
The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1 (i.e. v 6= ε)

◮ |u1v| ≤ ℓ

◮ for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway],

u1vvu2 ∈ L, u1vvvu2 ∈ L, etc.)

Note similarity to construction in Kleene (b)

Suppose L = L(M) for a DFA M = (Q, Σ, δ, s, F).
Taking ℓ to be the number of elements in Q, if n ≥ ℓ,
then in

s = q0

a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an
−→ qn ∈ F

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some
0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

s = q0
u1 ∗qi

v

∗
= qj

u2 ∗qn ∈ F

where

u1 , a1 . . . ai v , ai+1 . . . aj u2 , aj+1 . . . an

How to use the Pumping Lemma
to prove that a language L

is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

no matter how w is split into three, w = u1vu2,
with |u1v| ≤ ℓ and |v| ≥ 1, there is some n ≥ 0

for which u1vnu2 is not in L

(†)

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 =

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ =

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ = aℓ−sbℓ

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ = aℓ−sbℓ

But aℓ−sbℓ 6∈ L1

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ = aℓ−sbℓ

But aℓ−sbℓ 6∈ L1 , so, by the Pumping Lemma, L1 is
not a regular language

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 , {ap | p prime}

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with the usual . . .

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with the usual . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with the usual . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 =

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with the usual . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s =

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with the usual . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s = a(p−s)(s+1)

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with the usual . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s = a(p−s)(s+1)

but s ≥ 1 ⇒ s + 1 ≥ 2

and (p − s) > (2ℓ− ℓ) ≥ 1 ⇒ (p − s) ≥ 2

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with the usual . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s = a(p−s)(s+1)

but s ≥ 1 ⇒ s + 1 ≥ 2

and (p − s) > (2ℓ− ℓ) ≥ 1 ⇒ (p − s) ≥ 2

so a(p−s)(s+1) 6∈ L3

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 , {ap | p prime}
[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3 has length ≥ ℓ and
has property (†).]

Pumping Lemma property is necessary
for a language to be regular

It is not sufficient

Example of a non-regular language
with the pumping lemma property

L , {cmanbn | m ≥ 1 & n ≥ 0} ∪ {ambn | m, n ≥ 0}

satisfies the pumping lemma property with ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular – see Exercise 5.1.

L is not regular: (sketch)

.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

Take a c transition from the start state of M .
Make the state you reach the start state of
M′.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

Take a c transition from the start state of M .
Make the state you reach the start state of
M′.

Delete all transitions involving c (and remove c
from the alphabet). But don’t remove any
states and keep the same accept states.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

Take a c transition from the start state of M .
Make the state you reach the start state of
M′.

Delete all transitions involving c (and remove c
from the alphabet). But don’t remove any
states and keep the same accept states.

What language does M′ recognise?

The way ahead, in THEORY

◮ What does is mean for a function
to be computable?
[Ib Computation Theory]

The way ahead, in THEORY

◮ What does is mean for a function
to be computable?
[Ib Computation Theory]

◮ Are some computational tasks
intrinsiclaly unfeasible?
[Ib ComplexityTheory]

The way ahead, in THEORY

◮ What does is mean for a function
to be computable?
[Ib Computation Theory]

◮ Are some computational tasks
intrinsiclaly unfeasible?
[Ib ComplexityTheory]

◮ How do we specify and reason
about program behaviour?
[Ib Logic and Proof,
1b Semantics of PLs]

The way ahead, in FORMAL LANGUAGES

◮ Are there other useful language
classes?

The way ahead, in FORMAL LANGUAGES

◮ Are there other useful language
classes?

◮ Are there other useful automata
classes that have a correspondence
to them?

The way ahead, in FORMAL LANGUAGES

◮ Are there other useful language
classes?

◮ Are there other useful automata
classes that have a correspondence
to them?

◮ What if we ask the same questions
about them that we asked about
regular languages?

Chomsky Hierarchy of Languages

Regular Languages
⊂ Context Free Languages
⊂ Context Sensitive Languages
⊂ Recursively Enumerable Languages

Grammars

Grammars are a shorthand way of expressing
the inductive definition of subset inclusion for
strings in a Language.

Grammars

Grammars are a shorthand way of expressing
the inductive definition of subset inclusion for
strings in a Language.

Often by convention we use capitals for
non-terminal symbols (which are disjoint from
symbols in the alphabet used by the language).

Grammars

Grammars are a shorthand way of expressing
the inductive definition of subset inclusion for
strings in a Language.

Often by convention we use capitals for
non-terminal symbols (which are disjoint from
symbols in the alphabet used by the language).

We also have productions (or production rules)
of the form e.g. A → a which says that the
non-terminal symbol A can be replaced by the
(terminal) symbol a. More complex productions
are allowed.

Grammars

Grammars are a shorthand way of expressing
the inductive definition of subset inclusion for
strings in a Language.

Often by convention we use capitals for
non-terminal symbols (which are disjoint from
symbols in the alphabet used by the language).

We also have productions (or production rules)
of the form e.g. A → a which says that the
non-terminal symbol A can be replaced by the
(terminal) symbol a. More complex productions
are allowed.

There is also a distinguished non-terminal called
the goal symbol (we’ll use G)

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T
∆4→ E + P

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T
∆4→ E + P

∆6
→ E + x

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T
∆4→ E + P

∆6
→ E + x

∆2→

T + x

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T
∆4→ E + P

∆6
→ E + x

∆2→

T + x
∆4→ P + x

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T
∆4→ E + P

∆6
→ E + x

∆2→

T + x
∆4→ P + x

∆5
→ (E) + x

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T
∆4→ E + P

∆6
→ E + x

∆2→

T + x
∆4→ P + x

∆5
→ (E) + x→ . . . → (x + x) + x

Everybody’s favourite grammar
G → E ∆0

E → E + T ∆1

E → T ∆2

T → T ∗ P ∆3

T → P ∆4

P → (E) ∆5

P → x ∆6

so, e.g. G
∆0
→ E

∆1→ E + T
∆4→ E + P

∆6
→ E + x

∆2→

T + x
∆4→ P + x

∆5
→ (E) + x→ . . . → (x + x) + x

is a derivation of (x + x) + x

Language classes by forms of production

α, β, γ any strings of terminals and
non-terminals

Language classes by forms of production

α, β, γ any strings of terminals and
non-terminals

Context Free Languages: [Type 2]
productions of form N → β

Language classes by forms of production

α, β, γ any strings of terminals and
non-terminals

Context Free Languages: [Type 2]
productions of form N → β

Context Sensitive Languages: [Type 1]
productions of the form αNβ → αγβ

Language classes by forms of production

α, β, γ any strings of terminals and
non-terminals

Context Free Languages: [Type 2]
productions of form N → β

Context Sensitive Languages: [Type 1]
productions of the form αNβ → αγβ

Recursively Enumerable Languages: [Type 0]
productions of the form α → β

Language classes by forms of production

Language classes by forms of production

How about Regular Languages? [Type 3]

Language classes by forms of production

How about Regular Languages? [Type 3]

A, B any non-terminals, a any terminal symbol, S
any non-terminal that doesn’t appear on right
side

Language classes by forms of production

How about Regular Languages? [Type 3]

A, B any non-terminals, a any terminal symbol, S
any non-terminal that doesn’t appear on right
side

production of the form A → a or S → ε or
A → aB (right regular)

Language classes by forms of production

How about Regular Languages? [Type 3]

A, B any non-terminals, a any terminal symbol, S
any non-terminal that doesn’t appear on right
side

production of the form A → a or S → ε or
A → aB (right regular)

or of the form A → a or S → ε or A → Ba
(left regular)

Language classes by forms of production

How about Regular Languages? [Type 3]

A, B any non-terminals, a any terminal symbol, S
any non-terminal that doesn’t appear on right
side

production of the form A → a or S → ε or
A → aB (right regular)

or of the form A → a or S → ε or A → Ba
(left regular)

but not both left and right regular in the same
grammar

Machines?????

◮ Regular Languages: Deterministic Finite
Automata

Machines?????

◮ Regular Languages: Deterministic Finite
Automata

◮ Context Free Languages: Nondeterministic
Push-Down Automata

Machines?????

◮ Regular Languages: Deterministic Finite
Automata

◮ Context Free Languages: Nondeterministic
Push-Down Automata

◮ Context Sensitive Languages: Linear
Bounded Nondeterministic Turing Machine

Machines?????

◮ Regular Languages: Deterministic Finite
Automata

◮ Context Free Languages: Nondeterministic
Push-Down Automata

◮ Context Sensitive Languages: Linear
Bounded Nondeterministic Turing Machine

◮ Recursively Enumerable Languages: Turing
Machine

Machines?????

◮ Regular Languages: Deterministic Finite
Automata

◮ Context Free Languages: Nondeterministic
Push-Down Automata

◮ Context Sensitive Languages: Linear
Bounded Nondeterministic Turing Machine

◮ Recursively Enumerable Languages: Turing
Machine

Context Free Languages (and particularly the
subset that can be recognised by deterministic
push-down automata) are important since
most programming languages are deterministic
context free languages.

Deterministic Push-Down Automata (Sketch)

Idea: need some way to remember arbitrary
number of things that we have seen, eg anbn

Deterministic Push-Down Automata (Sketch)

Idea: need some way to remember arbitrary
number of things that we have seen, eg anbn

Slightly modified DFA along with a stack which
stores pairs of states and symbols.

Deterministic Push-Down Automata (Sketch)

Idea: need some way to remember arbitrary
number of things that we have seen, eg anbn

Slightly modified DFA along with a stack which
stores pairs of states and symbols.

DPDA looks at top of stack as well as input to
decide what to do

Deterministic Push-Down Automata (Sketch)

Idea: need some way to remember arbitrary
number of things that we have seen, eg anbn

Slightly modified DFA along with a stack which
stores pairs of states and symbols.

DPDA looks at top of stack as well as input to
decide what to do

on state transitions, DPDA can pop and/or
push things on the stack as well as (perhaps)
reading symbol

What about our "questions"?

What about our "questions"?

Given two DPDA, M1 and M2, can we determine
if L(M1) = L(M2)?

What about our "questions"?

Given two DPDA, M1 and M2, can we determine
if L(M1) = L(M2)?

Yes.

What about our "questions"?

Given two DPDA, M1 and M2, can we determine
if L(M1) = L(M2)?

Yes. Proved in 1997.

What about our "questions"?

Given two DPDA, M1 and M2, can we determine
if L(M1) = L(M2)?

Yes. Proved in 1997. Earned 2002 Gödel
Prize.

What about our "questions"?

Given two DPDA, M1 and M2, can we determine
if L(M1) = L(M2)?

Yes. Proved in 1997. Earned 2002 Gödel
Prize.

But for NPDA, the question of equivalence is

What about our "questions"?

Given two DPDA, M1 and M2, can we determine
if L(M1) = L(M2)?

Yes. Proved in 1997. Earned 2002 Gödel
Prize.

But for NPDA, the question of equivalence is
undecidable

