Topic 4

Scott Induction

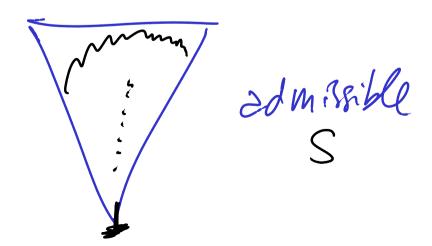
Scott's Fixed Point Induction Principle

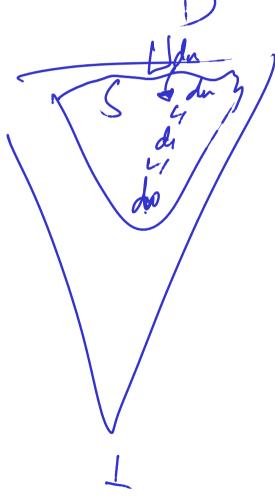
Let $f: D \to D$ be a continuous function on a domain D.

For any <u>admissible</u> subset $S \subseteq D$, to prove that the least fixed point of f is in S, *i.e.* that

$$fix(f) \in S$$
,

it suffices to prove


$$\forall d \in D \ (d \in S \Rightarrow f(d) \in S) \ .$$


Chain-closed and admissible subsets

Let D be a cpo. A subset $S\subseteq D$ is called chain-closed iff for all chains $d_0\sqsubseteq d_1\sqsubseteq d_2\sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n \ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

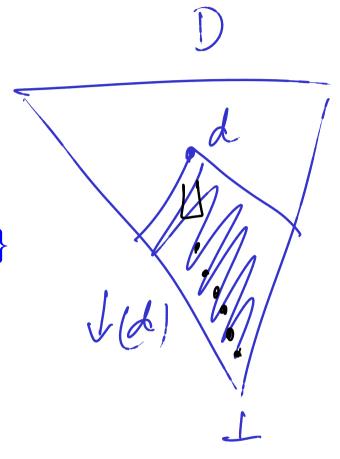
$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n \ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called *chain-closed* (resp. *admissible*) iff $\{d \in D \mid \Phi(d)\}$ is a *chain-closed* (resp. *admissible*) subset of D. $\forall d \in D \mid \Phi(d) = 0$

52

Building chain-closed subsets (I)


Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow\!\!(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

Building chain-closed subsets (I)

Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

Example (I): Least pre-fixed point property

Let D be a domain and let $f:D\to D$ be a continuous function.

$$\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$$

 $\forall x \quad x \in \mathcal{V}(d) \Rightarrow f(x) \in \mathcal{V}(d)$

S= V(d)

fort Ltc)

Example (I): Least pre-fixed point property

Let D be a domain and let $f:D\to D$ be a continuous function.

$$\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$$

Proof by Scott induction.

Let $d \in D$ be a pre-fixed point of f. Then,

$$x \in \downarrow(d) \implies x \sqsubseteq d$$

$$\implies f(x) \sqsubseteq f(d)$$

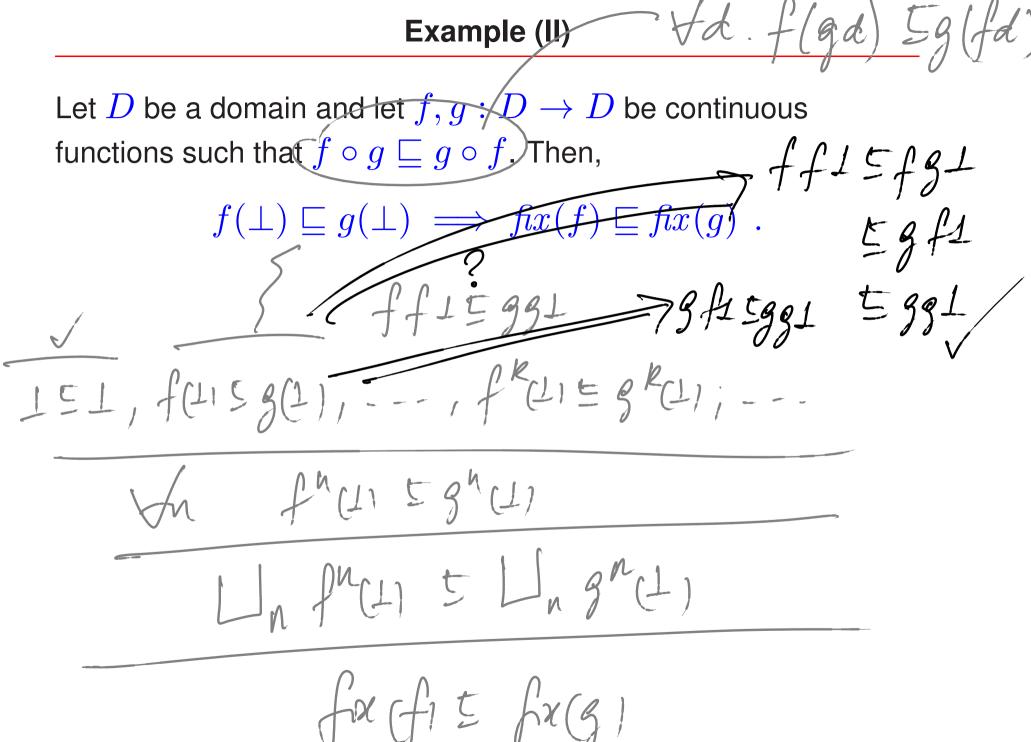
$$\implies f(x) \sqsubseteq d$$

$$\implies f(x) \in \downarrow(d)$$

Hence,

$$fix(f) \in \downarrow(d)$$
.

Building chain-closed subsets (II)


Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

$$f^{-1}S = \{x \in D \mid f(x) \in S\}$$

is an chain-closed subset of D.

Example (II)

llhU

n(g) is a

Let D be a domain and let $f,g:D\to D$ be continuous functions such that $f\circ g\sqsubseteq g\circ f$. Then,

$$f(\bot) \sqsubseteq g(\bot) \implies fix(f) \sqsubseteq fix(g)$$

fixf, t fixes;

Proof by Scott induction.

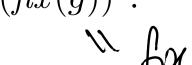
Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$

of D.

Since

_ the overse mass of an admissible

$$f(x) \sqsubseteq g(x) \Rightarrow g(f(x)) \sqsubseteq g(g(x)) \Rightarrow f(g(x)) \sqsubseteq g(g(x))$$


we have that

$$\delta(z)$$

$$f(fix(g)) \sqsubseteq g(fix(g))$$
.

$$\oint (f \alpha g)$$

Building chain-closed subsets (III)

Logical operations:

- If $S,T\subseteq D$ are chain-closed subsets of D then $S\cup T \qquad \text{and} \qquad S\cap T$ are chain-closed subsets of D.
- If $\{S_i\}_{i\in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i\in I} S_i$ is a chain-closed subset of D.
- If a property P(x, y) determines a chain-closed subset of $D \times E$, then the property $\forall x \in D$. P(x, y) determines a chain-closed subset of E.

Example (III): Partial correctness

Let $\mathcal{F}: State \longrightarrow State$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$.

For all $x, y \ge 0$,

$$\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow$$

$$\Longrightarrow \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto y].$$

oc factoral

partial

Recall that

$$\mathcal{F} = \mathit{fix}(f)$$
 where $f: (\mathit{State} \rightharpoonup \mathit{State}) \to (\mathit{State} \rightharpoonup \mathit{State})$ is given by
$$f(w) = \lambda(x,y) \in \mathit{State}. \ \begin{cases} (x,y) & \text{if } x \leq 0 \\ w(x-1,x \cdot y) & \text{if } x > 0 \end{cases}$$

Proof by Scott induction.

We consider the admissible subset of $(State \rightarrow State)$ given by

$$S = \left\{ w \middle| \begin{array}{c} \forall x, y \ge 0. \\ w[X \mapsto x, Y \mapsto y] \downarrow \\ \Rightarrow w[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto !x \cdot y] \end{array} \right\}$$

and show that

$$w \in S \implies f(w) \in S$$
.

Topic 5

PCF

Types

$$\tau ::= nat \mid bool \mid \tau \rightarrow \tau$$

Types

$$\tau ::= nat \mid bool \mid \tau \rightarrow \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$

Types

$$\tau ::= nat \mid bool \mid \tau \rightarrow \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
 $\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$

Types

$$\tau ::= nat \mid bool \mid \tau \rightarrow \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
 $\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$
 $\mid x \mid \mathbf{if} M \mathbf{then} M \mathbf{else} M$

Types

$$\tau ::= nat \mid bool \mid \tau \rightarrow \tau$$

Expressions

$$egin{array}{lll} M & ::= & \mathbf{0} & | & \mathbf{succ}(M) & | & \mathbf{pred}(M) \ & | & \mathbf{true} & | & \mathbf{false} & | & \mathbf{zero}(M) \ & | & x & | & \mathbf{if} & M & \mathbf{then} & M & \mathbf{else} & M \ & | & \mathbf{fn} & x : \tau \cdot M & | & M & M & | & \mathbf{fix}(M) \end{array}$$

where $x \in \mathbb{V}$, an infinite set of variables.

Types

$$\tau ::= nat \mid bool \mid \tau \rightarrow \tau$$

Expressions

$$egin{array}{lll} M & ::= & \mathbf{0} & | & \mathbf{succ}(M) & | & \mathbf{pred}(M) \ & | & \mathbf{true} & | & \mathbf{false} & | & \mathbf{zero}(M) \ & | & x & | & \mathbf{if} & M & \mathbf{then} & M & \mathbf{else} & M \ & | & \mathbf{fn} & x : au . & M & | & M & | & \mathbf{fix}(M) \end{array}$$

where $x \in \mathbb{V}$, an infinite set of variables.

Technicality: We identify expressions up to α -conversion of bound variables (created by the \mathbf{fn} expression-former): by definition a PCF term is an α -equivalence class of expressions.

PCF typing relation, $\Gamma \vdash M : \tau$

- Γ is a type environment, *i.e.* a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- *M* is a term
- τ is a type.

PCF typing relation, $\Gamma \vdash M : \tau$

- Γ is a type environment, *i.e.* a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- M is a term
- τ is a type.

Notation:

```
M: \tau means M is closed and \emptyset \vdash M: \tau holds. \mathrm{PCF}_{\tau} \stackrel{\mathrm{def}}{=} \{M \mid M: \tau\}.
```

PCF typing relation (sample rules)

$$(:_{\mathrm{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin dom(\Gamma)$$

PCF typing relation (sample rules)

$$(:_{\text{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin dom(\Gamma)$$

$$(:_{app}) \frac{\Gamma \vdash M_1 : \tau \to \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 M_2 : \tau'}$$

PCF typing relation (sample rules)

$$(:_{\mathrm{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin dom(\Gamma)$$

(:app)
$$\frac{\Gamma \vdash M_1 : \tau \to \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 M_2 : \tau'}$$

$$(:_{\text{fix}}) \quad \frac{\Gamma \vdash M : \tau \to \tau}{\Gamma \vdash \mathbf{fix}(M) : \tau}$$

$$h = fx(\lambda k.\lambda x.\lambda t. f(240t) the f z$$

the g x (pred t) (k x (pred t))

Partial recursive functions in PCF

Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

$$\begin{cases} h \times 0 = fx \\ h \times (y+1) = g \times g (h \times y) \\ h \times t = f(x) \end{cases}$$

$$\begin{cases} h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

$$\begin{cases} h \times 0 = fx \\ h \times (y+1) = g \times g (h \times y) \\ h \times (y+1) = g \times g (h \times y) \end{cases}$$

$$\begin{cases} h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

$$\begin{cases} h(x,y+1) = g(x,y,h(x,y)) \\ h \times (y+1) = g \times g (h \times y) \\ h \times (y+1) = g \times g (h \times y) \end{cases}$$

$$\begin{cases} h(x,y+1) = g(x,y,h(x,y)) \\ h \times (y+1) = g \times g (h \times y) \\ h \times (y+1) = g \times g (h \times y) \end{cases}$$

$$\begin{cases} h \times (y+1) = g \times g (h \times y) \\ h \times (y+1) = g \times g (h \times y) \end{cases}$$

$$\begin{cases} h \times (y+1) = g \times g (h \times y) \\ h \times (y+1) = g \times g (h \times y) \end{cases}$$

Partial recursive functions in PCF

Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

Minimisation.

$$m(x) = \text{the least } y \ge 0 \text{ such that } k(x,y) = 0$$