
Tarski’s Fixed Point Theorem

Let f : D →D be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

fix (f) =
⊔

n≥0

fn(⊥).

• Moreover, fix (f) is a fixed point of f , i.e. satisfies

f
(
fix (f)

)
= fix (f), and hence is the least fixed point of f .
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[[while B do C]]

[[while B do C]]

= fix (f[[B]],[[C]])

=
⊔

n≥0 f[[B]],[[C]]
n(⊥)

= λs ∈ State.






[[C]]k(s) if k ≥ 0 is such that [[B]]([[C]]k(s)) = false

and [[B]]([[C]]i(s)) = true for all 0 ≤ i < k

undefined if [[B]]([[C]]i(s)) = true for all i ≥ 0
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Topic 3

Constructions on Domains
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Discrete cpo’s and flat domains

For any set X , the relation of equality

x ⊑ x′
def
⇔ x = x′ (x, x′ ∈ X)

makes (X,⊑) into a cpo, called the discrete cpo with underlying

set X .
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Discrete cpo’s and flat domains

For any set X , the relation of equality

x ⊑ x′
def
⇔ x = x′ (x, x′ ∈ X)

makes (X,⊑) into a cpo, called the discrete cpo with underlying

set X .

Let X⊥
def
= X ∪ {⊥}, where ⊥ is some element not in X . Then

d ⊑ d′
def
⇔ (d = d′) ∨ (d = ⊥) (d, d′ ∈ X⊥)

makes (X⊥,⊑) into a domain (with least element ⊥), called the

flat domain determined by X .
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Binary product of cpo’s and domains

The product of two cpo’s (D1,⊑1) and (D2,⊑2) has underlying

set

D1 ×D2 = {(d1, d2) | d1 ∈ D1 & d2 ∈ D2}

and partial order ⊑ defined by

(d1, d2) ⊑ (d′1, d
′
2)

def
⇔ d1 ⊑1 d

′
1 & d2 ⊑2 d

′
2 .

(x1, x2) ⊑ (y1, y2)

x1 ⊑1 y1 x2 ⊑2 y2
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Lubs of chains are calculated componentwise:

⊔

n≥0

(d1,n, d2,n) = (
⊔

i≥0

d1,i,
⊔

j≥0

d2,j) .

If (D1,⊑1) and (D2,⊑2) are domains so is (D1 ×D2,⊑)
and ⊥D1×D2

= (⊥D1
,⊥D2

).

43



Continuous functions of two arguments

Proposition. Let D, E, F be cpo’s. A function

f : (D × E)→ F is monotone if and only if it is monotone in

each argument separately:

∀d, d′ ∈ D, e ∈ E. d ⊑ d′ ⇒ f(d, e) ⊑ f(d′, e)

∀d ∈ D, e, e′ ∈ E. e ⊑ e′ ⇒ f(d, e) ⊑ f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains

in each argument separately:

f(
⊔

m≥0

dm , e) =
⊔

m≥0

f(dm, e)

f(d ,
⊔

n≥0

en) =
⊔

n≥0

f(d, en).
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• A couple of derived rules:

x ⊑ x′ y ⊑ y′

f(x, y) ⊑ f(x′, y′)
(f monotone)

f(
⊔

m xm,
⊔

n yn) =
⊔

k f(xk, yk)
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