cj .

These relative frequency estimates can be theoretically justified as maximum
likelihood estimates; we’ll see more on maximum likelihood estimation later in
the course.

What if word fi has not appeared in any documents with class cj? In this
case the relative frequency estimate is zero, and the probability for the whole
document will be zero (since the zero will propagate through the product). The
way to solve this problem is to use a smoothing technique, where some of the
probability mass is taken from the seen events in the training data and given
to unseen events. There is a large literature on how to reassign the mass, since
the sparse data problem in NLP means that we are often dealing with unseen
events at test time. One trivial method is to simply replace each zero count with
ε, where ε is a small real value greater than zero (being careful to renormalise
the relevant distributions so that they sum to 1). We’ll see more sophisticated
smoothing methods later in the course.

Sentiment Classification The paper which began the now huge literature
on sentiment analysis was [3]. The models used in the paper are straightforward,
as well shall see, but what was noteworthy about the paper was the insight that
manually annotated training data could be freely obtained from online movie
review sites. For the experiments reported in the paper, they had a dataset
consisting of 752 negative reviews and 1,301 positive ones.

Bag of Words Model The baseline results show the accuracy that can be
achieved by simply counting the number of occurrences of “sentiment bearing”
words in a document, where the lists of sentiment bearing words were created

4The extension to the multiset, or bag, case, where the words are counted rather than
simply being present or absent, is straightforward.

4



manually (in the second case by also inspecting the test data). Machine learn-
ing methods can be applied using a similar idea, but this time the positive or
negative sentiment of a word is learned automatically from the data.

Two Naive Bayes models were used, one where only the presence or absence
of a word is taken into account (the binary model described earlier), and one
where the words are also counted. In the latter case the representation of the
document as a feature vector is different, since each word token in the document
is effectively treated as a random variable, with the value being a word from
the vocabulary.

Results There are two noteworthy aspects of the results. First, the Naive
Bayes binary model performs surprisingly well, on a par with the frequency-
based model, and almost as good as the more sophisticated models using support
vector machines and maximum entropy classifiers. Second, the unigram model
which only looks at single words performs surprisingly well, with little value in
adding additional feature types such as bigrams or parts-of-speech.

More Recent Work on Sentiment Richard Socher’s work from Stanford
on using (recursive) neural networks for sentiment analysis has gained a lot of
interest. However, note that this work also involves a large training set collected
using crowd sourcing, so how much is being gained from the fancy neural network
is not entirely clear.

Readings for Today’s Lecture

• Chapter 16 of Manning and Schütze’s Foundations of Statistical NLP –
Text Categorization (perhaps glossing over some of the more technical
descriptions of the various models at this stage)

References

[1] Ken Church. A pendulum swung too far. Linguistic Issues in Language
Technology LiLT, 2(4), 2007.

[2] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effec-
tiveness of data. IEEE Intelligent Systems, 24:8–12, 2009.

[3] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sen-
timent classification using machine learning techniques. In Proceedings of
EMNLP, pages 79–86, 2002.

5


