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Summary: clustering and classification

Clustering is unsupervised learning

Partitional clustering

Provides less information but is more efficient (best: O(kn))
K -means

Complexity O(kmni)
Guaranteed to converge, non-optimal, dependence on initial
seeds
Minimize avg square within-cluster difference

Hierarchical clustering

Best algorithms O(n2) complexity
Single-link vs. complete-link (vs. group-average)

Hierarchical and non-hierarchical clustering fulfills different
needs (e.g. visualisation vs. navigation)
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Upcoming today

Anchor text: What exactly are links on the web and why are
they important for IR?

PageRank: the original algorithm that was used for link-based
ranking on the web

Hubs & Authorities: an alternative link-based ranking
algorithm
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The web as a directed graph

page d1 anchor text page d2
hyperlink

Assumption 1: A hyperlink is a quality signal.

The hyperlink d1 → d2 indicates that d1’s author deems d2
high-quality and relevant.

Assumption 2: The anchor text describes the content of d2.

We use anchor text somewhat loosely here for: the text
surrounding the hyperlink.
Example: “You can find cheap cars <a
href=http://...>here</a>.”
Anchor text: “You can find cheap cars here”
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[text of d2] only vs. [text of d2] + [anchor text → d2]

Searching on [text of d2] + [anchor text → d2] is often more
effective than searching on [text of d2] only.

Example: Query IBM

Matches IBM’s copyright page
Matches many spam pages
Matches IBM wikipedia article
May not match IBM home page!
. . . if IBM home page is mostly graphics

Searching on [anchor text → d2] is better for the query IBM.

In this representation, the page with the most occurrences of
IBM is www.ibm.com.
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Anchor text containing IBM pointing to www.ibm.com

www.nytimes.com: “IBM acquires Webify”

www.slashdot.org: “New IBM optical chip”

www.stanford.edu: “IBM faculty award recipients”

wwww.ibm.com

Thus: Anchor text is often a better description of a page’s
content than the page itself.

Anchor text can be weighted more highly than document text.
(based on Assumptions 1&2)
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Google bombs

A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

Google introduced a new weighting function in 2007 that fixed
many Google bombs.

Still some remnants: [dangerous cult] on Google, Bing, Yahoo

Coordinated link creation by those who dislike the Church of
Scientology

Defused Google bombs: [dumb motherf....], [who is a failure?],
[evil empire]
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Origins of PageRank: Citation Analysis

We can use the same formal representation (as DAG) for

citations in the scientific literature
hyperlinks on the web

Appropriately weighted citation frequency is an excellent
measure of quality . . .

. . . both for web pages and for scientific publications.

Next: PageRank algorithm for computing weighted citation
frequency on the web
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Model behind PageRank: Random walk

Imagine a web surfer doing a random walk on the web

Start at a random page
At each step, go out of the current page along one of the links
on that page, equiprobably

In the steady state, each page has a long-term visit rate.

This long-term visit rate is the page’s PageRank.

PageRank = long-term visit rate = steady state probability
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Formalisation of random walk: Markov chains

A Markov chain consists of N states, plus an N ×N transition
probability matrix P .

state = page

At each step, we are on exactly one of the pages.

For 1 ≤ i , j ≤ N, the matrix entry Pij tells us the probability
of j being the next page, given we are currently on page i .

Clearly, for all i,
∑N

j=1 Pij = 1

di dj

Pij
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Link matrix for example

d0 d1 d2 d3 d4 d5 d6
d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 1 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 1 1 0 1
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Transition probability matrix P for example

d0 d1 d2 d3 d4 d5 d6
d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Long-term visit rate

Recall: PageRank = long-term visit rate

Long-term visit rate of page d is the probability that a web
surfer is at page d at a given point in time.

Next: what properties must hold of the web graph for the
long-term visit rate to be well defined?

The web graph must correspond to an ergodic Markov chain.

First a special case: The web graph must not contain dead
ends.
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Dead ends

??

The web is full of dead ends.

Random walk can get stuck in dead ends.

If there are dead ends, long-term visit rates are not
well-defined (or non-sensical).
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Teleporting – to get us out of dead ends

At a dead end, jump to a random web page with prob. 1/N.

At a non-dead end, with probability 10%, jump to a random
web page (to each with a probability of 0.1/N).

With remaining probability (90%), follow a random hyperlink
on the page.

For example, if the page has 4 outgoing links: randomly choose
one with probability (1-0.10)/4=0.225

10% is a parameter, the teleportation rate.

Note: “jumping” from dead end is independent of
teleportation rate.
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Teleporting – formula

P ′ = (1− α) · P + α · T (1)

where T is the teleportation matrix and P is a stochastic matrix

what is T?

An N × N matrix full of 1/N

α is the probability of teleporting
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Result of teleporting

With teleporting, we cannot get stuck in a dead end.

But even without dead ends, a graph may not have
well-defined long-term visit rates.

More generally, we require that the Markov chain be ergodic.
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Ergodic Markov chains

A Markov chain is ergodic iff it is irreducible and aperiodic.

Irreducibility. Roughly: there is a path from any page to any
other page.

Aperiodicity. Roughly: The pages cannot be partitioned such
that the random walker visits the partitions sequentially.

A non-ergodic Markov chain:

1.0

1.0
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Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in proportion to
this rate.

It doesn’t matter where we start.

Teleporting makes the web graph ergodic.

⇒ Web-graph+teleporting has a steady-state probability
distribution.

⇒ Each page in the web-graph+teleporting has a PageRank.
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Where we are

We now know what to do to make sure we have a well-defined
PageRank for each page.

Next: how to compute PageRank

346



Formalization of “visit”: Probability vector

347



Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

347



Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

Example:
( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

347



Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

Example:
( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

More generally: the random walk is on page i with probability
xi .

347



Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

Example:
( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

More generally: the random walk is on page i with probability
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Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

Example:
( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

More generally: the random walk is on page i with probability
xi .

Example:
( 0.05 0.01 0.0 . . . 0.2 . . . 0.01 0.05 0.03 )

1 2 3 . . . i . . . N-2 N-1 N
∑

xi = 1
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Change in probability vector

If the probability vector is ~x = (x1, . . . , xN) at this step, what
is it at the next step?

Recall that row i of the transition probability matrix P tells us
where we go next from state i .

So from ~x , our next state is distributed as ~xP .
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Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

(We use ~π to distinguish it from the notation for the
probability vector ~x .)

πi is the long-term visit rate (or PageRank) of page i .

So we can think of PageRank as a very long vector – one
entry per page.
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What is the PageRank / steady state in this example?

d1 d2

0.75

0.25

0.25
0.
75
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x1 x2
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Steady-state distribution: Example

x1 x2
Pt(d1) Pt(d2)

P11 = 0.25 P12 = 0.75
P21 = 0.25 P22 = 0.75

t0 0.25 0.75
t1 0.25 0.75 (convergence)

Pt(d1) = Pt−1(d1) · P11 + Pt−1(d2) · P21

0.25 · 0.25 + 0.75 · 0.25 = 0.25
Pt(d2) = Pt−1(d1) · P12 + Pt−1(d2) · P22

0.75 · 0.25 + 0.75 · 0.75 = 0.75

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)
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How do we compute the steady state vector?

In other words: how do we compute PageRank?

Recall: ~π = (π1, π2, . . . , πN) is the PageRank vector, the
vector of steady-state probabilities . . .

. . . and if the distribution in this step is ~x , then the
distribution in the next step is ~xP .

But ~π is the steady state!

So: ~π = ~πP

Solving this matrix equation gives us ~π.

~π is the principal left eigenvector for P . . .

. . . that is, ~π is the left eigenvector with the largest eigenvalue.

All transition probability matrices have largest eigenvalue 1.
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One way of computing the PageRank ~π

Start with any distribution ~x , e.g., uniform distribution

After one step, we’re at ~xP .

After two steps, we’re at ~xP2.

After k steps, we’re at ~xPk .

Algorithm: multiply ~x by increasing powers of P until
convergence.

This is called the power method.

Recall: regardless of where we start, we eventually reach the
steady state ~π.

Thus: we will eventually (in asymptotia) reach the steady
state.
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Computing PageRank: Power method

x1 x2
Pt(d1) Pt(d2)

P11 = 0.1 P12 = 0.9
P21 = 0.3 P22 = 0.7

t0 0 1 = ~xP
t1 = ~xP2

t2 = ~xP3

t3 = ~xP4

. . .
t∞ = ~xP∞

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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t1 0.3 0.7 0.24 0.76 = ~xP2

t2 0.24 0.76 0.252 0.748 = ~xP3

t3 0.252 0.748 0.2496 0.7504 = ~xP4

. . . . . .
t∞ 0.25 0.75 0.25 0.75 = ~xP∞

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21
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x1 x2
Pt(d1) Pt(d2)

P11 = 0.1 P12 = 0.9
P21 = 0.3 P22 = 0.7

t0 0 1 0.3 0.7 = ~xP
t1 0.3 0.7 0.24 0.76 = ~xP2

t2 0.24 0.76 0.252 0.748 = ~xP3

t3 0.252 0.748 0.2496 0.7504 = ~xP4

. . . . . .
t∞ 0.25 0.75 0.25 0.75 = ~xP∞

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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PageRank summary

Preprocessing

Given graph of links, build initial matrix P

Ensure all rows sum to 1.0 to update P (for nodes with no
outgoing links use 1/N for each element)
Apply teleportation with parameter α
From modified matrix, compute ~π
~πi is the PageRank of page i .

Query processing

Retrieve pages satisfying the query
Rank them by their PageRank (or at least a combination of
PageRank and the relevance score)
Return reranked list to the user
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PageRank issues

Real surfers are not random surfers.

Examples of non-random surfing: back button, short vs. long
paths, bookmarks, directories – and search!
→ Markov model is not a good model of surfing.
But it’s good enough as a model for our purposes.

Simple PageRank ranking (as described on previous slide)
produces bad results for many pages.

Consider the query [video service]
The Yahoo home page (i) has a very high PageRank and (ii)
contains both video and service.
If we rank all Boolean hits according to PageRank, then the
Yahoo home page would be top-ranked.
Clearly not desirable

In practice: rank according to weighted combination of raw
text match, anchor text match, PageRank & other factors
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Transition (probability) matrix

d0 d1 d2 d3 d4 d5 d6
d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Transition matrix with teleporting (α = 0.14)
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Transition matrix with teleporting (α = 0.14)

d0 d1 d2 d3 d4 d5 d6
d0 0.02 0.02 0.88 0.02 0.02 0.02 0.02
d1 0.02 0.45 0.45 0.02 0.02 0.02 0.02
d2 0.31 0.02 0.31 0.31 0.02 0.02 0.02
d3 0.02 0.02 0.02 0.45 0.45 0.02 0.02
d4 0.02 0.02 0.02 0.02 0.02 0.02 0.88
d5 0.02 0.02 0.02 0.02 0.02 0.45 0.45
d6 0.02 0.02 0.02 0.31 0.31 0.02 0.31

359



Power method vectors ~xPk

360



Power method vectors ~xPk

~x ~xP1 ~xP2 ~xP3 ~xP4 ~xP5 ~xP6 ~xP7 ~xP8 ~xP9 ~xP10 ~xP11 ~xP12 ~xP13

d0 0.14 0.06 0.09 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
d1 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d2 0.14 0.25 0.18 0.17 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11
d3 0.14 0.16 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25
d4 0.14 0.12 0.16 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
d5 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d6 0.14 0.25 0.23 0.25 0.27 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31
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Example web graph

PageRank

d0 0.05
d1 0.04
d2 0.11
d3 0.25
d4 0.21
d5 0.04
d6 0.31

PageRank(d2) <
PageRank(d6): why?
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How important is PageRank?

Frequent claim: PageRank is the most important component of
web ranking. The reality:

There are several components that are at least as important:
e.g., anchor text, phrases, proximity, tiered indexes . . .

Rumour has it that PageRank in its original form (as
presented here) now has a negligible impact on ranking

However, variants of a page’s PageRank are still an essential
part of ranking.

Google’s official description of PageRank:

“PageRank reflects our view of the importance of web pages by considering

more than 500 million variables and 2 billion terms. Pages that we believe are

important pages receive a higher PageRank and are more likely to appear at

the top of the search results.”

Adressing link spam is difficult and crucial.
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Link Analysis

PageRank is topic independent

We also need to incorporate topicality (i.e. relevance)

There is a version called Topic Sensitive PageRank

And also Hyperlink-Induced Topic Search (HITS)
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Take Home Messages

Anchor text is a useful descriptor of the page it refers to

Links can be used as another useful retrieval signal - one
indicating authority

PageRank can be viewed as the stationary distribution of a
Markov chain

Power iteration is one simple method of calculating the
stationary distribution

Topic sensitive variants exist
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Reading

MRS Chapter 21, excluding 21.3.3.
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