
10/21/15

1

Concurrent	systems
Lecture	3:	CCR,	monitors,	 and

concurrency	in	practice

Dr Robert	N.	M.	Watson

1

Reminder	from	last	time

• Implementing	mutual	exclusion
• Hardware	support	for	atomicity,	condition	
synchronisation

• Semaphores	for	mutual	exclusion,	condition	
synchronisation,	and	resource	allocation

• Two-party	and	generalised producer-
consumer	relationships

• Multi-Reader	Single-Writer	(MRSW)	locks

2

10/21/15

2

From	last	time:	Semaphores	summary

• Powerful	abstraction	for	implementing	
concurrency	control:
– mutual	exclusion	&	condition	synchronization

• Better	than	read-and-set()…	but correct	use	
requires	considerable	care	
– e.g.	forget	to	wait(),	can	corrupt	data
– e.g.	forget	to	signal(),	can	lead	to	infinite	delay
– generally	get	more	complex	as	add	more	semaphores

• Used	internally	 in	some	OSes and	libraries,	but	
generally	deprecated	for	other	mechanisms…

3

Semaphores	 are	a	low-level	implementation	primitive	– they	
say	what	to	do,	rather	than	describe	programming	goals

This	time

• Alternatives	to	simple	semaphores/locks:
– Conditional	 critical	regions	(CCRs);	Monitors
– Condition	 variables;	signal-and-wait	vs.	signal-and-
continue	semantics

• Concurrency	primitives	in	practice
• Concurrency	primitives	wrap-up

4

10/21/15

3

Conditional	Critical	Regions

shared int A, B, C;
region A, B {

await(/* arbitrary condition */);
// critical code using A and B

}

5

• Compiler	automatically	declares	and	manages	underlying	
primitives	for	mutual	exclusion	or	synchronization	
– e.g.	wait/signal,	read/await/advance,	…	

• Easier	for	programmer	(c/f	previous	implementations)

• Implementing synchronisationwith	locks	is	difficult
• Only	the	developer	knows	what	data	is	protected	by	

which	locks
• One	early	(1970s)	effort	to	address this	problemwas	CCRs

– Variables	can	be	explicitly	declared	as	‘shared’
– Code	can	be	tagged	as	using	those	variables,	e.g.

CCR	example:	Producer-Consumer

• Explicit	(scoped)	declaration	of		critical	sections
– automatically	acquire	mutual	exclusion	lock	on	region	entry

• Powerful	await():	any	evaluable	predicate	

6

// producer thread
while(true) {
item = produce();
region in, out, buffer {

await((in–out) < N);
buffer[in % N] = item;
in = in + 1;

}
}

// consumer thread
while(true) {
region in, out, buffer {

await((in-out) > 0);
item = buffer[out%N];
out = out + 1;

}
consume(item);

}

shared int buffer[N];
shared int in = 0; shared int out = 0;

10/21/15

4

CCR	pros	and	cons
• On	the	surface	seems	like	a	definite	step	up
– Programmer	focuses	on	variables to	be	protected,	
compiler	generates	appropriate	semaphores	(etc)

– Compiler	can	also	check	 that	shared	variables	are	
never	accessed	 outside	a	CCR

– (still	rely	on	programmer	annotating	correctly)
• But	await(<expr>)	 is	problematic…
– What	to	do	if	the	(arbitrary)	<expr>	is	not	true?	
– very	difficult	to	work	out	when	it	becomes	true?
– Solution	was	to	leave	region	&	try	to	re-enter:	this	is	
busy	waiting,	which	is	very	inefficient…

7

Monitors
• Monitors are	similar	to	CCRs	(implicit	mutual	
exclusion),	but	modify	them	in	two	ways
– Waiting	is	limited	to	explicit	condition	 variables
– All	related	routines	are	combined	together,	along	with	
initialization	code,	in	a	single	construct

• Idea	is	that	only	one	thread	can	ever	be	executing	
‘within’	the	monitor
– If	a	thread	invokes	a	monitor	method,	it	will	block	(queue)	
if	there	is	another	 thread	active	inside

– Hence	all	methods	within	the	monitor	can	proceed	on	the	
basis	that	mutual	exclusion	has	been	ensured

• Java’s	synchronizedprimitive	implements	monitors

8

10/21/15

5

Example	Monitor	syntax

9

monitor <foo> {

// declarations of shared variables

// set of procedures (or methods)
procedure P1(...) { ... }
procedure P2(...) { ... }
...
procedure PN(...) { ... }

{
/* monitor initialization code */

}

}

All	related	data	and	
methods	kept	together

Shared	variables	can	be	
initialized	here

Invoking	any	procedure	
causes	an	[implicit]	mutual	
exclusion	lock	to	be	taken

Condition	Variables
• Mutual	exclusion	not	always	sufficient
– e.g.	may	need	to	wait	for	a	condition	to	occur

• Monitors	allow	condition	variables
– Explicitly	declared	&	managed	by	programmer
– Support	three	operations:

10

wait(cv) {
suspend thread and add it to the queue
for cv; release monitor lock

}
signal(cv) {

if any threads queued on cv, wake one;
}
broadcast(cv) {

wake all threads queued on cv;
}

10/21/15

6

Monitor	Producer-Consumer	solution?	

11

monitor ProducerConsumer {
int in, out, buf[N];
condition notfull = TRUE, notempty = FALSE;

procedure produce(item) {
if ((in-out) == N) wait(notfull);
buf[in % N] = item;
if ((in-out) == 0) signal(notempty);
in = in + 1;

}
procedure int consume() {

if ((in-out) == 0) wait(notempty);
item = buf[out % N];
if ((in-out) == N) signal(notfull);
out = out + 1;
return(item);

}
/* init */ { in = out = 0; }
}

If	buffer	is full	(in==out+N),	
must	wait	for	consumer

If	buffer	was full	before,	
signal	the	producer

If	buffer	is empty	(in==out),	
must	wait	for	producer

If	buffer	was empty	(in==out),	
signal	the	consumer

Does	this	work?
• Depends	on	implementation	of	wait()	&	signal()
• Imagine	two	threads,	T1and	T2
– T1 enters	the	monitor	and	calls	wait(C)	– this	suspends	T1,	
places	it	on	the	queue	 for	C,	and	unlocks	 the	monitor

– Next	T2 enters	the	monitor,	and	invokes	signal(C)
– Now	T1 is	unblocked	 (i.e.	capable	of	running	again)…	
– …	but	can	only	have	one	 thread	active	inside	a	monitor!

• If	we	let	T2 continue	(signal-and-continue),	T1must	
queue	for	re-entry	to	the	monitor	
– And	no	guarantee	it	will	be	next to	enter

• Otherwise	T2must	be	suspended	(signal-and-wait),	
allowing	T1 to	continue…

12

10/21/15

7

Signal-and-Wait	(“Hoare	Monitors”)

• Consider	a	queue	E to	enter	monitor
– If	monitor	is	occupied,	 threads	are	added	to	E
–May	not	be	FIFO,	but	should	 be	fair

• If	thread	T1 waits	on	C,	added	to	queue	C
• If	T2 enters	monitor	&	signals,	waking	T1
– T2 is	added	to	a	new	queue	S “in	front	of”	E
– T1 continues	 and	eventually	exits	(or	re-waits)

• Some	thread	on	S chosen	to	resume	
– Only	admit	a	thread	from	E when	S is	empty

13

Signal-and-Wait	pros	and	cons

• We	call	signal()	exactly	when	condition	is	true,	
then	directly	transfer	control	to	waking	thread
– Hence	condition	will	still	be	true!	

• But	more	difficult	to	implement…	
• And	can	be	difficult	to	reason	about	(a	call	 to	
signal	may or	may	not result	in	a	context	switch)
– Hence	we	must	ensure	that	any	invariants	are	
maintained	at	time	we	invoke	signal()

• With	these	semantics,	our	example	 is	broken:
– we	signal()	before	incrementing	in/out	

14

10/21/15

8

Monitor	Producer-Consumer	solution?	

15

monitor ProducerConsumer {
int in, out, buf[N];
condition notfull = TRUE, notempty = FALSE;

procedure produce(item) {
if ((in-out) == N) wait(notfull);
buf[in % N] = item;
if ((in-out) == 0) signal(notempty);
in = in + 1;

}
procedure int consume() {

if ((in-out) == 0) wait(notempty);
item = buf[out % N];
if ((in-out) == N) signal(notfull);
out = out + 1;
return(item);

}
/* init */ { in = out = 0; }
}

If	buffer	is	full	(in==out+N),	
must	wait	for	consumer

Same	code	as	slide	11

If	buffer	was	full	(in==out),	
signal	the	consumer

If	buffer	was full	before,	
signal	the	producer

If	buffer	is	empty	(in==out),	
must	wait	for	producer

Signal-and-Continue

• Alternative	semantics	introduced	by	Mesa	
programming	language	(Xerox	PARC)

• An	invocation	of	signal()	moves	a	thread	from	
the	condition	 queue	C to	the	entry	queue	E
– Invoking	threads	continues	 until	exits	(or	waits)

• Simpler	to	build…		but	now	not	guaranteed	
that	condition	 is	true	when	resume!
– Other	threads	may	have	executed	after	the	signal,	
but	before	you	continue

16

10/21/15

9

Signal-and-Continue	example

17

P1

P2

Thread	in	monitor

Thread	waits	for	condition

Buffer

Buffer	 is	full	(!notfull)

full

C1

Thread	waits	for	monitor

!full

P1 enters P1 blocks	
as	!notfull

C1 enters

P2 tries	to	enter,	
enqueued on	E

C1 removes	item,	
signals	notfull

full

P1 tries	to	enter,
enqueued on	E

P2 inserts	item,	
sets	!notfull

P1 unblocks	but	
!notfull

P2 enters

Buffer	 has	space	(notfull)

With	signal-and-continue	semantics,	
must	use	while instead	of	if in	case	

condition	becomes	false	while	
waiting

Signal-and-Continue	example
• Consider	multiple	producer-consumer	threads

1. P1	enters.	Buffer	is	full	so	blocks	on	queue	for	C
2. C1	enters.
3. P2	tries	to	enter;	occupied,	so	queues	on	E
4. C1	continues,	consumes,	and	signals	C	(“notfull”)
5. P1	unblocks;	monitor	occupied,	so	queues	on	E
6. C1	exits,	allowing	P2	to	enter
7. P2	fills	buffer,	and	exits	monitor
8. P1	resumes	and	tries	to	add	item	– BUG!

• Hence	must	re-test	condition:	
– i.e.	while((in-out)	==	N)	wait(notfull);

18

10/21/15

10

Monitor	Producer-Consumer	solution?	

19

monitor ProducerConsumer {
int in, out, buf[N];
condition notfull = TRUE, notempty = FALSE;

procedure produce(item) {
while ((in-out) == N) wait(notfull);
buf[in % N] = item;
if ((in-out) == 0) signal(notempty);
in = in + 1;

}
procedure int consume() {

while ((in-out) == 0) wait(notempty);
item = buf[out % N];
if ((in-out) == N) signal(notfull);
out = out + 1;
return(item);

}
/* init */ { in = out = 0; }
}

While buffer	is	full	
(in==out+N),	must	wait	 for	

consumer

if()	replaced	with	while()	for	conditions

If	buffer	was	full	(in==out),	
signal	the	consumer

If	buffer	was full	before,	
signal	the	producer

While buffer	is	empty	(in==out),	
must	wait	for	producer

Monitors:	summary
• Structured	concurrency	control
– groups	together	shared	data	and	methods
– (today	we’d	call	this	object-oriented)

• Considerably	simpler	 than	semaphores,	but	still	
perilous	 in	places

• May	be	overly	conservative	sometimes:	
– e.g.	for	MRSW	cannot	have	>1	reader	in	monitor
– Typically	must	work	around	with	entry	and	exit	
methods	(BeginRead(),	EndRead(),	BeginWrite(),	etc)

• Exercise:	 sketch	a	MRSW	monitor	
implementation

20

10/21/15

11

Concurrency	in	practice

• Seen	a	number	of	abstractions	for	
concurrency	control	
–Mutual	exclusion	and	condition	 synchronization	

• Next	let’s	look	at	some	concrete	examples:
– FreeBSD	kernels
– POSIX	pthreads (C/C++	API)	
– Java
– C#

21

Example:	FreeBSD	kernel
• Kernel	provides	spin	locks,	mutexes,	conditional	
variables,	reader-writer	+	read-mostly	locks

• A	variety	of	deferred	work	primitives
– “Fully	preemptive”	and	highly	threaded
(e.g.,	 interrupt	processing	in	threads)

• Interesting	debugging	tools
such	as	DTrace,	lock
contention	measurement,
lock-order	checking

• Concurrency	case	study	for
our	last	lecture

22

10/21/15

12

Example:	pthreads

• A	thread	 calling	 lock()	blocks	 if	the	mutex is	held
– trylock()	is	a	non-blocking	variant:	returns	 immediately;	
returns	0	if	lock	acquired,	or	non-zero	if	not.	

23

int pthread_mutex_init(pthread_mutex_t *mutex, ...);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Standard	(POSIX)	threading	API	for	C,	C++,	etc
• mutexes,	condition	 variables,	and	barriers

• Mutexes are	essentially	binary	semaphores:

Example:	pthreads

• No	proper	monitors:	must	manually	code	e.g.	

24

• Condition	variables are	Mesa-style:
int pthread_cond_init(pthread_cond_t *cond, ...);
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

pthread_mutex_lock(&M);
while(!condition)

pthread_cond_wait(&C,&M);
// do stuff
if(condition) pthread_cond_broadcast(&C);
pthread_mutex_unlock (&M);

10/21/15

13

Example:	pthreads

25

• Barriers: explicit	synchronization	mechanism
• Wait	until	all	threads	reach	some	point

pthread_barrier_init(&B, ..., NTHREADS);
for(i=0; i<NTHREADS; i++)

pthread_create(..., worker, ...);

worker() {
while(!done) {
// do work for this round
pthread_barrier_wait(&B);

}
}

int pthread_barrier_init(pthread_barrier_t *b, ..., N);
int pthread_barrier_wait(pthread_barrier_t *b);

Example:	Java	[original]

• Synchronization	inspired	by	monitors
– Objects	already	encapsulate	data	&	methods!

• Mesa-style,	but	no	explicit	 condition	variables	

26

public class MyClass {
//
public synchronized void myMethod() throws ...{
while(!condition)

wait();
// do stuff
if(condition)

notifyAll();
}

}

• Java	5	provides	many	additional	options…

10/21/15

14

Example:	C#

• Very	similar	 to	Java,	but	with	explicit	 arguments

27

public class MyClass {
//
public void myMethod() {
lock(this) {

while(!condition)
Monitor.Wait(this);

// do stuff
if(condition)
Monitor.PulseAll(this);

}
}

}

• Also	provides	spinlocks,	reader-writer	 locks,	
semaphores,	barriers,	event	synchronization,	…	

Concurrency	Primitives:	Summary
• Concurrent	systems	require	means	to	ensure:
– Safety (mutual	exclusion	in	critical	sections),	and
– Progress (condition	synchronization)

• Spinlocks	(busy	wait);	semaphores;	CCRs	and	monitors
– Hardware	primitives	for	synchronisation
– Signal-and-Wait	vs.	Signal-and-Continue

• Many	of	these	are	still	used	in	practice
– subtle	minor	differences	can	be	dangerous
– require	care	to	avoid	bugs
– E.g.,	“lost	wakeups”

• More	detail	on	implementation	in	our	case	study

28

10/21/15

15

Summary	+	next	time
• Alternatives	to	simple	semaphores/locks:
– Conditional	 critical	regions	(CCRs);	Monitors
– Condition	variables;	signal-and-wait	vs.	signal-and-
continue	semantics

• Concurrency	primitives	in	practice
• Concurrency	primitives	wrap-up

• Next	time:
– Problems	with	concurrency:	 deadlock,	livelock,	priorities
– Resource	allocation	graphs;	deadlock	 {prevention,	
detection,	recovery}

– Priority	 inversion;	priority	inheritance

29

