Discrete Mathematics for Part I CST 2015/16 Sets Exercises

Marcelo Fiore

January 15, 2016

- Suggested supervision schedule
 - §1 On induction (advanced exercises) and §2 On sets, relations, and partial functions (basic exercises).
 - §3 On sets, relations, and partial functions (advanced exercises) and §4 On functions, bijections, and equivalence relations (basic exercises).
 - §5 On functions and equivalence relations (advanced exercises) and §6 On surjections, injections, images, and indexed sets (basic exercises).
 - §7 On countability, images, and countable indexed sets (advanced exercises).
- Suggested Easter-break work
 - 2015 Paper 2 Questions 7 (c), 8 (c), and 9 (b) & (c)
 - 2014 Paper 2 Question 8
 - 2013 Paper 2 Question 5
 - 2011 Paper 2 Question 5
 - 2009 Paper 1 Question 4
 - 2008 Paper 2 Question 3
 - 2007 Paper 2 Question 5
 - 2006 Paper 2 Question 5

1 On induction (advanced exercises)

- 1. Prove that for all natural numbers $n \geq 3$, if n distinct points on a circle are joined in consecutive order by straight lines, then the interior angles of the resulting polygon add up to $180 \cdot (n-2)$ degrees.
- 2. Prove that, for any positive integer n, a $2^n \times 2^n$ square grid with any one square removed can be tiled with L-shaped pieces consisting of 3 squares.
- 3. The set of (univariate) polynomials (over the rationals) on a variable x is defined as that of arithmetic expressions equal to those of the form $\sum_{i=0}^{n} a_i \cdot x^i$, for some $n \in \mathbb{N}$ and some $a_1, \ldots, a_n \in \mathbb{Q}$.

- (a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and $p(x) \cdot q(x)$.
- (b) Deduce as a corollary that, for all $a, b \in \mathbb{Q}$, the linear combination $a \cdot p(x) + b \cdot q(x)$ of two polynomials p(x) and q(x) is a polynomial.
- (c) Show that there exists a polynomial $p_2(x)$ such that, for every $n \in \mathbb{N}$, $p_2(n) = \sum_{i=0}^n i^2 = 0^2 + 1^2 + \cdots + n^2$.

Hint: Note that for every $n \in \mathbb{N}$,

$$(n+1)^3 = \sum_{i=0}^n (i+1)^3 - \sum_{i=0}^n i^3$$
 (†)

(d) Show that, for every $k \in \mathbb{N}$, there exists a polynomial $p_k(x)$ such that, for all $n \in \mathbb{N}$, $p_k(n) = \sum_{i=0}^n i^k = 0^k + 1^k + \dots + n^k$.

Hint: Generalise

$$(n+1)^2 = \sum_{i=0}^{n} (i+1)^2 - \sum_{i=0}^{n} i^2$$

and (†) above.

2 On sets, relations, and partial functions (basic exercises)

2.1 On sets (basic exercises)

- 1. Prove the following statements:
 - (a) Reflexivity: \forall sets $A. A \subseteq A$.
 - (b) Transitivity: \forall sets A, B, C. $(A \subseteq B \land B \subseteq C) \implies A \subseteq C$.
 - (c) Antisymmetry: \forall sets $A, B. (A \subseteq B \land B \subseteq A) \iff A = B.$
- 2. Prove the following statements:
 - (a) \forall set $S. \emptyset \subseteq S$.
 - (b) \forall set $S. (\forall x. x \notin S) \iff S = \emptyset$.
- 3. Find the union and intersection of:
 - (a) $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$;
 - (b) $\{x \in \mathbb{R} \mid x > 7\}$ and $\{x \in \mathbb{N} \mid x > 5\}$.
- 4. Establish the laws of the powerset Boolean algebra.
- 5. Either prove or disprove that, for all sets A and B,
 - (a) $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B)$,
 - (b) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$,
 - (c) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - (d) $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$,
 - (e) $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

¹Chapter 2.5 of Concrete Mathematics: A Foundation for Computer Science by R.L. Graham, D.E. Knuth, and O. Patashnik looks at this in great detail.

- 6. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that the following statements are equivalent.
 - (a) $A \cup B = B$.
 - (b) $A \subseteq B$.
 - (c) $A \cap B = A$.
 - (d) $B^{c} \subseteq A^{c}$.
- 7. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that
 - (a) $A^{c} = B \iff (A \cup B = U \land A \cap B = \emptyset),$
 - (b) $(A^{c})^{c} = A$, and
 - (c) the De Morgan's laws:

$$(A \cup B)^{\mathrm{c}} = A^{\mathrm{c}} \cap B^{\mathrm{c}}$$
 and $(A \cap B)^{\mathrm{c}} = A^{\mathrm{c}} \cup B^{\mathrm{c}}$.

- 8. Find the product of $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$.
- 9. For sets A, B, C, D, either prove or disprove the following statements.
 - (a) $(A \subseteq B \land C \subseteq D) \implies A \times C \subseteq B \times D$.
 - (b) $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D)$.
 - (c) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.
 - (d) $A \times (B \cup D) \subseteq (A \times B) \cup (A \times D)$.
 - (e) $(A \times B) \cup (A \times D) \subseteq A \times (B \cup D)$.

What happens with the above when $A \cap C = \emptyset$ and/or $B \cap D = \emptyset$?

- 10. Let $I = \{2, 3, 4, 5\}$, and for each $i \in I$ let $A_i = \{i, i + 1, i 1, 2 \cdot i\}$.
 - (a) List the elements of all the sets A_i for $i \in I$.
 - (b) Let $\{A_i \mid i \in I\}$ stand for $\{A_2, A_3, A_4, A_5\}$. Find $\bigcup \{A_i \mid i \in I\}$ and $\bigcap \{A_i \mid i \in I\}$.
- 11. Find the disjoint union of $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$.
- 12. Prove or disprove the following statements for all sets A, B, C, D:
 - (a) $(A \subseteq B \land C \subseteq D) \implies A \uplus C \subseteq B \uplus D$,
 - (b) $(A \cup B) \uplus C \subseteq (A \uplus C) \cup (B \uplus C)$,
 - (c) $(A \uplus C) \cup (B \uplus C) \subseteq (A \cup B) \uplus C$,
 - (d) $(A \cap B) \uplus C \subseteq (A \uplus C) \cap (B \uplus C)$,
 - (e) $(A \uplus C) \cap (B \uplus C) \subseteq (A \cap B) \uplus C$.

2.2 On relations (basic exercises)

- 1. Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$, and $C = \{x, y, z\}$. Let $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\} : A \longrightarrow B \text{ and } S = \{(b, x), (b, x), (c, y), (d, z)\} : B \longrightarrow C$. What is their composition $S \circ R : A \longrightarrow C$?
- 2. Prove that relational composition is associative and has the identity relation as neutral element.
- 3. For a relation $R: A \longrightarrow B$, let its opposite, or dual, $R^{op}: B \longrightarrow A$ be defined by

$$b R^{\text{op}} a \iff a R b$$
.

For $R, S: A \longrightarrow B$, prove that

- (a) $R \subseteq S \implies R^{op} \subseteq S^{op}$.
- (b) $(R \cap S)^{\operatorname{op}} = R^{\operatorname{op}} \cap S^{\operatorname{op}}$
- (c) $(R \cup S)^{\text{op}} = R^{\text{op}} \cup S^{\text{op}}$.
- 4. For a relation R on a set A, prove that R is antisymmetric iff $R \cap R^{op} \subseteq id_A$.

2.3 On partial functions (basic exercises)

- 1. Let $A_2=\{1,2\}$ and $A_3=\{a,b,c\}$. List the elements of the four sets $(A_i \Longrightarrow A_j)$ for $i,j\in\{2,3\}$.
- 2. Prove that a relation $R: A \longrightarrow B$ is a partial function iff $R \circ R^{op} \subseteq id_B$.
- 3. Prove that the identity relation is a partial function, and that the composition of partial functions yields a partial function.

3 On sets, relations, and partial functions (advanced exercises)

3.1 On sets (advanced exercises)

- 1. For $\mathcal{F} \subseteq \mathcal{P}(A)$, let $\mathcal{U} = \{ X \subseteq A \mid \forall S \in \mathcal{F}. \ S \subseteq X \} \subseteq \mathcal{P}(A)$. Prove that $\bigcup \mathcal{F} = \bigcap \mathcal{U}$. Analogously, define $\mathcal{L} \subseteq \mathcal{P}(A)$ such that $\bigcap \mathcal{F} = \bigcup \mathcal{L}$. Also prove this statement.
- 2. Prove that, for all collections of sets \mathcal{F} , it holds that

$$\forall \text{ set } U. \bigcup \mathcal{F} \subseteq U \iff (\forall X \in \mathcal{F}. X \subseteq U)$$
.

3. Prove that for all collections of sets \mathcal{F}_1 and \mathcal{F}_2 ,

$$\left(\bigcup \mathcal{F}_1\right) \cup \left(\bigcup \mathcal{F}_2\right) = \bigcup (\mathcal{F}_1 \cup \mathcal{F}_2) \ .$$

State and prove the analogous property for intersections of non-empty collections of sets.

3.2 On relations (advanced exercises)

- 1. Let $\mathcal{F} \subseteq \mathcal{P}(A \times B)$ be a collection of relations from A to B. Prove that,
 - (a) for all $R: X \longrightarrow A$, $(\bigcup \mathcal{F}) \circ R = \bigcup \{ S \circ R \mid S \in \mathcal{F} \} : X \longrightarrow B ,$ and that,
 - (b) for all $R: B \longrightarrow Y$, $R \circ (| | \mathcal{F}) = | | \{ R \circ S | S \in \mathcal{F} \} : A \longrightarrow Y .$

What happens in the case of big intersections?

2. For a relation R on a set A, let

$$\mathcal{T}_R = \{ Q \subseteq A \times A \mid R \subseteq Q \land Q \text{ is transitive } \}$$
.

For $R^{\circ +} = R \circ R^{\circ *}$, prove that (i) $R^{\circ +} \in \mathcal{T}_R$ and (ii) $R^{\circ +} \subseteq \bigcap \mathcal{T}_R$. Hence, $R^{\circ +} = \bigcap \mathcal{T}_R$.

3.3 On partial functions (advanced exercises)

- 1. Show that $(\operatorname{PFun}(A, B), \subseteq)$ is a partial order.
- 2. Show that the intersection of a non-empty collection of partial functions in PFun(A, B) is a partial function in PFun(A, B).
- 3. Show that the union of two partial functions in $\operatorname{PFun}(A,B)$ is a relation that need not be a partial function. But that for $f,g\in\operatorname{PFun}(A,B)$ such that $f\subseteq h\supseteq g$ for some $h\in\operatorname{PFun}(A,B)$, the union $f\cup g$ is a partial function in $\operatorname{PFun}(A,B)$.

4 On functions, bijections, and equivalence relations (basic exercises)

4.1 On functions (basic exercises)

- 1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the elements of the four sets $(A_i \Rightarrow A_j)$ for $i, j \in \{2, 3\}$.
- 2. A relation $R: A \longrightarrow B$ is said to be total whenever $\forall a \in A. \exists b \in B. \ a \ R \ b$. Prove that this is equivalent to $\mathrm{id}_A \subseteq R^\mathrm{op} \circ R$.

Conclude that a relation $R: A \longrightarrow B$ is a function iff $R \circ R^{op} \subseteq id_B$ and $id_A \subseteq R^{op} \circ R$.

- 3. Prove that the identity partial function is a function, and that the composition of functions yields a function.
- 4. Find endofunctions $f, g: A \to A$ such that $f \circ g \neq g \circ f$. Prove your claim.

4.2 On bijections (basic exercises)

- 1. (a) Give examples of functions that have (i) none, (ii) exactly one, and (iii) more than one retraction.
 - (b) Give examples of functions that have (i) none, (ii) exactly one, and (iii) more than one section.
- 2. Let n be an integer.
 - (a) How many sections are there for the absolute-value map $[-n..n] \rightarrow [0..n] : x \mapsto |x|$?
 - (b) How many retractions are there for the exponential map $[0..n] \rightarrow [0..2^n] : x \mapsto 2^x$?
- 3. Give an example of two sets A and B and a function $f: A \to B$ satisfying both:
 - (i) there is a retraction for f, and
 - (ii) there is no section for f.

Explain how you know that f has these two properties.

- 4. Prove that the identity function is a bijection, and that the composition of bijections yields a bijection.
- 5. For $f: A \to B$, prove that if there are $g, h: B \to A$ such that $g \circ f = \mathrm{id}_A$ and $f \circ h = \mathrm{id}_B$ then g = h.

Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

- 6. We say that two functions $s:A\to B$ and $r:B\to A$ are a section-retraction pair whenever $r\circ s=\mathrm{id}_A$; and that a function $e:B\to B$ is an idempotent whenever $e\circ e=e$.
 - (a) Show that if $s:A\to B$ and $r:B\to A$ are a section-retraction pair then the composite $s\circ r:B\to B$ is an idempotent.
 - (b) Prove that for every idempotent $e: B \to B$ there exists a set A and a section-retraction pair $s: A \to B$ and $r: B \to A$ such that $s \circ r = e$.
 - (c) Let $p:C\to D$ and $q:D\to C$ be functions such that $p\circ q\circ p=p$. Can you conclude that
 - $p \circ q$ is idempotent? If so, how?
 - $q \circ p$ is idempotent? If so, how?
- 7. Prove the isomorphisms of the Calculus of Bijections, I.
- 8. Prove that, for all $m, n \in \mathbb{N}$,
 - (a) $\mathcal{P}([n]) \cong [2^n]$
 - (b) $[m] \times [n] \cong [m \cdot n]$
 - (c) $[m] \uplus [n] \cong [m+n]$
 - (d) $([m] \Rightarrow [n]) \cong [(n+1)^m]$
 - (e) $([m] \Rightarrow [n]) \cong [n^m]$
 - (f) $Bij([n],[n]) \cong [n!]$

4.3 On equivalence relations (basic exercises)

- 1. For a relation R on a set A, prove that
 - R is reflexive iff $id_A \subseteq R$,
 - R is symmetric iff $R \subseteq R^{\text{op}}$,
 - R is transitive iff $R \circ R \subseteq R$.
- 2. Prove that the isomorphism relation \cong between sets is an equivalence relation.
- 3. Prove that the identity relation id_A on a set A is an equivalence relation and that $A_{/\mathrm{id}_A} \cong A$.
- 4. Show that, for a positive integer m, the relation \equiv_m on \mathbb{Z} given by

$$x \equiv_m y \iff x \equiv y \pmod{m}$$
.

is an equivalence relation.

5. Show that the relation \equiv on $\mathbb{Z} \times \mathbb{N}^+$ given by

$$(a,b) \equiv (x,y) \iff a \cdot y = x \cdot b$$

is an equivalence relation.

6. Let B be a subset of a set A. Define the relation E on $\mathcal{P}(A)$ by

$$(X,Y) \in E \iff X \cap B = Y \cap B$$
.

Show that E is an equivalence relation.

5 On functions and equivalence relations (advanced exercises)

5.1 On functions (advanced exercises)

1. Consider a set A together with an element $a \in A$ and an endofunction $f: A \to A$. Say that a relation $R \subseteq \mathbb{N} \times A$ is (a, f)-closed whenever

$$(0,a) \in R$$
 and $\forall (n,x) \in \mathbb{N} \times A. (n,x) \in R \implies (n+1,f(x)) \in R$.

Define the relation $F \subseteq \mathbb{N} \times A$ as

$$F \ = \ \bigcap \left\{ \, R \subseteq \mathbb{N} \times A \mid R \text{ is } (a,f)\text{-closed} \, \right\} \ .$$

- (a) Prove that the relation F is (a, f)-closed.
- (b) Prove that the relation F is total; that is, $\forall n \in \mathbb{N}. \exists y \in A. (n, y) \in F$.

(c) Prove that the relation F is a (total) function $\mathbb{N} \to A$; that is,

$$\forall n \in \mathbb{N}. \exists! y \in A. (n, y) \in F$$
.

Hint: Proceed by induction. Observe that, in view of the previous item, to show that $\exists ! y \in A. (\ell, y) \in F$ it suffices to exhibit an (a, f)-closed relation R_{ℓ} such that $\exists ! y \in A. (\ell, y) \in R_{\ell}$. (Why?) For instance, as the relation $R_0 = \{ (m, y) \in \mathbb{N} \times A \mid m = 0 \implies y = a \}$ is (a, f)-closed one has that $(0, y) \in F \implies (0, y) \in R_0 \implies y = a$.

(d) Show that if h is a function $\mathbb{N} \to A$ such that h(0) = a and $\forall n \in \mathbb{N}$. h(n+1) = f(h(n)) then h = F.

Thus, for every set A together with an element $a \in A$ and an endofunction $f: A \to A$ there exists a unique function $F: \mathbb{N} \to A$, typically said to be *inductively defined*, satisfying the recurrence relation

$$F(n) = \begin{cases} a & \text{, for } n = 0\\ f(F(n-1)) & \text{, for } n \ge 1 \end{cases}$$

- 2. Let $\chi : \mathcal{P}(U) \to (U \Rightarrow [2])$ be the function mapping subsets S of U to their characteristic (or indicator) functions $\chi_S : U \to [2]$.
 - (a) Prove that, for all $x \in U$,
 - $\chi_{A \cup B}(x) = (\chi_A(x) \text{ OR } \chi_B(x)) = \max(\chi_A(x), \chi_B(x)),$
 - $\chi_{A \cap B}(x) = (\chi_A(x) \text{ AND } \chi_B(x)) = \min(\chi_A(x), \chi_B(x)),$
 - $\chi_{A^c}(x) = \text{NOT}(\chi_A(x)) = (1 \chi_A(x)).$
 - (b) For what construction A?B on sets A and B it holds that

$$\chi_{A?B}(x) = (\chi_A(x) \text{ XOR } \chi_B(x)) = (\chi_A(x) +_2 \chi_B(x))$$

for all $x \in U$? Prove your claim.

5.2 On equivalence relations (advanced exercises)

- 1. Let E_1 and E_2 be two equivalence relations on a set A. Either prove or disprove the following statements.
 - (a) $E_1 \cup E_2$ is an equivalence relation on A.
 - (b) $E_1 \cap E_2$ is an equivalence relation on A.
- 2. For an equivalence relation E on a set A, show that $[a_1]_E = [a_2]_E$ iff $a_1 E a_2$, where $[a]_E = \{ x \in A \mid x E a \}$.
- 3. For a function $f: A \to B$ define a relation \equiv_f on A by the rule

$$a \equiv_f a' \iff f(a) = f(a')$$

for all $a, a' \in A$.

- (a) Show that for every function $f: A \to B$, the relation \equiv_f is an equivalence on A.
- (b) Prove that every equivalence relation E on a set A is equal to \equiv_q for q the quotient function $A \twoheadrightarrow A_{/E}: a \mapsto [a]_E$.
- (c) Prove that for every surjection $f: A \rightarrow B$,

$$B \cong (A_{/\equiv_f})$$
 .

6 On surjections, injections, and indexed sets (basic exercises)

6.1 On surjections (basic exercises)

- 1. Give three examples of functions that are surjective and three examples of functions that are not.
- 2. Prove that the identity function is a surjection, and that the composition of surjections yields a surjection.
- 3. From surjections $A \twoheadrightarrow B$ and $X \twoheadrightarrow Y$ define, and prove surjective, functions $A \times X \twoheadrightarrow B \times Y$ and $A \uplus X \twoheadrightarrow B \uplus Y$.

6.2 On injections (basic exercises)

- 1. Give three examples of functions that are injective and three of functions that are not.
- 2. Prove that the identity function is an injection, and that the composition of injections yields an injection.

6.3 On images (basic exercises)

- 1. What is the direct image of \mathbb{N} under the integer square-root relation $R_2 = \{ (m, n) \mid m = n^2 \} : \mathbb{N} \longrightarrow \mathbb{Z}$? And the inverse image of \mathbb{N} ?
- 2. For a relation $R: A \longrightarrow B$, show that
 - (a) $\overrightarrow{R}(X) = \bigcup_{x \in X} \overrightarrow{R}(\{x\})$ for all $X \subseteq A$, and
 - (b) $\overleftarrow{R}(Y) = \{ a \in A \mid \overrightarrow{R}(\{a\}) \subseteq Y \}$ for all $Y \subseteq B$.
- 3. For $X \subseteq A$, prove that the direct image $\overrightarrow{f}(X) \subseteq B$ under an injective function $f: A \rightarrowtail B$ is in bijection with X; that is, $X \cong \overrightarrow{f}(X)$.

6.4 On indexed sets (basic exercises)

1. Prove the isomorphisms of the Calculus of Bijections, II.

On countability, images, and countable indexed sets (advanced exercises)

On countability (advanced exercises)

- 1. For an infinite set S, prove that if there is a surjection $\mathbb{N} \to S$ then there is a bijection $\mathbb{N} \to S$.
- 2. Prove that:
 - (a) \mathbb{N} , \mathbb{Z} , \mathbb{Q} are countable sets.
 - (b) The product and disjoint union of countable sets is countable.
 - (c) Every finite set is countable.
 - (d) Every subset of a countable set is countable.
- 3. For an infinite set S, prove that the following are equivalent:
 - (a) There is a bijection $\mathbb{N} \to S$.
 - (b) There is an injection $S \to \mathbb{N}$.
 - (c) There is a surjection $\mathbb{N} \to S$
- 4. For a set X, prove that there is no injection $\mathcal{P}(X) \to X$.

7.2On images (advanced exercises)

- 1. For a relation $R: A \longrightarrow B$, prove that
 - (a) $\overrightarrow{R}(\bigcup \mathcal{F}) = \bigcup \{\overrightarrow{R}(X) \mid X \in \mathcal{F}\} \in \mathcal{P}(B) \text{ for all } \mathcal{F} \in \mathcal{P}(\mathcal{P}(A)), \text{ and } \mathcal{F} \in \mathcal{P}(A) \in \mathcal{F} \in \mathcal{P}(A) \in \mathcal{F} \in \mathcal{F}(A) \in \mathcal{F} \in \mathcal{F}(A)$
 - (b) $\overleftarrow{R}(\cap \mathcal{G}) = \bigcap \{\overleftarrow{R}(Y) \mid Y \in \mathcal{G}\} \in \mathcal{P}(A) \text{ for all } \mathcal{G} \in \mathcal{P}(\mathcal{P}(B)).$
- 2. Show that, by inverse image,

every map $A \to B$ induces a Boolean algebra map $\mathcal{P}(B) \to \mathcal{P}(A)$.

That is, for every function $f: A \to B$,

- $\bullet \stackrel{\leftarrow}{f}(\emptyset) = \emptyset$
- f(x) v• $f(X \cup Y) = \overleftarrow{f}(X) \cup \overleftarrow{f}(Y)$
- $\overleftarrow{f}(B) = A$ $\overleftarrow{f}(X \cap Y) = \overleftarrow{f}(X) \cap \overleftarrow{f}(Y)$
- $\overleftarrow{f}(X^{c}) = (\overleftarrow{f}(X))^{c}$

for all $X, Y \subseteq B$.

3. Prove that for a surjective function $f: A \to B$, the direct image function $\overrightarrow{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ is surjective.

On countable indexed sets (advanced exercises) 7.3

1. Prove that if X and A are countable sets then so are A^* , $\mathcal{P}_{fin}(A)$, and $(X \Longrightarrow_{fin} A)$.