Machine Learning for Language Processing ACS 2015/16 Stephen Clark L3: Maximum Entropy Models

Discriminative Models

- Classification requires the class-posterior $P(\omega_j | \boldsymbol{x})$
 - can just directly model the posterior distribution
 - avoids the complexity of modelling the joint distribution $P({m x},\omega_j)$
- Form of model called a discriminative model
- Many debates of generative versus discriminative models:
 - discriminative model criterion more closely related to classification process
 - not dependent on generative process being correct
 - joint distribution can be very complicated to accurately model
 - only final posterior distribution needs to be a valid distribution

NER as a Tagging Problem

England |I-LOC 's |O fencers |O won |O gold |O on |O day |I-TIME 4 |I-TIME in |O Delhi |I-LOC with |O a |O medal |O -winning |O performance |O . |O

This | 0 is | 0 Prof. | I-PER Black | I-PER 's | 0 second | 0 gold | 0 of | 0 the | 0 Games | 0 . | 0

Feature-based Models

Features encode evidence from the context for a particular tag:

(title caps, NNP) (suffix -ing, VBG) Citibank, Mr. running, cooking

(next word Inc., I-ORG) (previous word said, I-PER) said Mr. Vinken

Lotus Inc.

Complex Features

• Features can be arbitrarily complex

e.g. document level features
 (document = cricket & current word = Lancashire, I-ORG)
 ⇒ hopefully tag Lancashire as I-ORG not I-LOC

• Features can be combinations of atomic features

Features are not assumed to be (conditionally) independent (given the label)
 – unlike the Naive Bayes classifier

Feature-based Tagging

- How do we incorporate features into a probabilistic tagger?
- Hack the Markov Model tagger to incorporate features
- Maximum Entropy (MaxEnt) Tagging
 - principled way of incorporating features
 - requires sophisticated estimation method

Features in MaxEnt Models

- Features encode elements of the context C useful for predicting tag t
- Features are binary valued functions, e.g.

$$f_i(C,t) = \left\{ egin{array}{c} 1 \ {
m if } \ {
m word}(C) = {
m Moody} \ \& \ t = {
m I-ORG} \ 0 \ {
m otherwise} \end{array}
ight.$$

- word(C) = Moody is a contextual predicate
- Features determine (contextual_predicate, tag) pairs

The Model

$$p(t|C) = rac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- f_i is a feature
- λ_i is a weight (large value implies informative feature)
- Z(C) is a normalisation constant ensuring a proper probability distribution
- Also known as a *log-linear* model
- Makes no independence assumptions about the features
- Can be used as a general classifer (outside of tagging, e.g. text classification)

Tagging with MaxEnt Models

• The conditional probability of a tag sequence $t_1 \dots t_n$ is

$$p(t_1 \dots t_n | w_1 \dots w_n) \approx \prod_{i=1}^n p(t_i | C_i)$$

given a sentence $w_1 \dots w_n$ and contexts $C_1 \dots C_n$

- The context includes previously assigned tags (for a fixed history)
- Beam search or Viterbi is used to find the most probable sequence (Ratnaparkhi, 1996)

Model Estimation

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- Model estimation involves setting the weight values λ_i
- The model should reflect the data
 ⇒ use the data to *constrain* the model
- What form should the constraints take? \implies constrain the *expected value* of each feature f_i

The Constraints

$$E_p f_i = \sum_{C,t} p(C,t) f_i(C,t) = K_i$$

- Expected value of each feature must satisfy some constraint K_i
- A natural choice for K_i is the average empirical count:

$$K_i = E_{\tilde{p}} f_i = \frac{1}{N} \sum_{j=1}^N f_i(C_j, t_j)$$

derived from the training data $(C_1, t_1), \ldots, (C_N, t_N)$

Choosing the MaxEnt Model

- The constraints do not *uniquely* identify a model
- From those models satisfying the constraints: choose the Maximum Entropy model
- Conditional entropy of a model *p*:

$$H(p) = -\sum_{C,t} \tilde{p}(C)p(t|C)\log p(t|C)$$

The Maximum Entropy Model

- The maximum entropy model is the most uniform model
 makes no assumptions in addition to what we know from the data
- MaxEnt model is also the *Maximum Likelihood Log-Linear* model
- Set the weights to give the MaxEnt model satisfying the constraints
 ⇒ use Generalised Iterative Scaling (GIS)

Generalised Iterative Scaling (GIS)

- Set $\lambda_i^{(0)}$ equal to some arbitrary value (e.g. zero)
- Repeat until convergence:

$$\lambda_i^{(t+1)} = \lambda_i^{(t)} + \frac{1}{C} \log \frac{E_{\tilde{p}} f_i}{E_{p^{(t)}} f_i}$$

where

$$C = \max_{x,y} \sum_{i=1}^{n} f_i(x,y)$$

POS Tagger Features

• The tagger uses binary valued features, e.g.

$$f_i(x,y) = \begin{cases} 1 \text{ if } word(x) = \texttt{the } \& y = \mathsf{DT} \\ 0 \text{ otherwise} \end{cases}$$

- word(x) = the is a contextual predicate
- Contextual predicates:

$t_{i-1}=X$	previous tag history
$t_{i-2}t_{i-1} = XY$	previous two tags history
$w_i = X$	current word
$w_{i-1}=X$	previous word
$w_{i-2}=X$	previous previous word
$w_{i+1}=X$	next word
$w_{i+2}=X$	next next word

POS Tagger Features for Rare Words

• These predicates apply to words seen less than 5 times in the data

X is prefix of w_i , $|X| \le 4$ X is suffix of w_i , $|X| \le 4$ w_i contains a digit w_i contains uppercase char w_i contains a hyphen

Otherwise the current word predicate applies

Performance

- MaxEnt taggers give close to state-of-the-art accuracy (over 97% on PTB data)
- Training and testing is fast (100s of 1000s of words per second at test time)
- Lots of recent work on tagging other sorts of data, eg tweets
- Recurrent neural networks (probably) give the state-of-the-art for tagging

Condition	Contextual predicate
$f(w_i) < 5$	X is prefix/suffix of w_i , $ X \leq 4$
	w_i contains a digit
	w_i contains uppercase character
	w_i contains a hyphen
$\forall w_i$	$w_i = X$
	$w_{i-1}=X$, $w_{i-2}=X$
	$w_{i+1}=X$, $w_{i+2}=X$
$\forall w_i$	$POS_i = X$
	$POS_{i-1} = X$, $POS_{i-2} = X$
	$POS_{i+1} = X$, $POS_{i+2} = X$
$\forall w_i$	$NE_{i-1} = X$
	$NE_{i-2}NE_{i-1} = XY$

Condition	Contextual predicate
$f(w_i) < 5$	w_i contains period
	w_i contains punctuation
	w_i is only digits
	w_i is a number
	w_i is {upper,lower,title,mixed} case
	w_i is alphanumeric
	length of w_i
	w_i has only Roman numerals
	w_i is an initial (x.)
	w_i is an acronym (ABC, A.B.C.)

Condition	Contextual predicate
$\forall w_i$	memory NE tag for w_i
	unigram tag of w_{i+1}
	unigram tag of w_{i+2}
$\forall w_i$	w_i in a gazetteer
	w_{i-1} in a gazetteer
	$ w_{i+1}$ in a gazetteer
$\forall w_i$	$\mid w_i \text{ not lowercase and } f_{lc} > f_{uc}$
$\forall w_i$	unigrams of word type
	bigrams of word types
	trigrams of word types

- Moody \Longrightarrow Aa
- A.B.C. \implies A.A.A.
- 1,345.00 ⇒ 0,0.0

• Mr. Smith \Longrightarrow Aa. Aa

