
Distributed	systems
Lecture	8:	PubSub; Security;	NASD/AFS/Coda

Dr Robert	N.	M.	Watson

1

Last	time
• Looked	at	replication	in	distributed	systems
• Strong	consistency:
– Approximately	as	if	only	one	copy	of	object
– Requires	considerable	coordination	on	updates
– Transactional	consistency	&	quorum	systems

• Weak	consistency:	
– Allow	clients	to	potentially	read	stale	values
– Some	guarantees	can	be	provided	(FIFO,	eventual,	
session),	but	at	additional	cost	to	availability

• Amazon/Google	case	studies:	Dynamo,	
MapReduce,	BigTable,	Spanner.

2

Publish-subscribe	(PubSub)
• Get	more	flexibility	with	publish-subscribe:

– Publishers advertise	and	publish	events
– Subscribers register	interest	in	topics (i.e.	properties	of	events)
– Event-service notifies	subscribers	of	relevant	published	events

• Similar	to	reliable	multicast,	without	ordering	focus:
– Asynchronous	structure
– Allows	one-to-many	communication
– Dynamic	membership:	publishers/subscribers	joining/leaving

• Sometimes	described	as	content-centric	networking
– Engages	not	just	hosts,	but	also	network	routers
– Focus	is	on	data,	not	network	messaging
– Reliability and	persistency part	of	the	programming	model

• In	effect	the	model	being	implemented	by	many	Content	
Distribution	Networks	(CDNs)	such	as	Akami,	Netflix

3

Publish-subscribe:	pros	and	cons
• PubSub useful	for	‘ad	hoc’	systems	such	as	embedded	

systems	or	sensor	networks:
– Client(s)	can	‘listen’	for	occasional	events
– Don’t	need	to	define	semantics	of	entire	system	in	advance	(e.g.	

what	to	do	if	get	event	<X>)
– Promoted	in	recent	research	for	higher-level	applications

• Leads	to	natural	“reactive”	programming:
– When	<X>,	<Y>	occur	then	do	<Z>
– Event-driven	systems	like	Apama can	help	understand	business	

processes	in	real-time
• But:	

– Can	be	awkward	to	use	if	application	doesn’t	fit
– And	difficult	to	make	perform	well…

4

Distributed-system	security
• Distributed	systems	span	administrative	domains;	content	from	

many	users	and	organizations
• Natural	to	extend	authentication,	access	control,	audit,	to	

distributed	system,	but	can	we:
– Distribute	local	notions	of	a	user over	many	machines?
– Enforce	system-wide	properties	such	as	personal	data	privacy?
– Allow	systems	operated	by	different	parties	to	interact	safely?
– Not	require	that	networks	be	safe	from	monitoring/tampering?
– Tolerate	compromise	a	subset	of	nodes	in	the	system?
– Provide	reliable	service	to	most	users	even	when	under	attack?
– Accept	and	tolerate	nation-state	actors	as	adversaries?

• For	a	system	to	offer	secure	services,	it	must	(itself)	be	secure
– Trusted	Computing	Base	(TCB)	– the	minimum	software	(or	hardware)	

required	for	a	system	to	be	secure

5

Access	control

• Distributed	systems	may	want	to	allow	access	to	
resources	based	on	a	security	policy

• As	with	local	systems,	three	key	concepts:
– Identification:	who	you	are	(e.g.	user	name)
– Authentication:	proving	who	you	are	(e.g.	password)
– Authorization:	determining	what	you	can	do

• Can	consider	authority	to	cover	actions	an	
authenticated	subject	may	perform	on	objects
– Access	Matrix =	set	of	rows,	one	per	subject,	where	
each	column	holds	allowed	operations	on	some	object	

6

Recall:	access-control	matrix

• A(i,	j)
– Rows	represent	principals	(sometimes	groups)
– Columns	represent	objects
– Cell(i,	j)	contain	access	rights	of	row	i on	object	j

• Access	matrix	is	typically	large	&	sparse:
– Just	keep	non-NULL	entries	by	column	or	by	row

7

Object1 Object2 Object3 …

User1 +read

User2 +read +write +read

Group1 -read +read	+write
…

Access	control	lists	(ACLs)

• Keep	columns:	for	each	object,	keep	list	of	
subjects	and	allowable	access

• ACLs	stored	with	objects	(e.g.	local	filesystem)
• Key	primitives:	get/set
• Like	a	guest	list	on	the	door	of	a	night	club
• ACL	change	should	(arguably)	immediately	
grant/deny	further	access
–What	does	this	mean	for	distributed	systems?

8

Capabilities

• Capabilities	are	unforgeable tokens	of	authority
– Keep	rows:	for	each	subject	S,	keep	list	of	objects	/	
allowable	accesses

– Capabilities	stored	with	subjects	(e.g.	processes)
– Bit	like	a	key	or	access	card	that	you	carry	around

• Key	primitive:	delegation
– Client	can	delegate	capabilities	it	holds	to	other	clients	
(or	servers)	in	the	system	to	act	on	its	behalf

– Downside:	revocation	may	now	be	more	complex

9

Access	control	in	distributed	systems

• Single	systems	often	have	small	number	of	users	(subjects)	and	
large	number	of	objects:
– E.g.	a	hundred	of	users	in	a	Unix	system
– Track	subjects	(e.g.	user	IDs)	and	store	ACLs	with	objects	(e.g.	files)

• Distributed	systems	are	large	&	dynamic:
– Can	have	huge	(and	unknown?)	number	of	users
– Interactions	via	network	– no	explicit	‘log	in’	or	per-user	process

• Capability	model	is	a	more	natural	fit:
– Client	presents	capability	with	request	for	operation
– System	only	performs	operation	if	capability	checks	out
– Avoid	synchronous	RPCs	to	check	identities/access-control	policies

• Not	mutually	exclusive:	ACLs	as	a	policy	for	granting	capabilities
• Can’t	trust	nodes	or	links:	rely	on	cryptography	with	secret	keys

10

Cryptographic	capabilities
• How	can	we	make	capabilities	unforgeable?
• Capability	server	could	issue	capabilities

– User	presents	credentials	(e.g.,	username,	password)	and	
requests	capabilities	representing	specific	rights

– e.g.	capability	server	has	secret	key	k and	a	one-way	function	f()
– Issues	a	capability	<ObjID,	access,	f(k,	ObjID,	access)	>
– Simple	example	is	f(k,o,a)	=	SHA256(k|o|a)

• Client	transmits	capability	with	request
– If	object	server	knows	k,	can	check	operation

• Can	use	same	capability	to	access	many	servers
– And	one	server	can	use	it	on	your	behalf		(e.g.,	web	tier	can	

request	objects	from	storage	tier	on	user’s	behalf)
• More	mature	scheme	might	use	public	key	crypto	(why?)

11

Distributed	capability	example:	NASD

• Network-Attached	Secure	Disks	(NASD)	– Gibson,	et	al	1997	(CMU)
• Clients	access	remote	directly	disks	rather	than	via	through	servers
• “File	Manager”	grants	client	systems	capabilities	delegating	direct	

access	to	objects	on	network-attached	disks
12

Block	
Server

Client

File	Manager

File	Manager	accounts:	
UserID1,	PW1
UserID2,	PW2
…

Block	
Server

2.	Client	encloses	capability
with	request	to	authorize	it

1.	Client	exchanges	credentials	for	
cryptographic	capability	to	object

File	Manager	
and	Block	

Server	agree	
on	secret	k

Capabilities:	pros	and	cons
• Relatively	simple	and	pretty	scalable
• Allow	anonymous	access	(i.e.	server	does	not	need	to	
know	identity	of	client)
– And	hence	easily	allows	delegation

• However	this	also	means:
– Capabilities	can	be	stolen	(unauthorized	users)…
– …	and	are	difficult	to	revoke	(like	someone	cutting	a	copy	
of	your	house	key)

• Can	address	these	problems	by:
– Having	time-limited	validity	(e.g.	30	seconds)
– Incorporating	version	into	capability,	and	storing	version	
with	the	object:	increasing	version	=>	revoke	all	access

13

Combining	ACLs	and	capabilities

• Recall	one	problem	with	ACLs	was	inability	to	
scale	to	large	number	of	users	(subjects)

• However	in	practice	we	may	have	a	small-ish
number	of	authority	levels
– e.g.	moderator	versus	contributor	on	chat	site

• Role-Based	Access	Control	(RBAC):
– Have	(small-ish)	well-defined	number	of	roles
– Store	ACLs	at	objects	based	on	roles
– Allow	subjects	to	enter roles	according	to	some	rules
– Issue	capabilities	which	attest	to	current	role	

14

Role-based	access	control	(RBAC)
• General	idea	is	very	powerful
– Separates	{	principal→	role },		{	role →	privilege }
– Developers	of	individual	services	only	need	to	focus	
on	the	rights	associated	with	a	role

– Easily	handles	evolution	(e.g.	an	individual	moves	
from	being	an	undergraduate	to	an	alumnus)

• Possible	to	have	sophisticated	rules	for	role	entry:
– e.g.	enter	different	role	according	to	time	of	day
– or	entire	role	hierarchy	(1B	student	<=	CST	student)
– or	parametric/complex	roles	(“the	doctor	who	is	
currently	treating	you”)

15

Single-system	sign	on
• Distributed	systems	involve	many	machines

– Frustrating	to	have	to	authenticate	to	each	one!
• Single-system	sign	on	eases	user	burden	while	maintaining	security

– E.g.	Kerberos,	Microsoft	Active	Directory	let	you	authenticate	to	a	
single	domain	controller

– Bootstrap	using	a	password	or	private	key	/	certificate	on	smart	card
– Get	a	session	key	and	a	ticket (~=	a	capability)
– Ticket	is	for	access	to	the	ticket-granting	server	(TGS)
– When	wish	to	e.g.	log	on	to	another	machine,	or	access	a	remote	

volume,	s/w	asks	TGS for	a	ticket	for	that	resource
– Notice:	principalsmight	could	be	users	…	or	services

• Other	wide-area	“federated”	schemes
– Multi-realm	Kerberos,	OpenID,	Shibboleth

16

AFS	and	Coda
• Two	CMU	distributed	file	systems	that	helped	create	
our	understanding	of	distributed-system	scalability	
– AFS:	Andrew	File	System	“campus-wide”	scalability
– Coda:	Add	write	replication,	weakly	connected	or	fully	
disconnected	operation	for	mobile	clients

• Scale	distributed	file	systems	to	global	scale	using	a	
mature	set	of	concurrent	and	distributed-system	ideas

• RPC,	close-to-open	semantics,	pure	and	impure	names,	
explicit	cache	management,	security,	version	vectors,	
optimistic	concurrency,	multicast,	journaling,	…

17

The	Andrew	File	System	(AFS)
• Carnegie	Mellon	University	(1980s)	address	performance,	

scalability,	security	weaknesses	of	NFS
• Global-scale	distributed	filesystem

– /afs/cs.cmu.edu/user/rnw,	/afs/ibm.com/public
– Cells transparently	incorporate	dozens	or	hundreds	of	servers
– Clients	transparently	merge	namespaces	and	hide	file	

replication/migration
– Authentication/access	control	w/Kerberos,	group	servers
– Cryptographic	protection	of	all	communications
– Mature	non-POSIX	filesystem	semantics	(close-to-open,	ACLs)

• Still	in	use	at	large	institutions	today;	open	sourced	as	OpenAFS
• Inspiration	many	aspects	of	Distributed	Computing	Environment	

(DCE),	Microsoft’s	Distributed	File	System	(DFS),	and	NFSv4

18

File	server pool

Ubik quorum	
databases

AFS3	per-cell	architecture
• Client-server	and	server-server	RPC
• Ubik quorum	database	for	authentication,	

volume	location,	and	group	membership
• Namespace	partitioned	into	volumes;	e.g.,

/afs/cmu.edu/user/rnw/public_html
traverses	four	volumes

• Unique	ViceIDs:	{CellID,	VolumeID,	FID}
• Volume	servers	allow	limited	redundancy	

or	higher-performance	bulk	file	I/O:
– read-write	on	a	single	server (~rnw)
– read-only	replicas	on	multiple	servers (/bin)

• Inter-server	snapshotting	allows	in-use	
volumes	to	be	migrated	(with	client	help)

19

DB	server

DB	server DB	server

File	serverFile	server

File	server

File	server

Local	cache	files

Persistent	client-side	caching	in	AFS

• AFS	implements	persistent	caches	on	client-side	disks
• Vnode operations	on	remote	files	are	redirected	to	
local	container	files	for	local	I/O	performance

• Non-POSIX	Close-to-open	semantics	allow	writes	to	be	
sent	to	the	server	only	on	close()

20

Synthesized	/afs namespace

a

/

afs
andrew.cmu.edu

athena.mit.edu

usr cache

b

c

a
b

c

AFS	callback	promises

• Servers	issue	callback	promises	on	files	held	in	client	caches
• When	a	file	server	receives	a	write-close()	from	one	client,	it	

issues	callbacks to	invalidate	copies	in	other	client	caches
• Unlike	NFS,	no	synchronous	RPC	is	required	when	opening	a	

cached	file:	if	callback	is	not	been	broken,	cache	is	fresh
• However,	client	write-close()	is	synchronous:	can’t	return	

until	callbacks	acknowledged	by	other	clients	– why?
21

Client	1

Client	2

Client	3

File	server

a2

a1

a1

a2

The	Coda	File	System
• Developed	at	Carnegie	Mellon	University	in	the	1990s
• Starting	point:	open-sourced	AFS2	from	IBM
• Improve	availability through	optimistic	replication	and	
client-side	caching/journaling:
– Improve	availability	through	read-write	replication
– Improve	performance	for	weakly	connected	clients
– Support	mobile	(sometimes)	fully	disconnected	clients

• Exploit	new	network	features	to	improve	performance:
– Multicast	RPC	to	efficiently	send	RPCs	to	groups	of	servers

• Key	design	challenge:	trade	off	exposing	weak	
consistency	to	user	in	return	for	availability

22

Coda	read-write	server	replication
• Volume	Storage	Groups	(VSGs)	rather	than	per-volume	servers
• Each	file	has	a	version	vector

– Like	a	vector	clock	only	per-object	 rather	than	per	process
– Each	vector	entry	corresponds	 to	one	VSG	server’s	version	of	the	file

• Reachable	VSG	subset	is	the	Accessible	Volume	Storage	Group	(AVSG)
• Clients	read	from	any	server,	multicast	writes to	all

– When	fully	online	 (AVSG	=	VSG)	,	close()	is	synchronous;	writes	ordered
– On	partition/server	outage	(AVSG	⊂ VSG),	writes	are	still	permitted
– As	servers	recover,	client	access	triggers	server-server	resolution
– If	version	vectors	allow	causal	order	to	be	established,	automatic	resolution
– Most	non-causal	directory	conflicts	can	be	automatically	resolved	(why?)
– For	files,	user-directed	or	application-specific	conflict	resolution	is	required

• What	if	a	user	is	asked	to	resolve	a	conflict	on	a	file	they	didn’t	modify?

23

Coda	disconnected	operation
• Mobile	computing	– but	devices	had	weak	or	intermittent	connectivity
• Coda	allowed	client	operations	to	continue	against	the	persistent	cache	

even	when	operating	disconnected	(AVSG	=	∅)
• Hoarding:	prior	to	going	offline,	users	can	provide	Coda	with	policy	as	to	

which	files	should	be	preemptively	loaded	into	the	cache	(e.g.,	user	~)
• Offline	writes	are	logged	in	the	Client	Modification	Log	(CML)

– When	going	back	online,	 CML	is	replayed	against	AVSG	 (reintegration)
– CML	optimization	deletes	NOP	sequences:	e.g.,	create+delete a	temp	file
– Client-server	conflicts,	as	with	server-server,	are	detected	via	version	vectors
– User/application	must	handle	conflicts	that	can’t	be	resolved	automatically
– Is	this	better	than	the	server-server	conflict	resolution	 case?

• If	Ethernet	unplugged,	software	builds	go	faster	– why?
– Clever	trick	for	weakly	connected	clients:	if	network	is	bottleneck,	take	volume	

offline	and	log	changes,	trickling	 them	back	asynchronously	until	 caught	up
• These	ideas	have	influenced	systems	like	Microsoft’s	“offline	folders”

24

Summary	(1)
• Distributed	systems	are	everywhere
• Core	problems	include:
– Inherently	concurrent	systems
– Any	machine	can	fail…	
– …	as	can	the	network	(or	parts	of	it)
– And	we	have	no	notion	of	global	time

• Despite	this,	we	can	build	systems	that	work
– Basic	interactions	are	request-response
– Can	build	synchronous	RPC/RMI	on	top	of	this	…	
– Or	asynchronous	message	queues	or	pub/sub

25

Summary	(2)

• Coordinating	actions	of	larger	sets	of	computers	
requires	higher-level	abstractions
– Process	groups	and	ordered	multicast
– Consensus	protocols,	and	
– Replication	and	Consistency

• Various	middleware	packages	(e.g.	CORBA,	EJB)	
provide	implementations	of	many	of	these:
– But	worth	knowing	what’s	going	on	“under	the	hood”

• Recent	trends	towards	even	higher-level:
– MapReduce and	friends

26

