Examining the power of an abstract machine

What can this box of tricks do?

- Examining the power of an abstract machine
- Domains of discourse: automata and formal languages

Automaton is the box of tricks, language recognition is what it can do.

- Examining the power of an abstract machine
- Domains of discourse: automata and formal languages
- ► Formalisms to describe languages and automata

Very useful for future courses.

- Examining the power of an abstract machine
- Domains of discourse: automata and formal languages
- Formalisms to describe languages and automata
- Proving a particular case: relationship between regular languages and finite automata

Perhaps the simplest result about power of a machine. Finite Automata are simply a formalisation of finite state machines you looked at in Digital Electronics. A word about formalisms to describe languages

 Classically (i.e. when I was young) this would be done using formal grammars.

e.g.
$$S \rightarrow NV$$

e.g. $I \rightarrow ID$, $I \rightarrow D$, $I \rightarrow -D$

A word about formalisms to describe languages

- Classically (i.e. when I was young) this would be done using formal grammars.
- ► Here will we use rule induction

Excuse to introduce now, useful in other things

Syllabus for this part of the course

- Inductive definitions using rules and proofs by rule induction.
- Abstract syntax trees.
- Regular expressions and pattern matching.
- Finite automata and regular languages: Kleene's theorem.
- The Pumping Lemma.

mathematics needed for computer science

Common theme: mathematical techniques for defining formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

- Part IB Compiler Construction, Computation Theory, Complexity Theory, Semantics of Programming Languages
 - Part II Natural Language Processing, Optimising Compilers, Denotational Semantics, Temporal Logic and Model Checking

N.B. we do <u>not</u> cover the important topic of context-free grammars, which prior to 2013/14 was part of the CST IA course *Regular Languages and Finite Automata* that has been subsumed into this course.

see course web page for relevant Tripos questions

Formal Languages

Alphabets

An **alphabet** is specified by giving a finite set, Σ , whose elements are called **symbols**. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:

- ▶ {0,1,2,3,4,5,6,7,8,9}, 10-element set of decimal digits.
- {a, b, c, ..., x, y, z}, 26-element set of lower-case characters of the English language.
- ▶ ${S | S \subseteq {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}$, 2¹⁰-element set of all subsets of the alphabet of decimal digits.

Non-example:

► N = {0, 1, 2, 3, ... }, set of all non-negative whole numbers is not an alphabet, because it is infinite.

Strings over an alphabet

A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered *n*-tuple of elements of Σ , written without punctuation.

 Σ^* denotes set of all strings over Σ of any finite length.

Examples:

notation for the

- If $\Sigma = \{a, b, c\}$, then ε , a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- If $\Sigma = \{a\}$, then Σ^* contains ε , a, aa, aaa, aaaa, etc.

In general, a^n denotes the string of length *n* just containing *a* symbols

Strings over an alphabet

- A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered n-tuple of elements of Σ , written without punctuation.
- Σ^* denotes set of all strings over Σ of any finite length.

Examples:

- If Σ = {a,b,c}, then ε, a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- If Σ = {a}, then Σ* contains ε, a, aa, aaa, aaaa, etc.
- If $\Sigma = \emptyset$ (the empty set), then what is Σ^* ?

Strings over an alphabet

- A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered n-tuple of elements of Σ , written without punctuation.
- Σ^* denotes set of all strings over Σ of any finite length.

Examples:

- If Σ = {a,b,c}, then ε, a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- If Σ = {a}, then Σ* contains ε, a, aa, aaa, aaaa, etc.
- If $\Sigma = \emptyset$ (the empty set), then $\Sigma^* = \{\varepsilon\}$.

Concatenation of strings

The **concatenation** of two strings u and v is the string uv obtained by joining the strings end-to-end. This generalises to the concatenation of three or more strings.

Examples:

If $\Sigma = \{a, b, c, ..., z\}$ and $u, v, w \in \Sigma^*$ are u = ab, v = ra and w = cad, then

vu = raab uu = abab wv = cadra uvwuv = abracadabra

Concatenation of strings

The **concatenation** of two strings u and v is the string uv obtained by joining the strings end-to-end. This generalises to the concatenation of three or more strings.

Examples:

If $\Sigma = \{a, b, c, ..., z\}$ and $u, v, w \in \Sigma^*$ are u = ab, v = ra and w = cad, then vu = raab

uu = abab uu = abab wv = cadra uvwuv = abracadabraN.B. (uv)w = uvw = u(vw) (any u,v,w) ue = u = eu

The length of a string $u \in \Sigma^*$ is denoted |u|.

Formal languages

An extensional view of what constitutes a formal language is that it is completely determined by the set of 'words in the dictionary':

Given an alphabet Σ , we call any subset of Σ^* a (formal) **language** over the alphabet Σ .

We will use inductive definitions to describe languages in terms of grammatical rules for generating subsets of Σ^* .

Inductive Definitions

Axioms and rules

for inductively defining a subset of a given set U

• **axioms** $----_a$ are specified by giving an element *a* of *U*

$$\succ \text{ rules } \frac{h_1 h_2 \cdots h_n}{c}$$

are specified by giving a finite subset $\{h_1, h_2, ..., h_n\}$ of U (the **hypotheses** of the rule) and an element c of U (the **conclusion** of the rule)

Axioms and rules

for inductively defining a subset of a given set \boldsymbol{U}

- axioms are specified by giving an element a of U which means that a is in the subset we are defining
 rules h1 h2 ··· hn c are specified by giving a finite subset {h1, h2, ..., hn} of U (the
 - hypotheses of the rule) and an element c of U (the conclusion of the rule)
 - which means that c is in the subset we are defining if all of h_1, h_2, \ldots, h_n are

Derivations

Given a set of axioms and rules for inductively defining a subset of a given set U, a **derivation** (or proof) that a particular element $u \in U$ is in the subset is by definition

a finite rooted tree with vertexes labelled by elements of \boldsymbol{U} and such that:

- the root of the tree is *u* (the conclusion of the whole derivation),
- each vertex of the tree is the conclusion of a rule whose hypotheses are the children of the node,
- each leaf of the tree is an axiom.

usually draw with leaves at top, root at Bottom

Example

Example derivations:

ab	aabb	aba	abb
ab	aabb	ba	ab
ε	ab	ba	ab
	ε	ε	8

Example

U = we a	{a,b}*	· The un Difying a	niver subs	isal se: Set.	t from	which
axiom	1: <u></u>					
ruloci	u	u	u	v	(for all a	
rules.	aub	bua	uv		(IOF all 1	$u, v \in u$
		Exampl	e deri	vations		
		Е		ε	8	
	ε	ab		ba	ab	
	ab	aabb		ŀ	oaab	
	ał	oaabb		al	oaabb	

Example

U = strir	: { <i>a,b</i> } \gs cor	* It is Intaining	s the a's ¢	e set b's.	of all	finite
axiom	1: <u>-</u>					
ruloci	u	u	U	v	(for all	
rules.	aub	bua	ua	"	(Ior all I	$u, v \in \mathbf{U}$
		Exampl	e deriv	vations:		
		ε		ε	ε	
	ε	ab		ba	ab	
	ab	aabb		b	aab	
	al	baabb		ab	aabb	

Example

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of U inductively defined by the axioms and rules consists of all and only the elements $u \in U$ for which there is a derivation with conclusion u.

For example, for the axioms and rules on Slide 13

- *abaabb* is in the subset they inductively define (as witnessed by either derivation on that slide)
- abaab is not in that subset (there is no derivation with that conclusion why?)

(In fact $u \in \{a, b\}^*$ is in the subset iff it contains the same number of a and b symbols.)

rules or templates?

is really a template for a (potentially) infinite set of rules

Example: transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **transitive closure** R^+ is the smallest (for subset inclusion) binary relation on X which contains R and which is **transitive** $(\forall x, y, z \in X. (x, y) \in R^+ \And (y, z) \in R^+ \Rightarrow (x, z) \in R^+)$.

 R^+ is equal to the subset of $X \times X$ inductively defined by

axioms
$$\overline{(x,y)}$$
 (for all $(x,y) \in R$)
rules $\frac{(x,y) \quad (y,z)}{(x,z)}$ (for all $x,y,z \in X$)

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** ($\forall x \in X. (x, x) \in R^*$).

 R^* is equal to the subset of $X \times X$ inductively defined by

axioms
$$\overline{(x,y)}$$
 (for all $(x,y) \in R$) $\overline{(x,x)}$ (for all $x \in X$)
rules $\frac{(x,y)}{(x,z)}$ (for all $x, y, z \in X$)

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** ($\forall x \in X. (x, x) \in R^*$).

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** ($\forall x \in X. (x, x) \in R^*$).

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of U inductively defined by the axioms and rules consists of all and only the elements $u \in U$ for which there is a derivation with conclusion u.

<u>Derivation</u> is a finite (labelled) tree with u at root, axiom at leaves and each vertex the conclusion of a rule whose hypotheses are the children of the vertex.

(We usually draw the trees with the root at the Bottom.)

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

Given axioms and rules for inductively defining a subset of a set U, we say that a subset $S \subseteq U$ is closed under the axioms and rules if

E.g. for the axiom & rules

	u	u	u v	for all $u = C \int a h d s$
e	aub	bua	uv	

the subset

 ${u \in {a,b}^* | \#_a(u) = \#_b(u)}$

(where $\#_a(u)$ is the number of 'a's in the string u)

E.g. for the axiom & rules

	u	u	иv	for all $u = C \int a h d s$
e	aub	bua	uv	

the subset

 ${u \in {a,b}^* | \#_a(u) = \#_b(u)}$

is closed under the axiom & rules.

<u>N.B.</u> for a given set \mathcal{R} of axioms \notin rules

$$\{u \in U \mid \forall S \subseteq U.(S \text{ closed under } \mathcal{R}) \Longrightarrow u \in S\}$$

is closed under \mathcal{R} (Why?) and so is the smallest such (with respect to subset inclusion, \subseteq)

<u>N.B.</u> for a given set \mathcal{R} of axioms \notin rules

 $\{u \in U \mid \forall S \subseteq U.(S \text{ closed under } \mathcal{R}) \Longrightarrow u \in S\}$

is closed under \mathcal{R} (Why?) and so is the smallest such (with respect to subset inclusion, \subseteq)

This set contains all items that are in every set that is closed under \mathcal{R}

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

"the least subset closed under the axioms & rules"

is sometimes take as the definition of

"inductively defined subset"

<u>Proof of the Theorem [Page 23 of notes]</u> Closure part

► I is closed under each axiom $\frac{a}{a}$ Because we can construct a derivation witnessing $a \in I$...

... which is simply a tree with one node containing a

• I is closed under each rule $r = \frac{h_1 h_2 \dots h_n}{r}$

Because if $h_1 h_2 \dots h_n \in I \dots$

we have n derivations from axioms to each h_i and so ...

a

we can just make these the n children to our rule r to form a Big tree ...

which is a derivation witnessing $c \in I$

Proof of the Theorem

so we have closure under rules & axioms

Now the "least such subset" part

We need to show, for every $S \subseteq U$

(S closed under axioms and rules) \Rightarrow $I \subseteq S$

That is, I is the least subset, in that any other subset that is closed under the axioms \notin rules contains I.

Least Subset

So we need to show that every element of I is contained in any set $S \subseteq U$ which is closed under the rules = axioms

Q: How can we characterise an element of I? A: For each element of I there is a derivation that witnesses its membership

So let's do induction on the height of the derivation (i.e. the height of the tree)

 $P(n) \triangleq$ "all derivations of height n have their conclusion in S"

Need to show:

- P(0) (consider these to be single (axiom) node derivations)
- $\forall (k \leq n) \ P(k) \Rightarrow P(n+1)$

since if P(n) is true for all n, then all derivations have their conclusion in S, and thus every element of I is in S.

 $P(n) \triangleq$ "all derivations of height n have their conclusion in S"

► **P(0)**:

trivially true since conclusion is an axiom and S is closed under axioms

 $P(n) \triangleq$ "all derivations of height n have their conclusion in S"

► **P(0)**:

trivially true since conclusion is an axiom and S is closed under axioms

• $\forall (k \leq n) \ P(k) \Rightarrow P(n+1)$:

 $P(n) \triangleq$ "all derivations of height n have their conclusion in S"

► **P(0)**:

trivially true since conclusion is an axiom and S is closed under axioms

► $\forall (k \leq n) P(k) \Rightarrow P(n+1)$: Suppose $\forall (k \leq n) P(k)$ and that \mathcal{D} is a derivation of height n+1 with, say, conclusion c

c is the result of applying some rule to a set of conclusions $c_1 c_2 \dots c_k$

But the derivations for the c_i all have height $\leq n$. So the c_i are all in S by assumption

and since S is closed under all axioms \notin rules, $c \in S$

so $\forall (k \leq n) \ P(k) \Rightarrow P(n+1)$

Thus every element in I is in any S that is closed under the axioms \notin rules that inductively defined I.

Thus I is the least subset that is closed under those axioms \notin rules.

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

We use the theorem as method of proof: given a property P(u) of elements of U, to prove $\forall u \in I. P(u)$ it suffices to show

- **base cases:** P(a) holds for each axiom -a
- ► induction steps: $P(h_1) \& P(h_2) \& \cdots \& P(h_n) \Rightarrow P(c)$ holds for each rule $\frac{h_1 h_2 \cdots h_n}{c}$

Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.

		u	u	иv
e	:	aub	bua	uv

Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.

	u	u	иv
ϵ	aub	bua	uv

Associated Rule Induction:

Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.

	u	u	иv
ϵ	aub	bua	uv

Associated Rule Induction:

• $P(\epsilon)$

Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.

	u	u	иv
ϵ	aub	bua	uv

- Associated Rule Induction:
 - $P(\epsilon)$
 - $\forall u \in I . P(u) \Rightarrow P(aub)$

Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.

	u	u	иv
ϵ	aub	bua	uv

Associated Rule Induction:

- $P(\epsilon)$
- $\forall u \in I . P(u) \Rightarrow P(aub)$
- $\forall u \in I . P(u) \Rightarrow P(bua)$

Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.

	u	u	иv
ϵ	aub	bua	uv

Associated Rule Induction:

- $P(\epsilon)$
- $\forall u \in I . P(u) \Rightarrow P(aub)$
- $\forall u \in I . P(u) \Rightarrow P(bua)$
- $\forall u, v \in I . P(u) \land P(v) \Rightarrow P(uv)$

- Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.
- For $u \in \{a, b\}^*$, let P(u) be the property

u contains the same number of a and b symbols

We can prove $\forall u \in I$. P(u) by rule induction:

base case: $P(\varepsilon)$ is true (the number of *a*s and *b*s is zero!)

- Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.
- For $u \in \{a, b\}^*$, let P(u) be the property

u contains the same number of a and b symbols

We can prove $\forall u \in I$. P(u) by rule induction:

- **base case:** $P(\varepsilon)$ is true (the number of *a*s and *b*s is zero!)
- ► induction steps: if P(u) and P(v) hold, then clearly so do P(aub), P(bua) and P(uv).

- Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 17 of the notes.
- For $u \in \{a, b\}^*$, let P(u) be the property

u contains the same number of a and b symbols

We can prove $\forall u \in I$. P(u) by rule induction:

- **base case:** $P(\varepsilon)$ is true (the number of *as* and *bs* is zero!)
- ► induction steps: if P(u) and P(v) hold, then clearly so do P(aub), P(bua) and P(uv).

(It's not so easy to show $\forall u \in \{a, b\}^*$. $P(u) \Rightarrow u \in I$ - rule induction for I is not much help for that.)