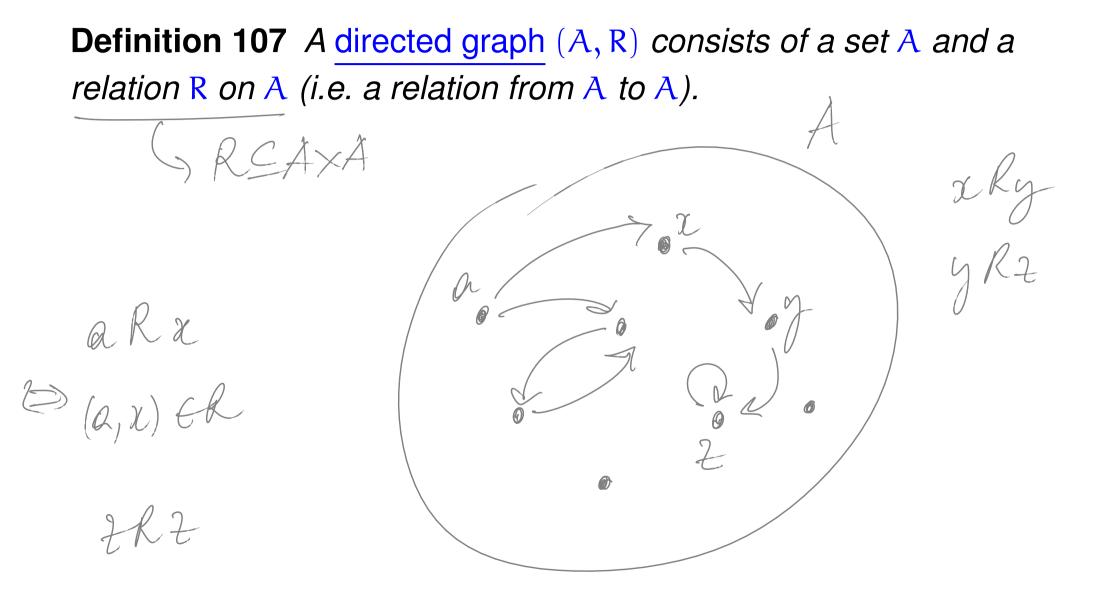
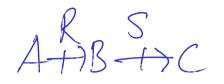
Directed graphs



 $7 = Rel(A, A) = (P(A \times A))$



A Sor

Corollary 109 For every set A, the structure $(Rel(A), id_A, \circ)$

is a monoid.

Definition 110 For $R \in \text{Rel}(A)$ and $n \in \mathbb{N}$, we let

$$R^{\circ n} = \underbrace{R \circ \cdots \circ R}_{n \text{ times}} \in \operatorname{Rel}(A)$$

be defined as id_A for n = 0, and as $R \circ R^{\circ m}$ for n = m + 1.

Paths

Proposition 112 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A$, $s R^{\circ n} t$ iff there exists a path of length n in R with source s and target t.

Example: R°= rdA **PROOF:** $R^{01} = R_{01} R = R$ $R^{02} = R \circ R^{01} = R \circ R$ S(ROR) + => JAEA. ARTASRA. Sin $R^{03} = ROR^{02}$ Exercit: prove it by induction. 305

2 Rot ges InEN. 2 Ron ges Japath of leight

Definition 113 For $R \in Rel(A)$, let

 $\mathbb{R}^{\circ *} = \bigcup \left\{ \mathbb{R}^{\circ n} \in \operatorname{Rel}(\mathbb{A}) \mid n \in \mathbb{N} \right\} = \bigcup_{n \in \mathbb{N}} \mathbb{R}^{\circ n}$.

Corollary 114 Let (A, R) be a directed graph. For all $s, t \in A$, $s R^{\circ*} t$ iff there exists a path with source s and target t in R.

The $(n \times n)$ -matrix M = mat(R) of a finite directed graph ([n], R) for n a positive integer is called its *adjacency matrix*.

The adjacency matrix $M^* = mat(R^{\circ*})$ can be computed by matrix multiplication and addition as M_n where

$$\begin{cases} M_0 &= I_n \\ M_{k+1} &= I_n + (M \cdot M_k) \end{cases}$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

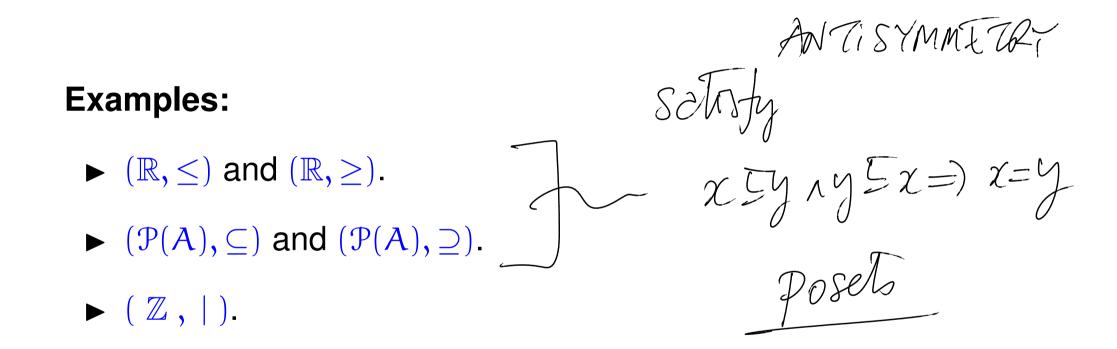
Preorders

Definition 115 A preorder (P, \sqsubseteq) consists of a set P and a relation \Box on P (i.e. $\Box \in \mathcal{P}(P \times P)$) satisfying the following two axioms.

► *Reflexivity*.

$\forall x \in \mathbf{P}. \ x \sqsubseteq x$

$\forall x, y, z \in \mathsf{P.} \ (x \sqsubseteq y \land y \sqsubseteq z) \implies x \sqsubseteq z$



— 309 —

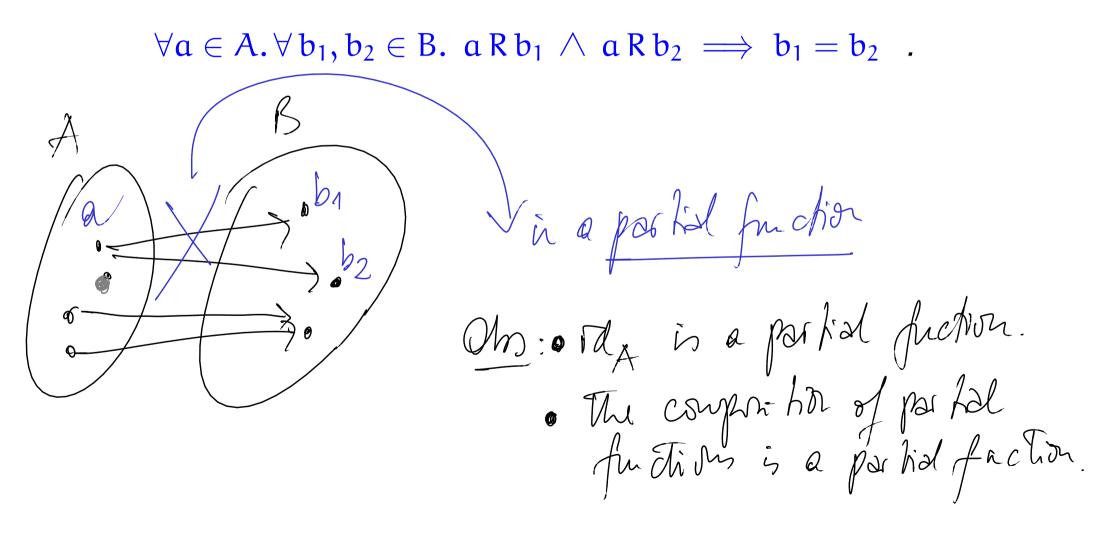
is The least relation , containe R That is e prevalle. **Theorem 117** For $\mathbf{R} \subset \mathbf{A} \times \mathbf{A}$, let $\mathcal{F}_{R} = \left\{ Q \subseteq A \times A \mid R \subseteq Q \land Q \text{ is a preorder} \right\}$ Then, (i) $\mathbb{R}^{\circ*} \in \mathcal{F}_{\mathbb{R}}$ and (ii) $\mathbb{R}^{\circ*} \subseteq \bigcap \mathcal{F}_{\mathbb{R}}$. Hence, $\mathbb{R}^{\circ*} = \bigcap \mathcal{F}_{\mathbb{R}}$. PROOF: becouse $R \subseteq R^{OX}$ There a path for x to X R^{OX} a prender: There is a path for x to y in a there is a path for x to y in a there is a path from y to 7, so there is a path for x to 7, so there is a path for x to 7, homely ther crucetehalidh.

— 310 —

Partial functions

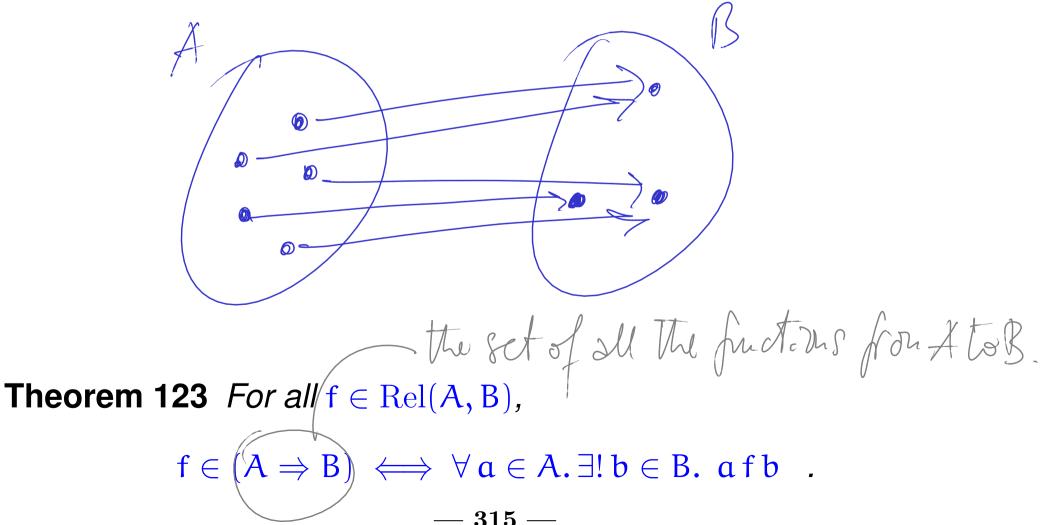
"deferminstic

in put/output reletish Ms/25/ **Definition 118** A relation $\mathbf{R} : \mathbf{A} \longrightarrow \mathbf{B}$ is said to be functional, and called a partial function, whenever it is such that



Functions (or maps)

Definition 122 A partial function is said to be <u>total</u>, and referred to as a <u>(total) function</u> or <u>map</u>, whenever its domain of definition coincides with its source.



Proposition 124 For all finite sets A and B,

$$\#(A \Rightarrow B) = \#B^{\#A}$$

PROOF IDEA: B= { b1 - - , bm 4 $A = \{a_1, \ldots, a_n\}$ To describe a function, I need b, M Q1 R_2

Notation: In a function $f: A \rightarrow B$ and $A \leftarrow A$, $f(a) \leftarrow B$ denote the unique element peloted to a by f. **Theorem 125** The identity partial function is a function, and the composition of functions yields a function. $A \leftarrow B$

NB

- 1. $f = g : A \rightarrow B$ iff $\forall a \in A. f(a) = g(a)$.
- 2. For all sets A, the identity function $id_A : A \to A$ is given by the rule

 $\operatorname{id}_A(\mathfrak{a}) = \mathfrak{a}$

and, for all functions $f : A \to B$ and $g : B \to C$, the composition function $g \circ f : A \to C$ is given by the rule

 $\big(g\circ f\big)(a)=g\big(f(a)\big)$.

 \rightarrow mat(R) $rel(R) \leftarrow M$ **Bijections**

Definition 126 A function $f : A \rightarrow B$ is said to be bijective or a bijection, whenever there exists a (necessarily unique) function $g : B \rightarrow A$ (referred to as the inverse of f) such that

Freed. g(fo)=a
A FLIR I(eb)=b

a

gof= MA fog=idg

1. g is a retraction (or left inverse) for f:

 $g \circ f = \operatorname{id}_A$,

2. g is a section (or right inverse) for f: $f \circ q = id_B$. **Definition 130** Two sets A and B are said to be <u>isomorphic</u> (and to have the <u>same cardinatity</u>) whenever there is a bijection between them; in which case we write

 $A \cong B$ or #A = #B.

Examples:

1. $\{0, 1\} \cong \{$ **false**, **true** $\}$.

2. $\mathbb{N}\cong\mathbb{N}^+$, $\mathbb{N}\cong\mathbb{Z}$, $\mathbb{N}\cong\mathbb{N}\times\mathbb{N}$, $\mathbb{N}\cong\mathbb{Q}$.