
gcd

fun gcd( m , n )

= let

val ( q , r ) = divalg( m , n )

in

if r = 0 then n

else gcd( n , r )

end
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Theorem 60 Euclid’s Algorithm gcd terminates on all pairs of

positive integers and, for such m and n, gcd(m,n) is the greatest

common divisor of m and n in the sense that the following two

properties hold:

(i) both gcd(m,n) | m and gcd(m,n) | n, and

(ii) for all positive integers d such that d | m and d | n it necessarily

follows that d | gcd(m,n).

PROOF:
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gcd(m,n)

n|m

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

m = q · n + r

q > 0 , 0 < r < n
0<m<n

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

n gcd(n, r)

r|n

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

n = q ′
· r + r ′

q ′ > 0 , 0 < r ′ < r

gcd(n,m)

r gcd(r, r ′)
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Fractions in lowest terms

fun lowterms( m , n )

= let

val gcdval = gcd( m , n )

in

( m div gcdval , n div gcdval )

end
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Some fundamental properties of gcds

Lemma 62 For all positive integers l, m, and n,

1. (Commutativity) gcd(m,n) = gcd(n,m),

2. (Associativity) gcd
(

l, gcd(m,n)
)

= gcd(gcd(l,m), n),

3. (Linearity)a gcd(l ·m, l · n) = l · gcd(m,n).

PROOF:

aAka (Distributivity).
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Euclid ′s Theorem

Theorem 63 For positive integers k, m, and n, if k | (m · n) and

gcd(k,m) = 1 then k | n.

PROOF:
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Corollary 64 (Euclid’s Theorem) For positive integers m and n,

and prime p, if p | (m · n) then p | m or p | n.

Now, the second part of Fermat’s Little Theorem follows as a

corollary of the first part and Euclid’s Theorem.

PROOF:
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Fields of modular arithmetic

Corollary 66 For prime p, every non-zero element i of Zp

has [ip−2]p as multiplicative inverse. Hence, Zp is what in

the mathematical jargon is referred to as a field.
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Extended Euclid ′s Algorithm

Example 67 (egcd(34, 13) =
(

(5,−13), 1
)

)

gcd(34, 13) 34 = 2· 13 + 8

= gcd(13, 8) 13 = 1· 8 + 5

= gcd(8, 5) 8 = 1· 5 + 3

= gcd(5, 3) 5 = 1· 3 + 2

= gcd(3, 2) 3 = 1· 2 + 1

= gcd(2, 1) 2 = 2· 1 + 0

= 1
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Extended Euclid ′s Algorithm

Example 67 (egcd(34, 13) =
(

(5,−13), 1
)

)

gcd(34, 13) 34 = 2· 13 + 8 8 = 34 −2· 13

= gcd(13, 8) 13 = 1· 8 + 5 5 = 13 −1· 8

= gcd(8, 5) 8 = 1· 5 + 3 3 = 8 −1· 5

= gcd(5, 3) 5 = 1· 3 + 2 2 = 5 −1· 3

= gcd(3, 2) 3 = 1· 2 + 1 1 = 3 −1· 2

= gcd(2, 1) 2 = 2· 1 + 0

= 1
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gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= gcd(8, 5) 3 = 8 −1· 5

= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2
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gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2
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gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2
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gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
︷ ︸︸ ︷
−1 · 34+ 3 · 13 −1·

︷ ︸︸ ︷
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2
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gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
︷ ︸︸ ︷
−1 · 34+ 3 · 13 −1·

︷ ︸︸ ︷
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

=
︷ ︸︸ ︷
(2 · 34+ (−5) · 13) −1·

︷ ︸︸ ︷
(−3 · 34+ 8 · 13))

= 5 · 34+ (−13) · 13
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