The Pumping Lemma

- For every regular language L, there is a number $\ell \geq 1$ satisfying the **pumping lemma property**:
- All $w \in L$ with $|w| \ge \ell$ can be expressed as a concatenation of three strings, $w = u_1 v u_2$, where u_1 , v and u_2 satisfy:
 - $|v| \geq 1$ (i.e. $v \neq \varepsilon$)
 - $|u_1v| \leq \ell$
 - ► for all $n \ge 0$, $u_1 v^n u_2 \in L$ (i.e. $u_1 u_2 \in L$, $u_1 v u_2 \in L$ [but we knew that anyway], $u_1 v v u_2 \in L$, $u_1 v v v u_2 \in L$, etc.)

Note similarity to construction in Kleene (B)

Suppose L = L(M) for a DFA $M = (Q, \Sigma, \delta, s, F)$. Taking ℓ to be the number of elements in Q, if $n \ge \ell$, then in

$$s = \underbrace{q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_\ell} q_\ell}_{\ell+1 \text{ states}} \cdots \xrightarrow{a_n} q_n \in F$$

 q_0, \ldots, q_ℓ can't all be distinct states. So $q_i = q_j$ for some $0 \le i < j \le \ell$. So the above transition sequence looks like

$$s = q_0 \xrightarrow{u_1 *} q_i = q_j^* \xrightarrow{u_2 *} q_n \in F$$

where

$$u_1 \triangleq a_1 \ldots a_i$$
 $v \triangleq a_{i+1} \ldots a_j$ $u_2 \triangleq a_{j+1} \ldots a_n$

How to use the Pumping Lemma to prove that a language *L* is *not* regular

For each $\ell \geq 1$, find some $w \in L$ of length $\geq \ell$ so that

no matter how w is split into three, $w = u_1 v u_2$, with $|u_1 v| \leq \ell$ and $|v| \geq 1$, there is some $n \geq 0$ (†) for which $u_1 v^n u_2$ is *not* in L

None of the following three languages are regular:

(i) $L_1 \triangleq \{a^n b^n \mid n \ge 0\}$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \neq |v| \ge 1$, then for some r and s:

•
$$u_1 = a^r$$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \neq |v| \ge 1$, then for some r and s:

- $u_1 = a^r$
- $ightarrow v = a^s$, with $r+s \leq \ell$ and $s \geq 1$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \notin |v| \ge 1$, then for some r and s:

• $u_1 = a^r$

• $v = a^s$, with $r + s \le \ell$ and $s \ge 1$ • $u_2 = a^{l-r-s}b^\ell$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \neq |v| \ge 1$, then for some r and s:

•
$$u_1 = a^r$$

• $v = a^s$, with $r + s \le \ell$ and $s \ge 1$
• $u_2 = a^{l-r-s}b^\ell$

so $u_1 v^0 u_2 =$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \notin |v| \ge 1$, then for some r and s:

•
$$u_1 = a^r$$

• $v = a^s$, with $r + s \le \ell$ and $s \ge 1$
• $u_2 = a^{l-r-s}b^\ell$

so $u_1 v^0 u_2 = a^r \epsilon a^{\ell-r-s} b^{\ell} =$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \neq |v| \ge 1$, then for some r and s:

•
$$u_1 = a^r$$

• $v = a^s$, with $r + s \le \ell$ and $s \ge 1$
• $u_2 = a^{l-r-s}b^\ell$

so $u_1 v^0 u_2 = a^r \epsilon a^{\ell-r-s} b^\ell = a^{\ell-s} b^\ell$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \neq |v| \ge 1$, then for some r and s:

•
$$u_1 = a^r$$

• $v = a^s$, with $r + s \le \ell$ and $s \ge 1$
• $u_2 = a^{l-r-s}b^\ell$

 $so \ u_1 v^0 u_2 = a^r \ \epsilon \ a^{\ell - r - s} b^\ell = a^{\ell - s} b^\ell$

But $a^{\ell-s}b^{\ell} \not\in L_1$

 $L_1 = \{a^n b^n \mid n \ge 0\}$

If $w = u_1 v u_2$ with $|u_1 v| \le \ell \neq |v| \ge 1$, then for some r and s:

•
$$u_1 = a^r$$

• $v = a^s$, with $r + s \le \ell$ and $s \ge 1$
• $u_2 = a^{l-r-s}b^\ell$

 $so u_1 v^0 u_2 = a^r \epsilon a^{\ell-r-s} b^\ell = a^{\ell-s} b^\ell$

But $a^{\ell-s}b^\ell \not\in L_1$, so, by the Pumping Lemma, L_1 is not a regular language

None of the following three languages are regular:

(i) $L_1 \triangleq \{a^n b^n \mid n \ge 0\}$

[For each $\ell \geq 1$, $a^{\ell}b^{\ell} \in L_1$ is of length $\geq \ell$ and has property (†).]

None of the following three languages are regular:

(i) $L_1 \stackrel{\triangle}{=} \{ a^n b^n \mid n \ge 0 \}$ [For each $\ell \ge 1$, $a^\ell b^\ell \in L_1$ is of length $\ge \ell$ and has property (†).]

(ii) $L_2 \triangleq \{w \in \{a, b\}^* \mid w \text{ a palindrome}\}$

None of the following three languages are regular:

(i) $L_1 \stackrel{\triangle}{=} \{ a^n b^n \mid n \ge 0 \}$ [For each $\ell \ge 1$, $a^\ell b^\ell \in L_1$ is of length $\ge \ell$ and has property (†).]

(ii) $L_2 \stackrel{\triangle}{=} \{ w \in \{a, b\}^* \mid w \text{ a palindrome} \}$ [For each $\ell \ge 1$, $a^\ell b a^\ell \in L_1$ is of length $\ge \ell$ and has property (\dagger) .]

None of the following three languages are regular:

(i) $L_1 \triangleq \{a^n b^n \mid n \ge 0\}$ [For each $\ell \ge 1$, $a^\ell b^\ell \in L_1$ is of length $\ge \ell$ and has property (†).]

(ii) $L_2 \triangleq \{w \in \{a, b\}^* \mid w \text{ a palindrome}\}$ [For each $\ell \ge 1$, $a^\ell b a^\ell \in L_1$ is of length $\ge \ell$ and has property (†).]

(iii) $L_3 \triangleq \{a^p \mid p \text{ prime}\}$

For each $\ell \geq 1$ let $w = a^p \in L_3$, p prime $\neq p > 2\ell$

If $w = u_1 v u_2$ with the usual ...

For each $\ell \geq 1$ let $w = a^p \in L_3$, p prime $\neq p > 2\ell$

If $w = u_1 v u_2$ with the usual ...

then $u_1 = a^r$ $v = a^s$ $u_2 = a^{p-r-s}$

with $s \ge 1 \neq r + s \le \ell$

For each $\ell \geq 1$ let $w = a^p \in L_3$, p prime $\neq p > 2\ell$

If $w = u_1 v u_2$ with the usual ...

then $u_1 = a^r$ $v = a^s$ $u_2 = a^{p-r-s}$

with $s \ge 1 \notin r + s \le \ell$

so $u_1 v^{p-s} u_2 =$

For each $\ell \geq 1$ let $w = a^p \in L_3$, p prime $\neq p > 2\ell$

If $w = u_1 v u_2$ with the usual ...

then $u_1 = a^r$ $v = a^s$ $u_2 = a^{p-r-s}$

with $s \ge 1 \notin r + s \le \ell$

so $u_1 v^{p-s} u_2 = a^r a^{s(p-s)} a^{p-r-s} =$

For each $\ell \geq 1$ let $w = a^p \in L_3$, p prime $\neq p > 2\ell$

If $w = u_1 v u_2$ with the usual ...

then $u_1 = a^r$ $v = a^s$ $u_2 = a^{p-r-s}$

with $s \ge 1 \notin r + s \le \ell$

so $u_1 v^{p-s} u_2 = a^r a^{s(p-s)} a^{p-r-s} = a^{(p-s)(s+1)}$

For each $\ell \geq 1$ let $w = a^p \in L_3$, p prime $\neq p > 2\ell$

If $w = u_1 v u_2$ with the usual ...

then $u_1 = a^r$ $v = a^s$ $u_2 = a^{p-r-s}$

with $s \ge 1 \neq r + s \le \ell$

SO $u_1 v^{p-s} u_2 = a^r a^{s(p-s)} a^{p-r-s} = a^{(p-s)(s+1)}$

But $s \ge 1 \Rightarrow s+1 \ge 2$ and $(p-s) > (2\ell - \ell) \ge 1 \Rightarrow (p-s) \ge 2$

For each $\ell \geq 1$ let $w = a^p \in L_3$, p prime $\neq p > 2\ell$

If $w = u_1 v u_2$ with the usual ...

then $u_1 = a^r$ $v = a^s$ $u_2 = a^{p-r-s}$

with $s \ge 1 \neq r + s \le \ell$

SO $u_1 v^{p-s} u_2 = a^r a^{s(p-s)} a^{p-r-s} = a^{(p-s)(s+1)}$

But $s \ge 1 \Rightarrow s+1 \ge 2$ and $(p-s) > (2\ell - \ell) \ge 1 \Rightarrow (p-s) \ge 2$ so $a^{(p-s)(s+1)} \not\in L_3$

None of the following three languages are regular:

(i) $L_1 \triangleq \{a^n b^n \mid n \ge 0\}$ [For each $\ell \ge 1$, $a^\ell b^\ell \in L_1$ is of length $\ge \ell$ and has property (†).]

- (ii) $L_2 \triangleq \{w \in \{a, b\}^* \mid w \text{ a palindrome}\}$ [For each $\ell \ge 1$, $a^\ell b a^\ell \in L_1$ is of length $\ge \ell$ and has property (†).]
- (iii) $L_3 \triangleq \{a^p \mid p \text{ prime}\}\$ [For each $\ell \ge 1$, we can find a prime p with $p > 2\ell$ and then $a^p \in L_3$ has length $\ge \ell$ and has property (\dagger) .]

Pumping Lemma property is necessary for a language to be regular

It is not sufficient

Example of a non-regular language with the pumping lemma property

 $L \triangleq \{c^m a^n b^n \mid m \ge 1 \& n \ge 0\} \cup \{a^m b^n \mid m, n \ge 0\}$

satisfies the pumping lemma property with $\ell = 1$.

[For any $w \in L$ of length ≥ 1 , can take $u_1 = \varepsilon$, v = first letter of w, $u_2 =$ rest of w.]

But L is not regular – see Exercise 5.1.

.

If L is regular there is a DFA M with L = L(M). Let's build a new machine, M' from it.

If L is regular there is a DFA M with L = L(M). Let's build a new machine, M' from it.

Take a c transition from the start state of M. Make the state you reach the start state of M'.

If L is regular there is a DFA M with L = L(M). Let's build a new machine, M' from it.

Take a c transition from the start state of M. Make the state you reach the start state of M'.

Delete all transitions involving c (and remove c from the alphabet). But don't remove any states and keep the same accept states.

If L is regular there is a DFA M with L = L(M). Let's build a new machine, M' from it.

Take a c transition from the start state of M. Make the state you reach the start state of M'.

Delete all transitions involving c (and remove c from the alphabet). But don't remove any states and keep the same accept states.

What language does M' recognise?

The way ahead, in THEORY

 What does is mean for a function to be computable?
 [IB Computation Theory]

The way ahead, in THEORY

What does is mean for a function to be computable?
[|B Computation Theory]
Are some computational tasks intrinsicially unfeasible?
[|B ComplexityTheory]

The way ahead, in THEORY

- What does is mean for a function to be computable?
 [IB Computation Theory]
 Are some computational tasks intrinsicially unfeasible?
 - [IB COMPLEXITY THEORY]
- How do we specify and reason about program <u>Behaviour</u>?
 [IB Logic and Proof,
 [B Semantics of PLs]

The way ahead, in FORMAL LANGUAGE

Are there other useful language classes?

The way ahead, in FORMAL LANGUAGE

- Are there other useful language classes?
- Are there other useful automata classes that have a correspondence to them?
The way ahead, in FORMAL LANGUAGE.

- Are there other useful language classes?
- Are there other useful automata classes that have a correspondence to them?
- What if we ask the same questions about them that we asked about regular languages?

Regular Languages

- C Context Free Languages
- C Context Sensitive Languages
- C Recursively Enumerable Languages

Grammars are a shorthand way of expressing the inductive definition of subset inclusion for strings in a Language.

Grammars are a shorthand way of expressing the inductive definition of subset inclusion for strings in a Language.

Often by convention we use capitals for non-terminal symbols (which are disjoint from symbols in the alphabet used by the language).

Grammars are a shorthand way of expressing the inductive definition of subset inclusion for strings in a Language.

Often by convention we use capitals for non-terminal symbols (which are disjoint from symbols in the alphabet used by the language).

We also have productions (or production rules) of the form e.g. $A \rightarrow a$ which says that the non-terminal symbol A can be replaced by the (terminal) symbol a. More complex productions are allowed.

Grammars are a shorthand way of expressing the inductive definition of subset inclusion for strings in a Language.

Often by convention we use capitals for non-terminal symbols (which are disjoint from symbols in the alphabet used by the language).

We also have productions (or production rules) of the form e.g. $A \rightarrow a$ which says that the non-terminal symbol A can be replaced by the (terminal) symbol a. More complex productions are allowed.

There is also a distinguished non-terminal called the GOal symbol (we'll use G)

 $P \rightarrow x \Delta_6$

so, e.g. $G \xrightarrow{\Delta_0} E$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T \xrightarrow{\Delta_4} E + P$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T \xrightarrow{\Delta_4} E + P \xrightarrow{\Delta_6} E + x$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T \xrightarrow{\Delta_4} E + P \xrightarrow{\Delta_6} E + x \xrightarrow{\Delta_2} T + x$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T \xrightarrow{\Delta_4} E + P \xrightarrow{\Delta_6} E + x \xrightarrow{\Delta_2} T + x \xrightarrow{\Delta_4} P + x$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T \xrightarrow{\Delta_4} E + P \xrightarrow{\Delta_6} E + x \xrightarrow{\Delta_2} T + x \xrightarrow{\Delta_4} P + x \xrightarrow{\Delta_5} (E) + x$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T \xrightarrow{\Delta_4} E + P \xrightarrow{\Delta_6} E + x \xrightarrow{\Delta_2} T + x \xrightarrow{\Delta_4} P + x \xrightarrow{\Delta_5} (E) + x \rightarrow \dots \rightarrow (x + x) + x$

so, e.g. $G \xrightarrow{\Delta_0} E \xrightarrow{\Delta_1} E + T \xrightarrow{\Delta_4} E + P \xrightarrow{\Delta_6} E + x \xrightarrow{\Delta_2} T + x \xrightarrow{\Delta_4} P + x \xrightarrow{\Delta_5} (E) + x \rightarrow \dots \rightarrow (x + x) + x$ is a derivation of (x + x) + x

 α, β, γ any strings of terminals and non-terminals

 α, β, γ any strings of terminals and non-terminals

Context Free Languages: productions of form $N \rightarrow \beta$

[Type 2]

 α, β, γ any strings of terminals and non-terminals

Context Free Languages: [Type 2] productions of form $N \rightarrow \beta$

Context Sensitive Languages: [Type]] productions of the form $\alpha N\beta \rightarrow \alpha \gamma \beta$

 α, β, γ any strings of terminals and non-terminals

Context Free Languages: [Type 2] productions of form $N \rightarrow \beta$

Context Sensitive Languages: [Type]] productions of the form $\alpha N\beta \rightarrow \alpha \gamma \beta$

Recursively Enumerable Languages: [Type O] productions of the form $\alpha \rightarrow \beta$

How about Regular Languages? [Type 3]

How about Regular Languages? [Type 3]

A, B any non-terminals, a any terminal symbol, S any non-terminal that doesn't appear on right side

How about Regular Languages? [Type 3]

A, B any non-terminals, a any terminal symbol, S any non-terminal that doesn't appear on right side

production of the form $A \rightarrow a$ or $S \rightarrow \varepsilon$ or $A \rightarrow aB$ (right regular)

- How about Regular Languages? [Type 3]
- A, B any non-terminals, a any terminal symbol, S any non-terminal that doesn't appear on right side
- production of the form $A \rightarrow a$ or $S \rightarrow \varepsilon$ or $A \rightarrow aB$ (right regular)
- or of the form $A \rightarrow a$ or $S \rightarrow \varepsilon$ or $A \rightarrow Ba$ (left regular)

- How about Regular Languages? [Type 3]
- A, B any non-terminals, a any terminal symbol, S any non-terminal that doesn't appear on right side
- production of the form $A \rightarrow a$ or $S \rightarrow \varepsilon$ or $A \rightarrow aB$ (right regular)
- or of the form $A \rightarrow a$ or $S \rightarrow \varepsilon$ or $A \rightarrow Ba$ (left regular)
- But not Both left and right regular in the same grammar

Regular Languages: Deterministic Finite Automata

- Regular Languages: Deterministic Finite Automata
- Context Free Languages: Nondeterministic
 Push-Down Automata

- Regular Languages: Deterministic Finite Automata
- Context Free Languages: Nondeterministic
 Push-Down Automata
- Context Sensitive Languages: Linear
 Bounded Nondeterministic Turing Machine

- Regular Languages: Deterministic Finite Automata
- Context Free Languages: Nondeterministic
 Push-Down Automata
- Context Sensitive Languages: Linear
 Bounded Nondeterministic Turing Machine
- Recursively Enumerable Languages: Turing Machine

- Regular Languages: Deterministic Finite Automata
- Context Free Languages: Nondeterministic
 Push-Down Automata
- Context Sensitive Languages: Linear
 Bounded Nondeterministic Turing Machine
- Recursively Enumerable Languages: Turing Machine

Context Free Languages (and particularly the subset that can be recognised by deterministic push-down automata) are important since most programming languages are deterministic context free languages.

Idea: need some way to remember arbitrary number of things that we have seen, eg $a^n b^n$

Idea: need some way to remember arbitrary number of things that we have seen, eg $a^n b^n$

Slightly modified DFA along with a stack which stores pairs of states and symbols.

- Idea: need some way to remember arbitrary number of things that we have seen, eg $a^n b^n$
- Slightly modified DFA along with a stack which stores pairs of states and symbols.
- DPDA looks at top of stack as well as input to decide what to do

- Idea: need some way to remember arbitrary number of things that we have seen, eg $a^n b^n$
- Slightly modified DFA along with a stack which stores pairs of states and symbols.
- DPDA looks at top of stack as well as input to decide what to do
- on state transitions, DPDA can pop and/or push things on the stack as well as (perhaps) reading symbol

What about our "questions"?
Given two DPDA, M_1 and M_2 , can we determine if $L(M_1) = L(M_2)$?

Given two DPDA, M_1 and M_2 , can we determine if $L(M_1) = L(M_2)$?

Yes.

Given two DPDA, M_1 and M_2 , can we determine if $L(M_1) = L(M_2)$?

Yes. Proved in 1997.

Given two DPDA, M_1 and M_2 , can we determine if $L(M_1) = L(M_2)$?

Yes. Proved in 1997. Earned 2002 Gödel Prize.

Given two DPDA, M_1 and M_2 , can we determine if $L(M_1) = L(M_2)$?

Yes. Proved in 1997. Earned 2002 Gödel Prize.

But for NPDA, the question of equivalence is

Given two DPDA, M_1 and M_2 , can we determine if $L(M_1) = L(M_2)$?

Yes. Proved in 1997. Earned 2002 Gödel Prize.

But for NPDA, the question of equivalence is undecidable