
Matching

Each regular expression r over an alphabet Σ determines a
language L(r) ⊆ Σ

∗. The strings u in L(r) are by
definition the ones that match r, where

◮ u matches the regular expression a (where a ∈ Σ) iff u = a

◮ u matches the regular expression ǫ iff u is the null string ε

◮ no string matches the regular expression ∅

◮ u matches r|s iff it either matches r, or it matches s

◮ u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

◮ u matches r∗ iff either u = ε, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

Inductive definition of matching

U = Σ
∗ ×{regular expressions over Σ}

axioms:
(a, a) (ε, ǫ) (ε, r∗)

rules:

(u, r)

(u, r|s)

(u, s)

(u, r|s)

(v, r) (w, s)

(vw, rs)

(u, r) (v, r∗)

(uv, r∗)

abstract syntax trees

(No axiom/rule involves the empty regular expression ∅ – why?)

Examples of matching

Assuming Σ = {a, b}, then:

◮ a|b is matched by each symbol in Σ

◮ b(a|b)∗ is matched by any string in Σ
∗ that starts with a ‘b’

◮ ((a|b)(a|b))∗ is matched by any string of even length in Σ
∗

◮ (a|b)∗(a|b)∗ is matched by any string in Σ
∗

◮ (ε|a)(ε|b)|bb is matched by just the strings ε, a, b, ab, and bb

◮ ∅b|a is just matched by a

grep global regular expression search and print
tool

Unix tool which searches a file for matches to
a regular expression. Can print various things:

Print lines which contain matches:

grep <reg exp> <file name>

Print the (maximal) matching strings:

grep -o <reg exp> <file name>

Print number of lines which contain matches:

grep -c <reg exp> <file name>

unix command line:

> more foo

A list of fruit is not terribly exciting:

apple

pineapple

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

>

foo:

A list of fruit is not terribly exciting:

apple

pineapple

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

unix command line:

> grep ’apple’ foo

apple

pineapple

>

foo:

A list of fruit is not terribly exciting:

apple

pineapple

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

unix command line:

> grep ’apple\|berry’ foo

apple

pineapple

blueberry

loganberry

cranberry

>

foo:

A list of fruit is not terribly exciting:

apple

pineapple

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

unix command line:

> grep -o ’pp*’ foo

pp

p

pp

> grep ’pp*’ foo

apple

pineapple

>

foo:

A list of fruit is not terribly exciting:

apple

pineapple

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

unix command line:

> grep -o ’ap*le’ foo

apple

apple

ale

>

foo:

A list of fruit is not terribly exciting:

apple

pineapple

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

unix command line:

> grep ’[a-c][o-r]’ foo

apple

pineapple

cranberry

> grep -o ’[a-c][o-r]’ foo

ap

ap

cr

>

foo:
A list of fruit is not terribly exciting:

apple

pineapple

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

unix command line:

> grep -v ’apple’ foo

A list of fruit is not terribly exciting:

blueberry

loganberry

cranberry

orange (which nothing rhymes with)

valencia orange

tangerine

etc

>

Regular expressions (concrete syntax)

over a given alphabet Σ.

Let Σ
′ be the 6-element set {ǫ, ∅, |, ∗, (,)} (assumed disjoint from Σ)

In theory, practice and theory are the same
thing.

In practice they rarely are.

Regular expressions (concrete syntax)

over a given alphabet Σ.

Let Σ
′ be the 6-element set {ǫ, ∅, |, ∗, (,)} (assumed disjoint from Σ)

In theory, practice and theory are the same
thing.

In practice they rarely are.

e.g. grep has to deal with the fact that Σ
′ can’t

be disjoint from Σ

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

An algorithm? what’s an algorithm? I mean
what is it in a mathematical sense?

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

An algorithm? what’s an algorithm? I mean
what is it in a mathematical sense?

leads us to define automata which "execute
algorithms"

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

An algorithm? what’s an algorithm? I mean
what is it in a mathematical sense?

leads us to define automata which "execute
algorithms"
next chunk of the course...

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not.

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not.

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not.

No because such conveniences don’t allow us to
define languages we can’t already define

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not.

No because such conveniences don’t allow us to
define languages we can’t already define

Why not include them in our basic definition??

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not.

No because such conveniences don’t allow us to
define languages we can’t already define

Why not include them in our basic definition??

because they give us more rules to analyse!

Questions Computer Scientists ask

(c) Is there an algorithm which, given two
regular expressions r and s, computes
whether or not they are equivalent, in the
sense that L(r) and L(s) are equal sets?

We will answer this when we answer (a).

Questions Computer Scientists ask

(d) Is every language (subset of Σ
∗) of the

form L(r) for some r?

Pretty clearly no.

Questions Computer Scientists ask

(d) Is every language (subset of Σ
∗) of the

form L(r) for some r?

Pretty clearly no.

in fact even simple languages like anbn,∀n ∈ N

or well-bracketed arithmetic expressions are
not regular

Questions Computer Scientists ask

(d) Is every language (subset of Σ
∗) of the

form L(r) for some r?

Pretty clearly no.

in fact even simple languages like anbn,∀n ∈ N

or well-bracketed arithmetic expressions are
not regular

we will derive and use the Pumping Lemma to
show this

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?

Finite Automata

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non-deterministic) finite automata
in general

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non-deterministic) finite automata
in general

◮ define deterministic finite automata (as a
special case)

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non-deterministic) finite automata
in general

◮ define deterministic finite automata (as a
special case)

◮ define non-deterministic finite automata
with ε-transitions

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non-deterministic) finite automata
in general

◮ define deterministic finite automata (as a
special case)

◮ define non-deterministic finite automata
with ε-transitions

◮ show that from any non-deterministic
finite automaton with ε-transitions we
can mechanically produce an equivalent
deterministic finite automaton

Why?

◮ we are claiming that a deterministic finite
automata (DFA) is an embodiment of an
algorithm

Why?

◮ we are claiming that a deterministic finite
automata (DFA) is an embodiment of an
algorithm

◮ non-deterministic finite automata with
ε-transitions (NFAε’s) map on to our
problem (matching regular expressions)
more naturally . . .

Why?

◮ we are claiming that a deterministic finite
automata (DFA) is an embodiment of an
algorithm

◮ non-deterministic finite automata with
ε-transitions (NFAε’s) map on to our
problem (matching regular expressions)
more naturally . . .

◮ . . . so we will produced the NFAε’s we want
and then rely on the fact that for each
there is an equivalent DFA.

Example of a finite automaton

M , q0
a

b

q1

b

a q2

b

a q3

a

b

◮ set of states: {q0, q1, q2, q3}

◮ input alphabet: {a, b}

◮ transitions, labelled by input symbols: as indicated by the above
directed graph

◮ start state: q0

◮ accepting state(s): q3

Language accepted
by a finite automaton M

◮ Look at paths in the transition graph from the start
state to some accepting state.

◮ Each such path gives a string of input symbols, namely
the string of labels on each transition in the path.

◮ The set of all such strings is by definition the

language accepted by M, written L(M).

Notation: write q
u
−→∗ q′ to mean that in the automaton there is a

path from state q to state q′ whose labels form the string u.

(N.B. q
ε
−→∗ q′ means q = q′.)

Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

For example

◮ aaab ∈ L(M), because q0
aaab
−−→∗ q3

◮ abaa 6∈ L(M), because ∀q(q0
abaa
−−→∗ q ⇔ q = q2)

Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

Claim:
L(M) = L((a|b)∗aaa(a|b)∗)

set of all strings matching the

regular expression (a|b)∗aaa(a|b)∗

(qi (for i = 0, 1, 2) represents the state in the process of reading a string in which the last i
symbols read were all a’s)

Non-deterministic
finite automaton (NFA)

is by definition a 5-tuple M = (Q, Σ, ∆, s, F), where:

◮ Q is a finite set (of states)

◮ Σ is a finite set (the alphabet of input symbols)

◮ ∆ is a subset of Q × Σ × Q (the transition relation)

◮ s is an element of Q (the start state)

◮ F is a subset of Q (the accepting states)

Notation: write “q
a
−→ q′ in M” to mean (q, a, q′) ∈ ∆.

Why do we say this is non-deterministic?

∆, the transition relation specifies a set of
next states for a given current state and
given input symbol.

That set might have 0, 1 or more elements.

Example of an NFA

Input alphabet: {a, b}.

States, transitions, start state, and accepting states as shown:

q0

a

b

a q1
a q2

a q3

a

b

For example {q | q1
a
−→ q} = {q2}

{q | q1
b
−→ q} = ∅

{q | q0
a
−→ q} = {q0, q1}.

The language accepted by this automaton is the same as for our first automaton,
namely {u ∈ {a, b}∗ | u contains three consecutive a’s}.

So we define a deterministic finite automata
so that ∆ is restricted to specify exactly one
next state for any given state and input symbol

we do this by saying the relation ∆ has to be a
function δ from Q × Σ to Q

Deterministic finite automaton (DFA)
A deterministic finite automaton (DFA) is an NFA
M = (Q, Σ, ∆, s, F) with the property that for each state
q ∈ Q and each input symbol a ∈ ΣM, there is a unique

state q′ ∈ Q satisfying q
a
−→ q′.

In a DFA ∆ ⊆ Q × Σ × Q is the graph of a function Q × Σ → Q,
which we write as δ and call the next-state function.

Thus for each (state, input symbol)-pair (q, a), δ(q, a) is the unique
state that can be reached from q by a transition labelled a:

∀q′(q
a
−→ q′ ⇔ q′ = δ(q, a))

Example of a DFA

with input alphabet {a, b}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

next-state function:

δ a b
q0 q1 q0

q1 q2 q0

q2 q3 q0

q3 q3 q3

Example of an NFA

with input alphabet {a, b, c}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

M is non-deterministic, because for example {q | q0
c
−→ q} = ∅.

so alphabet matters!

Now let’s make things a bit more interesting
(well complicated) . . .

We are going to introduce a new form of
transition, an ε-transition which allows us to
more from one state to another without
reading a symbol.

These (in general) introduce non-determinism
all by themselves.

ε-Transitions

When constructing machines for matching strings with regular expressions (as we will do later), it
is useful to consider finite state machines exhibiting an ‘internal’ form of non-determinism in which
the machine is allowed to change state without consuming any input symbol. One calls such

transitions ε-transitions and writes them as q
ε
−→ q′. This leads to the definition on Slide 86.

When using an NFAε M to accept a string u ∈ Σ
∗ of input symbols, we are interested in

sequences of transitions in which the symbols in u occur in the correct order, but with zero or

more ε-transitions before or after each one. We write q
u
⇒ q′ to indicate that such a sequence

exists from state q to state q′ in the NFAε. Equivalently, {(q, u, q′) | q
u
⇒ q′} is the subset of

Q × Σ
∗ × Q inductively defined by

axioms:
(q, ε, q)

and rules:
(q, u, q′)

(q, u, q′′)
if q′ ε

−→ q′′,
(q, u, q′)

(q, ua, q′′)
if q′ a

−→ q′′ (see Exercise 7)

Slide 87 uses the relation q
u
⇒ q′ to define the language accepted by an NFAε. For example, for

the NFAε on Slide 86 it is not too hard to see that the language accepted consists of all strings
which either contain two consecutive a’s or contain two consecutive b’s, i.e. the language
determined by the regular expression (a|b)∗(aa|bb)(a|b)∗.

An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

Notation: write “q
ε
−→ q′ in M” to mean (q, q′) ∈ T.

(N.B. for NFAεs, we always assume ε 6∈ Σ.)

	Finite Automata

