Implication

Theorems can usually be written in the form

if a collection of *assumptions* holds,then so does some *conclusion*

or, in other words,

a collection of *assumptions* **implies** some *conclusion*

or, in symbols,

a collection of *hypotheses* \implies some *conclusion*

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.

To prove a goal of the form

 $\mathsf{P} \implies \mathsf{Q}$

assume that P is true and prove Q.

God.

NB Assuming is not asserting! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.

-42 -

Proof pattern:

In order to prove that

$\mathsf{P} \implies \mathsf{Q}$

1. Write: Assume P.

2. Show that Q logically follows.

— 44 —

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

Definition:

the *contrapositive* of 'P implies Q' is 'not Q implies not P'

Proof pattern:

In order to prove that

$\mathsf{P} \implies \mathsf{Q}$

 Write: We prove the contrapositive; that is, ... and state the contrapositive.

- **2.** Write: Assume 'the negation of Q'.
- 3. Show that 'the negation of P' logically follows.

Scratch work:

— 50 —

Definition 9 A real number is:

- rational if it is of the form m/n for a pair of integers m and n; otherwise it is irrational.
- ▶ positive if it is greater than 0, and negative if it is smaller than 0.
- nonnegative if it is greater than or equal 0, and nonpositive if it is smaller than or equal 0.

▶ <u>natural</u> if it is a nonnegative integer.

Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x} .

PROOF: We show z irrational => Ja vrational. Assume (xis revenional); That is, it is not of the tim m/n for integers in and n. Weed to show Frishoud, That is, it is not of the fin k/e fin intégers kond l. We are stuck, so me start again.

Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x} . PROOF: We prore The contrapositive; That is, Ja rational => 20 rational So we assume Tx is rational; That is, of the form, [m/n for integers manden.] Need show 2 is reprised; that is, of the funk/l for integers kadl. V x = m/n hence $x = (\sqrt{x})^2 = m/n^2$ danum² ond n² are n'tépers x is a rational,

Logical Deduction Issuppions - Modus Ponens - of in plocotion

A main rule of *logical deduction* is that of *Modus Ponens*:

From the statements P and P \implies Q, the statement Q follows.

or, in other words,

If P and P \implies Q hold then so does Q.

Ρ

- 55 -

or, in symbols,

The use of implications:

To use an assumption of the form $P \implies Q$, aim at establishing P. Once this is done, by Modus Ponens, one can conclude Q and so further assume it.

— 56 —

Notation: R=1P2=1P3 the P1=1P3 **Theorem 11** Let P_1 , P_2 , and P_3 be statements. If $P_1 \implies P_2$ and $P_2 \implies P_3$ then $P_1 \implies P_3$. PROOF: Show 71=) B and B=) B the P1=) B Jssuption. So JSgul Gosl (1) - P1 => P2 (2) - P2 = P3 Show P1 = P3. Fn nhich 2ssame 71 to show P3 Fron () 2d (3 by MP we have P2 holds) (5) Fron 2 2 d @ by MP we have 93; That is, our goal]

Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

Q implies P, and vice versa

or

P if, and only if, Q

P iff Q

or, in symbols,

Proof pattern:

In order to prove that

$$\mathsf{P} \iff \mathsf{Q}$$

1. Write: (\Longrightarrow) and give a proof of $P \implies Q$.

2. Write: (\iff) and give a proof of $Q \implies P$.

Proposition 12 Suppose that n is an integer. Then, n is even iff n^2 is even.

PROOF: (=) Show heren => h^2 even. Assume neven; That is, n=2k for an integer k Show h^2 even, that is, $h^2 = 2l$ for an integer l. From (1), h = 2k so $n^2 = (2k)^2 = 2 \cdot (2k^2)$ and intequ thus fren. (=) Show n² even => neven. Assme (n² even; That in, n²=2p for an integer p Weare stuck ~ restart by showing the

contrapositive: We show $n \text{ odd} \Longrightarrow h^2 \text{ odd}$ Assule n = 2k+1 for an integer kShow $h^2 = (2k+1)^2 = \cdots = 2(-)+1$.

Q=) Poud its contropositure is not P=) hot Q/ WARNING $P \Rightarrow Q$ $(=) We show P \Rightarrow Q$ ((=)) We show by the contrapositive Wrong not $R \Rightarrow not P$

Divisibility and congruence

Definition 13 Let d and n be integers. We say that d divides n, and write $d \mid n$, whenever there is an integer k such that $n = k \cdot d$.

Example 14 The statement 2 | 4 is true, while 4 | 2 is not./

Definition 15 Fix a positive integer m. For integers a and b, we say that a is congruent to b modulo m, and write $a \equiv b \pmod{m}$,

0/0 istrue

- 64 —

nlocom? Nish nlocom? multiple of d 0/m comm?

 $0 \equiv b \pmod{m} \Rightarrow 0 \equiv c \pmod{7}$ $5 \equiv c \pmod{m}$

Example 16

1. $18 \equiv 2 \pmod{4}$

whenever $m \mid (a - b)$.

2. $2 \equiv -2 \pmod{4}$

3. $18 \equiv -2 \pmod{4}$

The use of bi-implications:

To use an assumption of the form P \iff Q, use it as two separate assumptions P \implies Q and Q \implies P.

— 70 —