Numbers
Objectives

Get an appreciation for the abstract notion of number system,
considering four examples: natural numbers, integers,
rationals, and modular integers.

Prove the correctness of three basic algorithms in the theory of
numbers: the division algorithm, Euclid’s algorithm, and the
Extended Euclid’s algorithm.

Exemplify the use of the mathematical theory surrounding
Euclid’s Theorem and Fermat’s Little Theorem in the context of
public-key cryptography.

To understand and be able to proficiently use the Principle of

Mathematical Induction in its various forms.
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Natural numbers

In the beginning there were the natural numbers

N: 0, T, ..., n, n+l,
generated from zero by successive increment; that is, put in ML.:

datatype

N = zero | succ of N
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The basic operations of this number system are:

» Addition
m n
/_/\r -\ N\
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» Multiplication
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we are ollped.
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The additive structure (N, 0, +) of natural numbers with zero and

addition satisfies the following:

» Monoid laws

O+4n=n=n—+0, (l+mM)+n=14(m+n)

» Commutativity law

m+-n=n-+m

and as such is what in the mathematical jargon is referred to as
a commutative monoid.
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Also the multiplicative structure (N, 1, -) of natural numbers with one
and multiplication is a commutative monoid:

» Monoid laws

Il'n=n=n-1, (I-m)-n=1-(m-n)

» Commutativity law

m-nm=n-m
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The additive and multiplicative structures interact nicely in that they
satisfy the

» Distributive law

l-(m+n) = l-m+1-n

and make the overall structure (N, 0, -+, 1, -) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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Cancellation

The additive and multiplicative structures of natural numbers further
satisfy the following laws.
» Additive cancellation

For all natural numbers k, m, n,
K+m=k+n = m=n

» Multiplicative cancellation

For all natural numbers k, m, n,
fk#A0thenk-m=k-n = m=n
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Definition 41

1. A number x is said to admit an additive inverse whenever there
exists a numbery such thatx +y = 0.

m/l//vw&m«’b )WUA(VJD 9/&20‘@ ML w@?m,
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Inverses

Definition 41

1. A number x is said to admit an additive inverse whenever there
exists a numbery such that x +y = 0.

2. A number x Is said to admit a multiplicative inverse whenever
there exists a numbery such thatx -y = 1.
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Extending the system of natural numbers to: (i) admit all additive
iInverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:

_ 1E9



Extending the system of natural numbers to: (i) admit all additive
iInverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:

(1) the integers

Zi v ...—my ..., —1,0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to
as a commutative ring, and

(ii) the rationals Q@ which then form what in the mathematical jargon
IS referred to as a field.
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The division theorem?and algorithm

Theorem 42 (Division Theorem) For every natural number m and
positive natural number n, there exists a unigue pair of integers q
andr suchthatqg > 0,0 <r < n,_‘andm: q-n+r.
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The division theorem and algorithm

Theorem 42 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q
andr suchthatq > 0,0 <r<n,andm=q-n+r.

Definition 43 The natural numbers q and r associated to a given
pair of a natural number m and a positive integer n determined by
the Division Theorem are respectively denoted quo(m,n) and
rem(m,n).
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The D sion Algo
Ciw
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fun diviter( q , r ) (%f‘\ aﬁ,}/,ﬁf

= if r < n then ( q ,

The ‘WA@MC{else diviter( g+1 , &-n ) (ﬁ_f/{/ f-n)

o A = (go1) ()
end M&"T’ (LM ntL)
M‘:Q' n+m m=¢4-n+r M 0-5(\<V\/

fun quo( m , n ) = #1( divalg(m ,'n ) )

fun rem( m , n ) = #2( divalg( m , n ) ) _ o
BACTIAL ColRELCTES:
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Theorem 44 For every natural number m and positive natural
number n, the evaluation of divalg(m,n) terminates, outputing a
pair of natural numbers (qo, 1) such thatry < nandm = qo-n+ry.

PROOF:
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numbers k and 1,

1] /\/l[, R midl i
Proposition 45 Let m be a positiwﬁeger. For all natural

k=1(mod m) & rem(k,m)=rem(l,m) .
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