
Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.



The first part requires us to demonstrate
that for any regular expression r, we can
construct a DFA, M with L(M) = L(r)

We will do this by demonstrating that for any r
we can construct a NFAε M′ with L(M′) = L(r)
and rely on the subset construction theorem
to give us the DFA M .

We consider each axiom and rule that define
regular expressions
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′)∗

axioms:
a ǫ ∅

(where a ∈ Σ and r, s ∈ U)

with straightforward matching rules
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Axioms

U = (Σ ∪ Σ
′)∗

axioms:
a ǫ ∅

(where a ∈ Σ and r, s ∈ U)

with straightforward matching rules

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings



Kleene’s Theorem Part a (The Fun Part)

For any regular expression r we can build an
NFAε M such that L(r) = L(M)

We will work on induction on the depth of
abstract syntax trees



Recall: Regular expressions (abstract
syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).
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Recall: Regular expressions (abstract
syntax)

(concrete syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat
r1|r2 r1r2

◮ unary operator Star r∗

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ). ǫ ∅ a



(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).
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Star(M) satisfying
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NFAs for regular expressions a, ǫ, ∅

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings



Union(M1, M2)

s1 M1

q0

ε

ε

s2 M2

accepting states = union of accepting states of M1 and M2



For example,

if Ma = a

and Mb = b

then Union(Ma, Mb) =

a
ε

ε

b



In what follows, whenever we have to deal with
two machines, say M1 and M2 together, we
assume that their states are disjoint.

If they were not, we could just rename the
states of one machine to make this so.

Also assume that for r1 and r2 there are
machines M1 and M2 such that L(r1) = L(M1)
and L(r2) = L(M2)
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Construction for Union(r1, r2)

Assume there are two machines M1 and M2

with L(r1) = L(M1) and L(r2) = L(M2)

States of new machine M = Union(M1, M2) are
all the states in M1 and all the states in M2

together with a new start state with
ε-transitions to each of the (old) start states
of M1 and M2.

Accept states of M are the all accept states in
M1 and all accept states in M2.

The transitions of M are all transitions in M1

and M2 along with the two ε-transitions from
the new start state
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M accepts any strings that M1 accepts:

if u ∈ L(M1) then s1
u
⇒ q1 where s1 is start

state and q1 an accept state of M1 respectively.

but then in M, s
u
⇒ q1, where s is our new

start state since s
ε

−→ s1.

so u ∈ L(M). Similar argument for M
accepting any string that M2 accepts

so (L(M1)∪ L(M2)) ⊆ L(Union(M1, M2))
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Can M accept anything more?

The only way "out of" s, the start state of M,
is either to the start state of M1 or the start
state of M2

So no, L(M) = (L(M1)∪ L(M2))



Concat(M1, M2)

s1 M1
ε s2 M2

accepting states are those of M2



For example,

if M1 =
a

ε

ε

ε

ε b

ε

and M2 =
a

then Concat(M1, M2) =
a

ε

a ε ε

ε

ε b

ε



Construction for M = Concat(M1, M2)

Make an ε-transition from every accept state
in M1 to the start state of M2.

Start state of M is the start state of M1;
accept states of M are the accept states of M2



Star(M)

q0
ε s M

ε

the only accepting state of Star(M) is q0

(N.B. doing without q0 by just looping back to s
and making that accepting won’t work – Exercise 4.1.)



For example,

if M =

a
ε

ε

b

then Star(M) =
a

ε

ε

ε

ε b

ε



Construction for Star(r1), M = Star(M1)

Create a new state, say s which will be the
start state, and the only accepting state of M .
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Construction for Star(r1), M = Star(M1)

Create a new state, say s which will be the
start state, and the only accepting state of M .

The transitions of M are all the transitions of
M1 together with an ε-transition from s to
the (old) start state of M1 and ε-transitions
from every (old) accepting state of M1 to s.

Clearly, M accepts ε since s, the start state, is
also an accepting state

nonempty strings accepted by M have to be
formed of components, each of which is
accepted by M1

so L(M) = L(r∗1 )



(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &

u2 ∈ L(M2)}
Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(iv) Induction step for r∗: given NFAε M, construct an NFAε

Star(M) satisfying

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}
Thus L(r∗) = L(Star(M)) when L(r) = L(M).



Example

Regular expression (a|b)∗a

whose abstract syntax tree is

Concat

Star

Union

Syma Symb

Syma

is mapped to the NFAε Concat(Star(Union(Ma, Mb)), Ma) =

a

ε

a ε ε

ε

ε b

ε



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?



Decidability of matching

We now have a positive answer to question (a). Given
string u and regular expression r:

◮ construct an NFAε M satisfying L(M) = L(r);

◮ in PM (the DFA obtained by the subset construction ) carry out
the sequence of transitions corresponding to u from the start
state to some state q (because PM is deterministic, there is a
unique such transition sequence);

◮ check whether q is accepting or not: if it is, then
u ∈ L(PM) = L(M) = L(r), so u matches r; otherwise
u /∈ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2n

states if M has n. This makes the method described above potentially inefficient – more efficient
algorithms exist that don’t construct the whole of PM.)
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subset construction, PM has 2n states, since its
states are the members of the powerset of M .

Minimisation of states in PM by:
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Exponential Blow-up

if NFAε M has n states then the DFA made by
subset construction, PM has 2n states, since its
states are the members of the powerset of M .

Minimisation of states in PM by:

◮ removing all states which are not reachable
(by any string) from the start state.

◮ merge all compatible states. Two states are
compatible if (i) they are both accepting or
both non-accepting; and (ii) their transition
functions are the same.

◮ Update transition functions to take
account of merged states. Repeat.
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Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

The not so fun side of Kleene’s Theorem



Example of a regular language

Recall the example DFA we used earlier:

M , q0
a

b

q1

b

a q2

b

a q3

a

b

In this case it’s not hard to see that L(M) = L(r) for

r = (a|b)∗aaa(a|b)∗



Example

M , 1

a0

b
a

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗

WRONG!
since baabaa ∈ L(M)
but baabaa 6∈ L(a∗|a∗b(ab)∗aaa∗)

We need an algorithm for constructing a suitable r for each M
(plus a proof that it is correct).



Lemma. Given an NFA M = (Q, Σ, ∆, s, F), for each
subset S ⊆ Q and each pair of states q, q′ ∈ Q, there is a
regular expression rS

q,q′ satisfying

L(rS
q,q′) = {u ∈ Σ

∗ | q
u
−→∗ q′ in M with all inter-

mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
q1, . . . , qk say, then L(M) = L(r) with r , r1| · · · |rk where

ri = r
Q
s,qi

(i = 1, . . . , k)

(in case k = 0, we take r to be the regular expression ∅).



Prove this Lemma by induction on # of
elements in S
Also take care to examine case where q = q′ !

Base case S = ∅

Given states q, q′ ∈ M, if

q
a
−→ q′

holds for just a = a1, a2, . . . , ak then can define

r∅

q,q′ ,

{

a = a1|a2| . . . |ak if q 6= q′

a = a1|a2| . . . |ak|ǫ if q = q′



Induction Step:

◮ S has n + 1 elements.
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Induction Step:

◮ S has n + 1 elements.

◮ pick some q0 ∈ S

◮ consider S− = S \ {q0} (S without the state
q0)

◮ can apply induction hypoth to S− since S− has
n elements

Can we express rS
q,q′ in terms of things only

depending on S−?
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What’s in rS
q,q′ ?

◮ we might be able to get from q to q′

through S avoiding q0, and

◮ we might be able to get from q to q0, then
from q0 back to itself an arbitrary number
of times, then to q′

For the first of these we have rS−

q,q′ by

hypothesis. (If there is no path, this will be ∅)

For the second we have rS−
q,q0

[rS−
q0,q0

]∗ rS−

q0,q′



rS
q,q′ = rS−

q,q′|(rS−

q,q0
[rS−

q0,q0
]∗rS−

q0,q′)

q
rS−

q,q′

rS−
q,q0

q′

S−

q0

rS−
q0,q0

rS−

q0,q′


