Implication

Theorems can usually be written in the form

If a collection of assumptions holds,
then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of hypotheses —> some conclusion

NB Identifying precisely what the assumptions and conclusions are
IS the first goal in dealing with a theorem.

A1 —



PRI

VTV
p g pT

The main proof strategy for implication:

To prove a goal of the form 7
P = Q
assume that P is true and prove Q. éo@(-

NB Assuming is not asserting! Assuming a statement amounts to
the same thing as adding it to your list of hypotheses.
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Proof pattern:
In order to prove that

P = Q

1. Write: Assume P.
2. Show that Q logically follows.
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Scratch work:
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Before using the strategy
Assumptions Goal

ASD P = Q
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After using the strategy
Assumptions Goal
Q
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An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent
statement given by its contrapositive.

Definition:

i

the contrapositive off‘P implies Ql isl:not Q implies not p’
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Proof pattern:
In order to prove that

P —= Q
1. Write: We prove the contrapositive; that is, ... and state
the contrapositive.
2. Write: Assume ‘the negation of Q’.

3. Show that ‘the negation of P’ logically follows.
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Scratch work:

Before using the strategy
Assumptions

After using the strategy
Assumptions

not Q

Goal
P —= Q

Goal
not P



Definition 9 A real number is:

» rational if it is of the form m/n for a pair of integers m and n;
otherwise it is irrational.

» positive if it is greater than 0, and negative if it is smaller than 0.

» nonnegative If it is greater than or equal 0, and nonpositive if it
Is smaller than or equal 0.

» natural if it is a nonnegative integer.
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Proposition 10 Let x be a positive real number. If x is irrational
then so is \/x.
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Proposition 10 Let x be a positive real number. If x is irrational
then so is \/x.
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A main rule of logical deduction is that of Modus Ponens: W<
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From the statements Pand P — Q,
the statement Q follows.

or, in other words,
If Pand P — Q hold then so does Q.

or, in symbols,




The use of implications:

To use an assumption of the form P — Q,
aim at establishing P.

Once this is done, by Modus Ponens, one can
conclude Q and so further assume it.
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“Theorem 11 Let P, P,, and P; be statements. If P, — P, and
P, = Ps;thenP, — Ps.
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Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

or

or

P implies Q, and vice versa

Q implies P, and vice versa

P if, and only if, Q

or, in symbols,

P = Q
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Proof pattern:
In order to prove that

P Q

1. Write: (=) and give a proof of P = Q.
2. Write: (&) and give a proof of Q = P.
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Proposition 12 Suppose thatn is an integer. Then, n is even iff n*
IS even.
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P DlVlSlblhty and congruence lﬂr&aaﬂz

Definition 13 Let d and n be integers. We say that d divides n,
and write d | n, whenever there is an integer k such thatn =k - d.

Example 14 The statement 2 | 4 is true, while 4 | 2 is not.

Definition 15 Fix a positive integer m.. For integers a And b, we
say that a is congruent to b modulo m, and write a =/b (mod m),

whenever m | (a — b). |
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The use of bi-implications:

To use an assumption of the form P < Q, use it as two
separate assumptions P =— Qand Q = P.
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