Language accepted by an NFA $^{\varepsilon}$

$M = (Q, \Sigma, \Delta, s, F, T)$

- Look at paths in the transition graph (including *e*-transitions) from start state to *some* accepting state.
- Each such path gives a string in Σ*, namely the string of non-ε labels that occur along the path.
- ► The set of all such strings is by definition the language accepted by M, written L(M).

Notation: write $q \stackrel{u}{\Rightarrow} q'$ to mean that there is a path in M from state q to state q' whose non- ε labels form the string $u \in \Sigma^*$.

An NFA with ε -transitions (NFA^{ε}) $M = (Q, \Sigma, \Delta, s, F, T)$ is an NFA $(Q, \Sigma, \Delta, s, F)$ together with a subset $T \subseteq Q \times Q$, called the ε -transition relation.

For this NFA^{ε} we have, e.g.: $q_0 \stackrel{aa}{\Rightarrow} q_2$, $q_0 \stackrel{aa}{\Rightarrow} q_3$ and $q_0 \stackrel{aa}{\Rightarrow} q_7$. In fact the language of accepted strings is equal to the set of strings matching the regular expression $(a|b)^*(aa|bb)(a|b)^*$.

• every DFA is an NFA (with transition mapping Δ being a next-state function δ)

- every DFA is an NFA (with transition Mapping Δ being a next-state function δ)
- every NFA is an NFA^{ε} (with empty ε -transition relation)

- every DFA is an NFA (with transition Mapping Δ being a next-state function δ)
- every NFA is an NFA^{ε} (with empty ε -transition relation)

- every DFA is an NFA (with transition mapping Δ being a next-state function δ)
- every NFA is an NFA^{ε} (with empty ε -transition relation)

clearly

$L(\mathbb{DFA}) \subseteq L(\mathbb{NFA}) \subseteq L(\mathbb{NFA}^{\epsilon})$

- every DFA is an NFA (with transition mapping Δ being a next-state function δ)
- every NFA is an NFA^{ε} (with empty ε -transition relation)

clearly

$L(\mathbb{DFA}) \subseteq L(\mathbb{NFA}) \subseteq L(\mathbb{NFA}^{\epsilon})$

But

$L(\mathbb{DFA}) \subset L(\mathbb{NFA}) \subset L(\mathbb{NFA}^{\epsilon})???$

NFA^e accepts if there exists a path ...

DFA: path is determined one symbol at a time

Let Q be the states of some NFA[®]. What if we thought, one symbol at a time, about the states we could be in, or more precisely the subset of Q containing the states we could be in NFA^e accepts if there exists a path ...

DFA: path is determined one symbol at a time

Let Q be the states of some NFA[®]. What if we thought, one symbol at a time, about the states we could be in, or more precisely the subset of Q containing the states we could be in

Then we could construct a new DFA whose states were taken from the powerset of Q from the NFA $^{\epsilon}$

Given an NFA^{ε} M with states Q construct a DFA PM whose states are subsets of the states of M

Given an NFA^{ε} M with states Q construct a DFA PM whose states are subsets of the states of M

the start state in PM would be a set containing the start state of M together with any states that can be reached by ε -transitions from that state.

Given an NFA^{ε} M with states Q construct a DFA PM whose states are subsets of the states of M

the start state in PM would be a set containing the start state of M together with any states that can be reached by ε -transitions from that state.

accepting states in PM would be any subset containing an accepting state of M

Given an NFA^{ε} M with states Q construct a DFA PM whose states are subsets of the states of M

the start state in PM would be a set containing the start state of M together with any states that can be reached by ε -transitions from that state.

accepting states in PM would be any subset containing an accepting state of M

alphabet is the same as the alphabet Of M

Given an NFA^{ε} M with states Q construct a DFA PM whose states are subsets of the states of M

the start state in PM would be a set containing the start state of M together with any states that can be reached by ε -transitions from that state.

accepting states in PM would be any subset containing an accepting state of M

alphabet is the same as the alphabet Of M

That just leaves δ

Example of the subset construction

M next-state function for PMb а а Ø \bigcirc \bigcirc q_1 $\{q_0, q_1, q_2\} \{q_2\}$ $\{q_0\}$ $\{q_1\}$ $\{q_1\}$ ε $\{q_2\}$ $\{q_2\}$ q_0 $\begin{array}{c} \{q_0, q_1, q_2\} & \{q_2\} \\ \{q_0, q_1, q_2\} & \{q_2\} \end{array}$ $\{q_0, q_1\}$ ε $\{q_0, q_2\}$ $\{q_1\}$ $\{q_1, q_2\}$ $\{q_2\}$ $\{q_0, q_1, q_2\} | \{q_0, q_1, q_2\} | \{q_2\}$

A word about Ø in the subset construction

Potential for confusion

- ► The DFA has a state which corresponds to the empty set of states in the NFA^ε which we have designated as Ø.
- Once you enter this state we get stuck in it. Why?

Could rewrite (next slide)

DFA State	subset of NFA $^{\varepsilon}$	a	b
<u> </u>	Ø	S ₁	S ₁
S_2	$\{q_0\}$	S ₈	S_4
S ₃	$\{q_1\}$	S_3	S_1
S_4	$\{q_2\}$	S_2	S_4
S_5	$\{q_0,q_1\}$	S ₈	S_4
S ₆	$\{q_0, q_2\}$	S ₈	S_4
S_7	$\{q_1, q_2\}$	S_3	S_4
S ₈	$\{q_0, q_1, q_2\}$	S_8	S_4

Noting that S_8 is the start state (why?) we could eliminate states that can't be reached (i.e. S_2 , S_5 , S_6 and S_7 ; and thence S_3) if we cared. Here we don't. (Care that is).

Theorem. For each NFA^{ε} $M = (Q, \Sigma, \Delta, s, F, T)$ there is a DFA $PM = (\mathcal{P}(Q), \Sigma, \delta, s', F')$ accepting exactly the same strings as M, i.e. with L(PM) = L(M).

Definition of **PM**:

- set of states is the powerset P(Q) = {S | S ⊆ Q} of the set Q of states of M
- same input alphabet Σ as for M
- ► next-state function maps each $(S, a) \in \mathcal{P}(Q) \times \Sigma$ to $\delta(S, a) \triangleq \{q' \in Q \mid \exists q \in S. q \stackrel{a}{\Rightarrow} q' \text{ in } M\}$
- start state is $s' \triangleq \{q' \in Q \mid s \stackrel{\varepsilon}{\Rightarrow} q'\}$
- ▶ subset of accepting sates is $F' \triangleq \{S \in \mathcal{P}(Q) \mid S \cap F \neq \emptyset\}$

To prove the theorem we show that $L(M) \subseteq L(PM)$ and $L(PM) \subseteq L(M)$.

$$s \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} q_n \in F \text{ in } M$$

$$s \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} q_n \qquad \in F \text{ in } M$$

$$\bigcap \qquad \bigcap \qquad \bigcap \qquad \bigcap$$

$$S' \stackrel{a_1}{\Rightarrow} S_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} S_n \qquad \text{ in } PM$$

$$s \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} q_n \qquad \in F \text{ in } M$$

$$\bigcap \qquad \bigcap \qquad \bigcap \qquad \bigcap$$

$$S' \stackrel{a_1}{\Rightarrow} S_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} S_n \qquad \text{ in } PM$$

Then we have

 $s \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} q_n \in F \text{ in } M$ $\bigcap \qquad \bigcap \qquad \bigcap \qquad \bigcap$ $S' \stackrel{a_1}{\Rightarrow} S_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} S_n \in F' \text{ in } PM$

Then we have

$$s \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} q_n \in F \text{ in } M$$

$$\cap \qquad \cap \qquad \cap$$

$$S' \stackrel{a_1}{\Rightarrow} S_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} S_n \in F' \text{ in } PM$$

so $a_1a_2\ldots a_n \in L(PM)$

Then we have

 $s \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} q_n \in F \text{ in } M$ $\bigcap \qquad \bigcap \qquad \bigcap \qquad \bigcap$ $S' \stackrel{a_1}{\Rightarrow} S_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow} S_n \in F' \text{ in } PM$

> so $a_1a_2...a_n \in L(PM)$ so $L(M) \subseteq L(PM)$

Then we have

 $S' \xrightarrow{a_1} S_1 \xrightarrow{a_2} \dots S_{n-1} \xrightarrow{a_n} S_n \in F'$ in PM

Then we have

Then we have

Then we have

so
$$a_1a_2\ldots a_n\in L(M)$$

Then we have

so $a_1a_2...a_n \in L(M)$ so $L(PM) \subseteq L(M)$ So we have shown $L(M) \subseteq L(PM)$ and $L(PM) \subseteq L(M)$ so that L(M) = L(PM)

where PM is specified by M through subset construction.

Thus for every NFA[®] there is an <u>equivalent</u> DFA **Theorem.** For each NFA^{ε} $M = (Q, \Sigma, \Delta, s, F, T)$ there is a DFA $PM = (\mathcal{P}(Q), \Sigma, \delta, s', F')$ accepting exactly the same strings as M, i.e. with L(PM) = L(M).

Definition of **PM**:

- set of states is the powerset P(Q) = {S | S ⊆ Q} of the set Q of states of M
- same input alphabet Σ as for M
- ► next-state function maps each $(S, a) \in \mathcal{P}(Q) \times \Sigma$ to $\delta(S, a) \triangleq \{q' \in Q \mid \exists q \in S. q \stackrel{a}{\Rightarrow} q' \text{ in } M\}$
- start state is $s' \triangleq \{q' \in Q \mid s \stackrel{\varepsilon}{\Rightarrow} q'\}$
- ▶ subset of accepting sates is $F' \triangleq \{S \in \mathcal{P}(Q) \mid S \cap F \neq \emptyset\}$

To prove the theorem we show that $L(M) \subseteq L(PM)$ and $L(PM) \subseteq L(M)$.

At this point we should think of

• the set of all language $\{L(r)\}$ defined by a some regular expression r, each language being the set of strings which match the regular expression r

At this point we should think of

- the set of all language $\{L(r)\}$ defined by a some regular expression r, each language being the set of strings which match the regular expression r
- the set of all languages $\{L(M)\}$ accepted by some determinisitic finite automaton M

we define one of these sets of languages
 to be the set of regular languages

- we define one of these sets of languages
 to be the set of regular languages
- we prove that other set is also the set of regular languages

- we define one of these sets of languages
 to be the set of regular languages
- we prove that other set is also the set of regular languages
- in real life we never remember which way round

- we define one of these sets of languages
 to be the set of regular languages
- we prove that other set is also the set of regular languages
- in real life we never remember which way round
- here we will define a language to be regular
 on the basis of recognition by a DFA

Kleene's Theorem

Definition. A language is **regular** iff it is equal to L(M), the set of strings accepted by some deterministic finite automaton M.

Theorem.

- (a) For any regular expression r, the set L(r) of strings matching r is a regular language.
- (b) Conversely, every regular language is the form L(r) for some regular expression r.

The first part requires us to demonstrate that for any regular expression r, we can construct a DFA, M with L(M) = L(r)

We will do this By demonstrating that for any rwe can construct a NFA^{ε} M' with L(M') = L(r)and rely on the subset construction theorem to give us the DFA M.

We consider each axiom and rule that define regular expressions

 $U = (\Sigma \cup \Sigma')^*$ axioms: $\frac{}{a} \quad \frac{}{\epsilon} \quad \boxed{\emptyset}$ (where $a \in \Sigma$ and $r, s \in U$)

with straightforward matching rules

 $U = (\Sigma \cup \Sigma')^*$ axioms: $\frac{}{a} \quad \frac{}{\epsilon} \quad \overline{\varnothing}$ (where $a \in \Sigma$ and $r, s \in U$)

with straightforward matching rules

 $(q_0) \xrightarrow{a} (q_1)$ just accepts the one-symbol string a

 $U = (\Sigma \cup \Sigma')^*$ axioms: $\frac{}{a} \quad \frac{}{\epsilon} \quad \boxed{\emptyset}$ (where $a \in \Sigma$ and $r, s \in U$)

with straightforward matching rules

 $(-) (q_0) \xrightarrow{a} (q_1)$ just accepts the one-symbol string a

 $U = (\Sigma \cup \Sigma')^*$ axioms: $\frac{}{a} \quad \frac{}{\epsilon} \quad \boxed{\emptyset}$ (where $a \in \Sigma$ and $r, s \in U$)

with straightforward matching rules

just accepts the null string, ε

accepts no strings