Sets Intuitively - sets are unordered collection of elements cets we come We mainly define sets by {x∈A| Pa, 3 Ø= [real folk?

sets are completely determ and by Their elevents AEBEN (XX. XEAE) XEB A=BED(Yx. xeA => xeB)

#### Powerset axiom

For any set, there is a set consisting of all its subsets.

$$\forall x. \ X \in \mathcal{P}(u) \iff X \subseteq u$$
.

Hasse diagrams 
$$\frac{NB}{}$$
.

$$P(\xi 3) = \xi \xi 3 3 + P(\xi 3) = 1$$

$$P(\{a,b\}) = \{\{\{\},\{a,b\}\},\{a\},\{b\}\}\}$$
  
 $\# P(\{a,b\}) = 4$   
 $\{\{a,b\}\}\}$   
 $\{\{a,b\}\}\}$ 

ACA

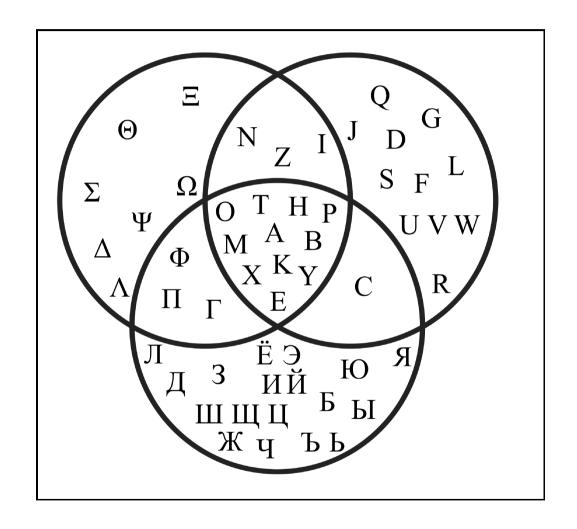
## **Proposition 83** For all finite sets U,

$$\# \mathcal{P}(U) = 2^{\# U}$$
.

Count the wher of subset of a set  $N = \{a_1, a_2, ..., a_n\}$   $\# P(\mathcal{U}) = 2^h$  $S \subseteq U = 2$   $S = \{a_1, a_3\} \rightarrow 1 \ 0 \ 1 \dots 0 \dots 0$ 

{a<sub>2</sub>, a<sub>4</sub>...,a<sub>2i</sub>, ... } ← 1010101...01 There are 2 n binard seg of legth n

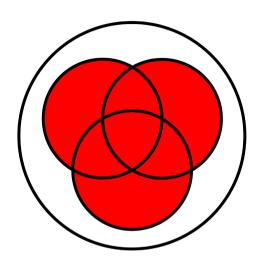
## Venn diagramsa

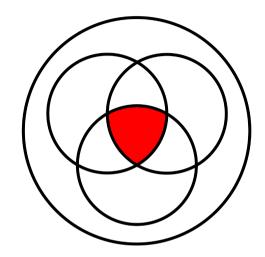


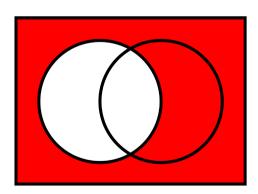
<sup>&</sup>lt;sup>a</sup>From http://en.wikipedia.org/wiki/Intersection\_(set\_theory).

Union









Complement

# The powerset Boolean algebra

$$(\mathcal{P}(\mathsf{U}), \emptyset, \mathsf{U}, \cup, \cap, (\cdot)^{\mathrm{c}})$$

For all  $A, B \in \mathcal{P}(U)$ ,

$$A \cup B = \{x \in U \mid x \in A \lor x \in B\} \in \mathcal{P}(U)$$

$$A \cap B = \{x \in U \mid x \in A \land x \in B\} \in \mathcal{P}(U)$$

$$A^{c} = \{x \in U \mid \neg(x \in A)\} \in \mathcal{P}(U)$$

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

$$(A \cup B) \cup C = A \cup (B \cup C)$$
,  $A \cup B = B \cup A$ ,  $A \cup A = A$   
 $(A \cap B) \cap C = A \cap (B \cap C)$ ,  $A \cap B = B \cap A$ ,  $A \cap A = A$ 

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

$$(A \cup B) \cup C = A \cup (B \cup C)$$
,  $A \cup B = B \cup A$ ,  $A \cup A = A$   
 $(A \cap B) \cap C = A \cap (B \cap C)$ ,  $A \cap B = B \cap A$ ,  $A \cap A = A$ 

► The *empty set*  $\emptyset$  is a neutral element for  $\cup$  and the *universal* set  $\cup$  is a neutral element for  $\cap$ .

$$\emptyset \cup A = A = U \cap A$$

► The empty set  $\emptyset$  is an annihilator for  $\cap$  and the universal set U is an annihilator for  $\cup$ .

$$\emptyset \cap A = \emptyset$$

$$U \cup A = U$$

► The empty set  $\emptyset$  is an annihilator for  $\cap$  and the universal set U is an annihilator for  $\cup$ .

$$\emptyset \cap A = \emptyset$$

$$U \cup A = U$$

 $\blacktriangleright$  With respect to each other, the union operation  $\cup$  and the intersection operation  $\cap$  are distributive and absorptive.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
,  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$   
 $A \cup (A \cap B) = A = A \cap (A \cup B)$ 

 $\blacktriangleright$  The complement operation  $(\cdot)^c$  satisfies complementation laws.

$$A \cup A^{c} = U$$
,  $A \cap A^{c} = \emptyset$ 

**Proposition 84** Let U be a set and let  $A, B \in \mathcal{P}(U)$ .

- 1.  $\forall X \in \mathcal{P}(U)$ .  $A \cup B \subseteq X \iff (A \subseteq X \land B \subseteq X)$ .
- 2.  $\forall X \in \mathcal{P}(U)$ .  $X \subseteq A \cap B \iff (X \subseteq A \land X \subseteq B)$ .

#### Proof:

RTP: AUBSX (=) (+a. x CAUB =) x CX.) let a be a bi hary. Such That a & DUB; That s; (red v 2 EB) Cox 1 x EA; for XEX become ASX CON2 RED: for REX because BEX

**Corollary 85** Let U be a set and let A, B,  $C \in \mathcal{P}(U)$ .

1. 
$$C = A \cup B$$

iff

$$[A \subseteq C \land B \subseteq C]$$

$$\land$$

$$[\forall X \in \mathcal{P}(U). (A \subseteq X \land B \subseteq X) \implies C \subseteq X]$$
2.  $C = A \cap B$ 

iff

$$[C \subseteq A \land C \subseteq B]$$

$$\land$$

$$[\forall X \in \mathcal{P}(U). (X \subseteq A \land X \subseteq B) \implies X \subseteq C]$$

# Sets and logic

| $\mathcal{P}(\mathbf{U})$ | $ig\{ 	ext{ false} ,  	ext{true}  ig\}$ |
|---------------------------|-----------------------------------------|
| Ø                         | false                                   |
| u                         | true                                    |
| U                         |                                         |
| $\cap$                    |                                         |
| $(\cdot)^{\mathrm{c}}$    | $\neg(\cdot)$                           |

# Pairing axiom

For every  $\alpha$  and b, there is a set with  $\alpha$  and b as its only elements.

$$\{a,b\}$$

defined by

$$\forall x. x \in \{a, b\} \iff (x = a \lor x = b)$$

**NB** The set  $\{\alpha, \alpha\}$  is abbreviated as  $\{\alpha\}$ , and referred to as a *singleton*.

## **Examples:**

- $\blacktriangleright \#\{\emptyset\} = 1$
- ▶  $\#\{\{\emptyset\}\}=1$
- $\blacktriangleright \# \{ \emptyset, \{ \emptyset \} \} = 2$

Ordered pairing

unordered
pairing of
a old 5.

For every pair a and b, the set

$$\{\{a\},\{a,b\}\}$$

{ a, b } = { b, e }

is abbreviated as

$$\langle a,b\rangle \neq \langle b,a\rangle$$
 for  $a \neq b$ 

and referred to as an ordered pair.

### **Proposition 86 (Fundamental property of ordered pairing)**

For all a, b, x, y,

$$\langle a, b \rangle = \langle x, y \rangle \iff (a = x \land b = y)$$
.

Proof: