
Language accepted by an NFAε

M = (Q, Σ, ∆, s, F, T)

◮ Look at paths in the transition graph (including
ε-transitions) from start state to some accepting state.

◮ Each such path gives a string in Σ
∗, namely the string

of non-ε labels that occur along the path.

◮ The set of all such strings is by definition the

language accepted by M, written L(M).

Notation: write q
u
⇒ q′ to mean that there is a path in M from state

q to state q′ whose non-ε labels form the string u ∈ Σ
∗.



An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

For this NFAε we have, e.g.: q0
aa
⇒ q2, q0

aa
⇒ q3 and q0

aa
⇒ q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)∗(aa|bb)(a|b)∗.
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Sets of Languages Accepted by Finite
Automata

◮ every DFA is an NFA (with transition
mapping ∆ being a next-state function δ)

◮ every NFA is an NFAε (with empty
ε-transition relation)

clearly

L(DFA) ⊆ L(NFA) ⊆ L(NFA
ǫ)

but

L(DFA) ⊂ L(NFA) ⊂ L(NFA
ǫ)???



NFAε accepts if there exists a path...

DFA: path is determined one symbol at a time

Let Q be the states of some NFAε. What if
we thought, one symbol at a time, about the
states we could be in, or more precisely the
subset of Q containing the states we could be
in



NFAε accepts if there exists a path...

DFA: path is determined one symbol at a time

Let Q be the states of some NFAε. What if
we thought, one symbol at a time, about the
states we could be in, or more precisely the
subset of Q containing the states we could be
in

Then we could construct a new DFA whose
states were taken from the powerset of Q
from the NFAε
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Subset Construction

Given an NFAε M with states Q construct a
DFA PM whose states are subsets of the
states of M

the start state in PM would be a set
containing the start state of M together
with any states that can be reached by
ε-transitions from that state.

accepting states in PM would be any subset
containing an accepting state of M

alphabet is the same as the alphabet of M

That just leaves δ



Example of the subset construction

M

q1

a

q0

ε

ε

a

q2

b

next-state function for PM
a b

∅ ∅ ∅

{q0} {q0, q1, q2} {q2}
{q1} {q1} ∅

{q2} ∅ {q2}
{q0, q1} {q0, q1, q2} {q2}
{q0, q2} {q0, q1, q2} {q2}
{q1, q2} {q1} {q2}

{q0, q1, q2} {q0, q1, q2} {q2}



A word about ∅ in the subset
construction

Potential for confusion

◮ The DFA has a state which corresponds to the empty
set of states in the NFAε which we have designated
as ∅.

◮ Once you enter this state we get stuck in it. Why?

◮ Could rewrite (next slide)



DFA State subset of NFAε a b
S1 ∅ S1 S1

S2 {q0} S8 S4

S3 {q1} S3 S1

S4 {q2} S2 S4

S5 {q0, q1} S8 S4

S6 {q0, q2} S8 S4

S7 {q1, q2} S3 S4

S8 {q0, q1, q2} S8 S4

Noting that S8 is the start state (why?) we could eliminate
states that can’t be reached (i.e. S2, S5, S6 and S7; and
thence S3) if we cared. Here we don’t. (Care that is).



Theorem. For each NFAε M = (Q, Σ, ∆, s, F, T) there
is a DFA PM = (P(Q), Σ, δ, s′, F′) accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

◮ set of states is the powerset P(Q) = {S | S ⊆ Q} of the set
Q of states of M

◮ same input alphabet Σ as for M

◮ next-state function maps each (S, a) ∈ P(Q)× Σ to

δ(S, a) , {q′ ∈ Q | ∃q ∈ S. q
a
⇒ q′ in M}

◮ start state is s′ , {q′ ∈ Q | s
ε
⇒ q′}

◮ subset of accepting sates is F′ , {S ∈ P(Q) | S ∩ F 6= ∅}

To prove the theorem we show that L(M) ⊆ L(PM) and L(PM) ⊆ L(M).
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So we have shown

L(M) ⊆ L(PM) and L(PM) ⊆ L(M)

so that
L(M) = L(PM)

where PM is specified by M through subset
construction.

Thus for every NFAε there is an equivalent
DFA
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We are about to show that these are
equivalent

◮ we define one of these sets of languages
to be the set of regular languages

◮ we prove that other set is also the set of
regular languages

◮ in real life we never remember which way
round

◮ here we will define a language to be regular
on the basis of recognition by a DFA



Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.



The first part requires us to demonstrate
that for any regular expression r, we can
construct a DFA, M with L(M) = L(r)

We will do this by demonstrating that for any r
we can construct a NFAε M′ with L(M′) = L(r)
and rely on the subset construction theorem
to give us the DFA M .

We consider each axiom and rule that define
regular expressions
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Axioms

U = (Σ ∪ Σ
′)∗

axioms:
a ǫ ∅

(where a ∈ Σ and r, s ∈ U)

with straightforward matching rules

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings


