Machine Learning for Language
Processing
ACS 2015/16
Stephen Clark
L4: The Perceptron for Structured
Prediction

2B UNIVERSITY OF

IR0 - P

@¥ CAMBRIDGE



Local and Global Features

e We have already seen local feature representations for the maxent tagger:

1 if word(C) =Moody & t=I-ORG
0 otherwise

f'&(Ca t) — {
where C' is a context and ¢ a tag

e These can be extended to the whole sequence (as in a CRF):

F;(W,T) = Z fi(Cj,t5)
=1

where W is the sentence and 7' the tag sequence; C; is the context for the jth
word; ¢; is the tag for the jth word




A Linear Tagging Mode|

Score(T, W) =Y N F;(W,T) = X- ®(W,T)
Some notation: |
o ¢:(C,t) = R? where d is the number of features
o &: (W, T) — R4

o (W, T)=>_,9(Cj,t))

¢ is the local feature vector; ® is the global feature vector; X is the corresponding
global weight vector




Decoding for a Global Linear Model

T.x(W) = argmax Y X F;(W,T)
£ i

e Viterbi finds this argmax efficiently (assuming each contex C; contains only
the previous m tags; i.e. assuming an m-gram tagger)

S
552 I
lllll HiAl‘A

&P CAMBRIDGE



The Perceptron Training Algorithm

Inputs: Training examples (zk, yx)
Initialization: A =0
Algorithm:
Forl=1toL, k=1ton
Use Viterbi to get 2z = argmax, A - ®(x, 2)
If 21, # yr then X = X\ + ® (2, yi) — Pk, 2k)
Output: weights A




The Training Algorithm (with words)

Inputs: Training examples (zx, yx)
Initialization: A =0
Algorithm:
Forl=1to L, k=1ton
Use Viterbi to get z; = argmax, A - ®(zy, 2)
If 21, # vy then X = X\ + ®(zp, yi) — ®(zk, 21)
Output: weights A

Assume n tagged sentences for training

Initialise weights to zero

Do L passes over the training data

For each tagged sentence in the training data, find the highest scoring tag
sequence using the current weights

If the highest scoring tag sequence matches the gold, move to next sentence

If not, for each feature in the gold but not in the output, add 1 to its weight; for

each feature in the output but not in the gold, take 1 from its weight
Return weights

B UNIVERSITY OF
4% CAMBRIDGE




Averaging Parameters

Perceptron training can suffer from over-fitting; averaging the parameters is a
simple addition which works well in practice:

ATV — > AF ) L
[=1toL, k=1ton

(Based on the voted perceptron, which has some theory associated with it)




Theory of the Perceptron

Simple additive update seems intuitive, but do we have any guarantees? Collins
(2002) has some proofs showing that:

e |f the data is separable with some margin, then the algorithm will converge on
weights which give zero error on the training data

e |f the training data is not separable, but “close” to being separable, then the
algorithm will make a small number of mistakes (on the training data)

e |f the algorithm makes a small number of errors on the training data, it is
likely to generalise well to unseen data




A Ranking Perceptron

Some notation:

e Assume training data {(s;,%;)} (e.g. s; is a sentence and t; the correct tree
for s;)

e X;; is the jth candidate for example ¢ (e.g. the jth tree for sentence 1)

e Assume (w.l.o.g.) that x;; is the correct output for input s; (i.e. x;1 = t;)
e h(x;;) € R% is the feature vector for x;;

e w € R? is the corresponding weight vector

e Output of the model on example s (train or test) is argmax,cc(5) W - h(x)

e C(s) is the set of candidate outputs for input s




Training (with the new notation)

Define:
F(x) =w-h(x)
Initialisation: Set parameters w = 0
For:=1ton

j = argmax, ., F(xi)

If 5 75 1 then w =w + h(Xil) — h(Xf,;j)
Output on test sentence s:

argimaXycc(s) F(X)

e For simplicity, only showing one pass over the data and no averaging

e The argmax can be obtained just though enumeration (i.e. we have a ranking
problem, so no need for dynamic programming)




Perceptron Training (a duel form)

Define:
G(x) = 1, 245(h(xi) - (%) — () - h())
Initialisation: Set dual parameters a; ; =0
For:=1ton

j — argmax{l’_“,ni} G(X?;j)

If 5 7é 1 then QG5 = Q5 T 1
Output on test sentence s:

argmax, cc ) G(x)

e Notice there is a dual parameter «; ; for each training example x; ;




Equivalence of the two Forms

o w =) a;(h(xs)—h(x;;)); therefore G(x) = F(x) throughout training

e Why is this useful? Consider the complexity of the two algorithms




Complexity of the two Forms

Assume T is the size of the training set; i.e. T'= ). n,
Take d to be the size of the parameter vector w

Vanilla perceptron takes O(7'd) time (time taken to compute F'is O(d))

Assume time taken to compute the inner product between examples is k
Running time of the dual-form perceptron is O(Tnk)

Dual-form is therefore more efficient when nk << d (i.e. when time taken to
compute inner products between examples is much less than O(d))




Complexity of Inner Products

e Can the time to calculate the inner product between two examples h(x) - h(y)
ever be less than O(d)?

e Yes! For certain high-dimensional feature representations

e Examples include feature representations which track all sub-trees in a tree, or
all sub-sequences in a tag sequence




Tree Kernels

e Tree kernels count the numbers of shared subtrees between trees 7; and 75

— the feature-space, h (77), can be defined as

h; (71) = > Li(n); Ii(n) =

neVq

1 if sub-tree ¢ rooted at node n
0 otherwise

where V; is the set of nodes in tree 7




Computation of Subtree Kernel

e Can be made computationally efficient by recursively using a counting function:

k(7-157??.) — 7—1)Th(7?3 Z z f n19n2

ni1€Vi no€Vs

— if productions from ny and ng differ f(ni,nz) =0
1 if productions are the same

— for pre-terminals f(ni,ng) = 0 otherwise

— for non-pre-terminals and productions the same
f(na,m2) = [T (1 + f(ch(na, ), ch(na, )))

where ch(n;) is the set of children of n; and ch(n;,?) is the ith child of n,

e Algorithm runs in linear time w.r.t. the size of each tree

SR UNIVERSITY OF




