


Relations

Definition 98 A (binary) relation R from a set A to a set B

R : A−→p B or R ∈ Rel(A,B) ,

is

R ⊆ A× B or R ∈ P(A× B) .

Notation 99 One typically writes aRb for (a, b) ∈ R.
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Informal examples:

◮ Computation.

◮ Typing.

◮ Program equivalence.

◮ Networks.

◮ Databases.
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Examples:

◮ Empty relation.

∅ : A−→p B (a ∅ b ⇐⇒ false)

◮ Full relation.

(A× B) : A−→p B (a (A× B) b ⇐⇒ true)

◮ Identity (or equality) relation.

idA =
{
(a, a) | a ∈ A

}
: A−→p A (a idA a ′ ⇐⇒ a = a ′)

◮ Integer square root.

R2 =
{
(m,n) | m = n2

}
: N−→p Z (m R2 n ⇐⇒ m = n2)
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Internal diagrams

Example:

R =
{
(0, 0), (0,−1), (0, 1), (1, 2), (1, 1), (2, 1)

}
: N−→p Z

S =
{
(1, 0), (1, 2), (2, 1), (2, 3)

}
: Z−→p Z
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Relational extensionality

R = S : A−→p B

iff

∀a ∈ A.∀b ∈ B. aRb ⇐⇒ aSb
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Relational composition
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Theorem 101 Relational composition is associative and has the

identity relation as neutral element.

◮ Associativity.

For all R : A−→p B, S : B−→p C, and T : C−→p D,

(T ◦ S) ◦ R = T ◦ (S ◦ R)

◮ Neutral element.

For all R : A−→p B,

R ◦ idA = R = idB ◦ R .
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Relations and matrices

Definition 102

1. For positive integers m and n, an (m× n)-matrix M over a

semiring
(

S, 0,⊕, 1,⊙
)

is given by entries Mi,j ∈ S for all

0 ≤ i < m and 0 ≤ j < n.

Theorem 103 Matrix multiplication is associative and has the

identity matrix as neutral element.
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Relations from [m] to [n] and (m× n)-matrices over Booleans

provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
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