Overview

Lecture 3: Index Representation and Tolerant
Retrieval

Information Retrieval O Recap
Computer Science Tripos Part Il

Ronan Cummins!

Natural Language and Information Processing (NLIP) Group
5 UNIVERSITY OF

CAMBRIDGE

ronan.cummins@cl.cam.ac.uk

2016

! Adapted from Simone Teufel’s original slides

IR System components Type/token distinction
Document
Collection
l @ Token an instance of a word or term occurring in a document

@ Type an equivalence class of tokens

‘ Document Normalisation ‘

[Indexer ’\

IR System

In June, the dog likes to chase the cat in the barn.J

Indexes

Query

o]
Query Norm,|

x
Ranking/Matching Module

l @ 12 word tokens

@ 9 word types

Set of relevant
documents

Last time: The indexer

Problems with equivalence classing Positional indexes

@ A term is an equivalence class of tokens. @ Postings lists in a nonpositional index: each posting is just a
@ How do we define equivalence classes? doclD
o Numbers (3/20/91 vs. 20/3/91) @ Postings lists in a positional index: each posting is a doclD
: and a list of positions
@ Case folding
: @ Example query: “to; be, orz noty tos beg”
@ Stemming, Porter stemmer) Pieq i _y) 1 E=2 28 4 7505 D6
_ o) o @ With a positional index, we can answer
@ Morphological analysis: inflectional vs. derivational :
@ phrase queries
@ Equivalence classing problems in other languages @ proximity queries
102 103
IR System components Upcoming
Document
Collection
l @ Tolerant retrieval: What to do if there is no exact match

between query term and document term
@ Data structures for dictionaries

c o Hashes
s IR System
Query |——> 5 % y o Trees
L & \Ranking/Matching Module o k-term index
o Permuterm index

|

Set of relevant
documents

@ Spelling correction

Today: more indexing, some query normalisation

Overview Inverted Index

- [1]2 {2~ 12]-[31]-[a5]-173]-174]
@ Dictionaries Caesar|[9] ——[1}-[2}-{4}-[3]-[6]-[16]- 57 -[132]-[179]
- [2)31)-[34]-1101

106

Dictionaries Dictionaries
@ The dictionary is the data structure for Storing the term @ For each term, we need to store a Coup|e of items:
vocabulary. o document frequency
@ Term vocabulary: the data @ pointer to postings list

@ Dictionary: the data structure for storing the term vocabulary How do we look up a query term q; in the dictionary at query time?

Data structures for looking up terms Hashes

@ Each vocabulary term is hashed into an integer, its row

_ number in the array
@ Two main classes of data structures: hashes and trees) D)
@ At query time: hash query term, locate entry in fixed-width

@ Some IR systems use hashes, some use trees. array

0 . . . : . - .
Criteria for when to use hashes vs. trees @ Pros: Lookup in a hash is faster than lookup in a tree.

. - o upt
o |s there a fixed number of terms or will it keep growing’ (Lookup time is constant.)

o What are the relative frequencies with which various keys will
be accessed? @ Cons
o How many terms are we likely to have? @ no way to find minor variants (resume vs. résumé)
@ no prefix search (all terms starting with automat)
@ need to rehash everything periodically if vocabulary keeps

growing
109 110
Trees Binary tree

@ Trees solve the prefix problem (find all terms starting with 73

automat). _J - . S
@ Simplest tree: binary tree

hu S = - I

@ Search is slightly slower than in hashes: O(logM), where M is b o i =

the size of the vocabulary. Y

O(logM) only holds for balanced trees.

LRI)

Rebalancing binary trees is expensive. p\
B-trees mitigate the rebalancing problem. b /
B-tree definition: every internal node has a number of children ~ O O O -

e © 6 ¢

in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].

B-tree Trie

@ An ordered tree data structure that is used to store an
associative array

@ The keys are strings
@ The key associated with a node is inferred from the position
of a node in the tree
@ Unlike in binary search trees, where keys are stored in nodes.
@ Values are associated only with with leaves and some inner
) nodes that correspond to keys of interest (not all nodes).

@ All descendants of a node have a common prefix of the string
associated with that node — tries can be searched by prefixes

@ The trie is sometimes called radix tree or prefix tree

113 114

Trie Trie with postings

kelp9)I00L03298] ...

n
\ @@@@

0 AN

X @Q« e &«é\ [229) 1237 £3000.-
a n
7 d "\ Y d 02
® [10423] [14301] [17998]... ¢ e
A trie for keys n AH , Hton , Htean : Htedn , Htenn , " in” , and 1" inn”) S

Overview

© Wildcard queries

How to handle * in the middle of a term

hel*o |

@ We could look up “hel*" and “*o” in the tries as before and
intersect the two term sets.

o Expensive
@ Alternative: permuterm index

@ Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

@ Store each of these rotations in the dictionary (trie)

Wildcard queries

hel* |

Find all docs containing any term beginning with “hel”

©

©

Easy with trie: follow letters h-e-I and then lookup every term
you find there

*hel |

Find all docs containing any term ending with “hel”

(]

@ Maintain an additional trie for terms backwards

@ Then retrieve all terms t in subtree rooted at l-e-h

In both cases:

@ This procedure gives us a set of terms that are matches for
wildcard query

@ Then retrieve documents that contain any of these terms

117

Permuterm index

For term hello: add

hello$, ello$h, llohe, lohel, o$hell, $hello)

to the trie where $ is a special symbol

for hel*o, look up o$heI*J

Problem: Permuterm more than quadrupels the size of the
dictionary compared to normal trie (empirical number).

k-gram indexes k-gram indexes

@ More space-efficient than permuterm index

@ Enumerate all character k-grams (sequence of k characters)
occurring in a term

Note that we have two different kinds of inverted indexes:

Bi-grams from @ The term-document inverted index for finding documents
ap prriil I$ $iis s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on based on a query consisting of terms
nt th h$ @ The k-gram index for finding terms based on a query

N : . consisting of k-grams
@ Maintain an inverted index from k-grams to the term that

contain the k-gram

etr —— beetroot metric petrify retrieval

Processing wildcard terms in a bigram index Overview

@ Query hel* can now be run as:

$h AND he AND el |

@ ... but this will show up many false positives like heel.

@ Postfilter, then look up surviving terms in term—document
inverted index.

® k-gram vs. permuterm index

o k-gram index is more space-efficient
o permuterm index does not require postfiltering. e Spelling correction

Spelling correction Isolated word spelling correction

an asterorid that fell form the sky | @ There is a list of “correct” words — for instance a standard
dictionary (Webster's, OED. . .)

@ Then we need a way of computing the distance between a

@ In an IR system, spelling correction is only ever run on queries. misspelled word and a correct word
o for instance Edit/Levenshtein distance

@ The general philosophy in IR is: don't change the documents o kgram overlap

(exception: OCR'ed documents) .
@ Return the “correct” word that has the smallest distance to

@ Two different methods for spelling correction: }
the misspelled word.

o Isolated word spelling correction
@ Check each word on its own for misspelling
@ Will only attempt to catch first typo above

. . . informaton — information
o Context-sensitive spelling correction J

@ Look at surrounding words
@ Should correct both typos above

Edit distance Levenshtein distance: Distance matrix

o Edit distance between two strings s; and s, is the minimum
number of basic operations that transform s; into s,.

@ Levenshtein distance: Admissible operations are insert, ‘ H ‘ s ‘ n ‘ 0 ‘ w ‘
delete and replace ol1127137 4
Levenshtein distance ojflj1j2/3]4
s||2]1]3]3|3
dog — do 1 (delete) 31312132
cat — cart insert) ca 1313213

cat — act

1 (
cat — cut 1 (replace)
2 (

delete+insert)

Edit Distance: Four cells cell of Levenshtein matrix

[T T = T » T o [w1
0 11 212 313 4|4
o 1 12 2|3 2|4 415 Cost of getting here from | Cost of getting here from my
1 2|1 22 312 3|3 my upper left neighbour (by | upper neighbour (by delete)
] 2 1]2 23 3(3 34 copy or replace)
2 3|1 2|2 3|3 413 Cost of getting here from my | Minimum cost out of these
| 3 312 2|3 3|4 414 left neighbour (by insert)
3 42 312 3|3 4 |4
o 4 413 33 24 4|5
4 513 413 412 313

Dynamic Programming Example: Edit Distance OSLO — SNOW
|l [s [n [o [w |

Cormen et al: 0 1)1 2|2 3|3 414
. . . . e 1 12 2|3 2| 4 415
@ Optimal substructure: The optimal solution contains within it o 1 5 T1 212 312 313
subsolutions, i.e, optimal solutions to subproblems] > 12 213 313 312
@ Overlapping subsolutions: The subsolutions overlap and would 2 31 2|2 3|3 413
be computed over and over again by a brute-force algorithm. 3 312 2|3 3|4 4|4
S 412 2 4|4

For edit distance: 3 > 313
s _ 4 43 33 2] 4 415
@ Subproblem: edit distance of two prefixes ° 2 513 213 712 33

@ Overlap: most distances of prefixes are needed 3 times (when

. Edit dist OSLO—SNOW is 3! How do | d out the editi ti that
movmg rlght, dlagonally, down in the matrlx) | IStance L NOW 1Is 3 ow do read ou € ealting operations a

transform OSLO into SNOW?

cost operation || input | output
1 delete o *
0 (copy) s

s
1 reilace | n

Using edit distance for spelling correction k-gram indexes for spelling correction

@ Enumerate all k-grams in the query term

Misspelled word
bo—-or—rd —dr—ro—-o00—om

@ Use k-gram index to retrieve “correct” words that match

@ Given a query, enumerate all character sequences within a query term k-grams
preset edit distance @ Threshold by number of matching k-grams
@ Intersect this list with our list of “correct” words @ Eg. only vocabularly terms that differ by at most 3 k-grams

@ Suggest terms in the intersection to user.

BO [—* aboard > about oardroo » border

OR [border I lord [— morbid — sordid

A

RD —* aboard [+ ardent oardroon border

Context-sensitive Spelling correction General issues in spelling correction

One idea: hit-based spelling correction

flew form munich)

@ User interface
@ automatic vs. suggested correction
flew — flea @ “Did you mean” only works for one suggestion; what about
multiple possible corrections?
@ Tradeoff: Simple Ul vs. powerful Ul

@ Retrieve correct terms close to each query term

form — from
munich — munch
@ Holding all other terms fixed, try all possible phrase queries
for each replacement candidate

o Cost

@ Potentially very expensive
@ Avoid running on every query

Feen Forr TOLTlEE — 60 el @ Maybe just those that match few documents

flew from munich =78900 results
flew form munch — 66 results

Not efficient. Better source of information: large corpus of queries,
not documents

Takeaway Reading

@ What to do if there is no exact match between query term

and document term o) o
u @ Wikipedia article "trie

@ Datastructures for tolerant retrieval:
@ MRS chapter 3.1, 3.2, 3.3

o Dictionary as hash, B-tree or trie
o k-gram index and permuterm for wildcards
@ k-gram index and edit-distance for spelling correction

135 136

