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Why Study Compilers? 

•  Although many of the basic ideas were 
developed over 50 years ago, compiler 
construction is still an evolving and active 
area of research and development. 

•  Compilers are intimately related to 
programming language design and evolution.  

•  Compilers are a Computer Science success 
story illustrating  the hallmarks of our field --- 
higher-level abstractions implemented with 
lower-level abstractions.  

•  Every Computer Scientist should have a basic 
understanding of how compilers work.  
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Compilation is a special kind of translation 

Source  
Program 
Text 

The compiler  
program for  
target  
“machine” 

Just text – no way to  
run program!  

We have a “machine” 
to run this!  
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•  be correct in the sense that meaning is preserved 
•  produce usable error messages 
•  generate efficient code 
•  itself be efficient 
•  be well-structured and maintainable  

A good compiler should … 

This course! 

OptComp, Part II Pick any 2? 
 
Just 1? 
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Mind The Gap 

•  “Machine” independent 
•  Complex syntax 
•  Complex type system 
•  Variables 
•  Nested scope 
•  Procedures, functions 
•  Objects  
•  Modules 
•  … 

 

•  “Machine” specific 
•  Simple syntax 
•  Simple types  
•  memory, registers, words 
•  Single flat scope  

High Level Language Typical Target Language 

Help!!! Where do we begin??? 
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The Gap, illustrated 
public class Fibonacci {
  public Fibonacci();
    Code:
       0: aload_0       
       1: invokespecial #1                  
       4: return        
  public static long fib(int);
    Code:
       0: iload_0       
       1: ifne          6
       4: lconst_1      
       5: lreturn       
       6: iload_0       
       7: iconst_1      
       8: if_icmpne     13
      11: lconst_1      
      12: lreturn       
      13: iload_0       
      14: iconst_1      
      15: isub          
      16: invokestatic  #2                  
      19: iload_0       
      20: iconst_2      
      21: isub          
      22: invokestatic  #2                  
      25: ladd          
      26: lreturn     

   public static void 
      main(java.lang.String[]);
    Code:
       0: aload_0       
       1: iconst_0      
       2: aaload        
       3: invokestatic  #3            
       6: istore_1      
       7: getstatic     #4                  
      10: new           #5 
      13: dup           
      14: invokespecial #6
      17: iload_1       
      18: invokestatic  #2 
      21: invokevirtual #7                  
      24: ldc           #8                  
      26: invokevirtual #9                  
      29: invokevirtual #10                 
      32: invokevirtual #11                 
      35: return        
}

public class Fibonacci {
    public static long fib(int m) {
        if (m == 0) return 1; 
        else if (m == 1) return 1; 
             else return 
                       fib(m - 1) + fib(m - 2);
    }
    public static void 
        main(String[] args) {
        int m = 
              Integer.parseInt(args[0]);
        System.out.println(
            fib(m) + "\n");
    }
}

javac Fibonacci.java
javap –c Fibonacci.class 

JVM bytecodes  
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The Gap, illustrated 

(* fib : int -> int *) 
let rec fib m =
    if m = 0 
    then 1 
    else if m = 1 
             then 1 
             else fib(m - 1) + fib (m - 2) 

ocamlc –dinstr fib.ml 

branch L2
L1: acc 0

push
const 0
eqint
branchifnot L4
const 1
return 1

L4: acc 0
push
const 1
eqint
branchifnot L3
const 1
return 1

L3: acc 0
offsetint -2
push
offsetclosure 0
apply 1
push
acc 1
offsetint -1
push
offsetclosure 0
apply 1
addint
return 1

L2: closurerec 1, 0
acc 0
makeblock 1, 0
pop 1
setglobal Fib!



OCaml VM bytecodes  

fib.ml 
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The Gap, illustrated 

#include<stdio.h>
 
int Fibonacci(int);
int main()
{
   int n;
   scanf("%d",&n);
   printf("%d\n", Fibonacci(n));
   return 0;
}
 
int Fibonacci(int n)
{
   if ( n == 0 ) return 0;
   else if ( n == 1 ) return 1;
   else return ( Fibonacci(n-1) + Fibonacci(n-2) );
} 

gcc –S fib.c 

fib.c 
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The Gap, illustrated 
.section __TEXT,__text,regular,pure_instructions
.globl _main
.align 4, 0x90

_main:                                  ## @main
.cfi_startproc

## BB#0:
pushq %rbp

Ltmp2:
.cfi_def_cfa_offset 16

Ltmp3:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp4:
.cfi_def_cfa_register %rbp
subq $16, %rsp
leaq L_.str(%rip), %rdi
leaq -8(%rbp), %rsi
movl $0, -4(%rbp)
movb $0, %al
callq _scanf
movl -8(%rbp), %edi
movl %eax, -12(%rbp)         ## 4-byte Spill
callq _Fibonacci
leaq L_.str1(%rip), %rdi
movl %eax, %esi
movb $0, %al
callq _printf
movl $0, %esi
movl %eax, -16(%rbp)         ## 4-byte Spill
movl %esi, %eax
addq $16, %rsp
popq %rbp
ret
.cfi_endproc


.globl _Fibonacci
.align 4, 0x90

_Fibonacci:                             ## @Fibonacci
.cfi_startproc

## BB#0:
pushq %rbp

Ltmp7:
.cfi_def_cfa_offset 16

Ltmp8:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp9:


x86/Mac OS  

.cfi_def_cfa_register %rbp
subq $16, %rsp
movl %edi, -8(%rbp)
cmpl $0, -8(%rbp)
jne LBB1_2

## BB#1:
movl $0, -4(%rbp)
jmp LBB1_5

LBB1_2:
cmpl $1, -8(%rbp)
jne LBB1_4

## BB#3:
movl $1, -4(%rbp)
jmp LBB1_5

LBB1_4:
movl -8(%rbp), %eax
subl $1, %eax
movl %eax, %edi
callq _Fibonacci
movl -8(%rbp), %edi
subl $2, %edi
movl %eax, -12(%rbp)         ## 4-byte Spill
callq _Fibonacci
movl -12(%rbp), %edi         ## 4-byte Reload
addl %eax, %edi
movl %edi, -4(%rbp)

LBB1_5:
movl -4(%rbp), %eax
addq $16, %rsp
popq %rbp
ret
.cfi_endproc


.section __TEXT,__cstring,cstring_literals

L_.str:                                 ## @.str
.asciz "%d"


L_.str1:                                ## @.str1

.asciz "%d\n"


.subsections_via_symbols
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Conceptual view of a typical compiler 

Front End Back End 

    ISA/OS 
targeted code 
 
(x86/unix, …)  

Source  
Program 
Text 

The compiler  

Operating System (OS) 

        Virtual Machine (VM)   
examples: JVM, Dalvik, .NET CLR 

ISA/OS  
independent  
 “byte code”  

  errors,  
warnings  

                ISA = Instruction Set Architecture  

Middle 
  End 

Key to bridging 
The Gap : divide and 
conquer.  The Big Leap  
is broken into small  
steps. Each step broken 
into yet smaller steps …  
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The shape of a typical “front end” 

Source 
Program 
Text 

Lexical  
analysis lexical  

tokens 

Parsing 

Lexical theory  
based on finite  
automaton 
and regular 
expressions 

Parsing Theory  
based on  
push-down  
automaton and  
context-free  
grammars 

AST +  
other 
info   

      AST 
= Abstract  
  Syntax Tree 

Semantic  
analysis 

Enforce  
“static sematics” 
of language: 
type checking, 
def/use rules, 
and so on (SPL!)  

report  
errors 

report  
errors 

report  
errors 

The AST output from the front-end should represent a legal program in the source language. 
(“Legal” of course does not mean “bug-free”!)  

SPL = Semantics of Programming Languages, Part 1B 
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Our view of the middle- and back-ends : 
a sequence of small transformations  

•  Each IL has its own semantics (perhaps informal)  
•  Each transformation (      ) preserves semantics (SPL!)  
•  Each transformation eliminates only a few aspects of the gap 
•  Each transformation is fairly easy to understand 
•  Some transformations can be described as “optimizations” 
•  We will associate each IL with its own interpreter/VM.  (Again, 

not something typically done in “industrial-strength” compilers.)   

 Intermediate  Languages 

IL-1  

Of course  
industrial-strength  
compilers may  
collapse  
many small-steps … 
   

IL-2  IL-k  . . . 

Compilers must be compiled 

Source  
Program 
Text 

The compiler  

A program in  
language A 
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A program in  
language B 

Something to ponder: 
A compiler is just a program. 
But how did it get compiled? 
The OCaml compiler is written in 
OCaml.  
 
How was the compiler compiled?  

A program in  
language C 
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Approach Taken 

•  We will develop a compiler for a fragment of L3 introduced 
in Semantics of Programming Languages, Part 1B.  

•  We will pay special attention to the correctness.  
•  We will compile only to Virtual Machines (VMs) of various 

kinds. See Part II optimising compilers for generating 
lower-level code. 

•  Our toy compiler is available on the course web site.  
•  We will be using the OCaml dialect of ML.  

•  Install from https://ocaml.org.  
•  See OCaml Labs : 

http://www.cl.cam.ac.uk/projects/ocamllabs. 
•  A side-by-side comparison of SML and OCaml Syntax: 

http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html 
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SML Syntax          vs.       OCaml Syntax 

type 'a tree =  
   Leaf of 'a  
  | Node of 'a * ('a tree) * ('a tree)  
 
let rec map_tree f = function  
  | Leaf a -> Leaf (f a)  
  | Node (a, left, right)  ->  
     Node(f a, map_tree f left, map_tree f right) 
 
let l =  
    map_tree (fun a -> [a]) [Leaf 17; Leaf 21]  
in  
    List.rev l 

datatype 'a tree =  
   Leaf of 'a  
  | Node of 'a * ('a tree) * ('a tree)  
 
fun map_tree f (Leaf a) = Leaf (f a)  
    | map_tree f (Node (a, left, right)) =  
       Node(f a, map_tree f left, map_tree f right) 
 
 
let val l =  
     map_tree (fn a => [a]) [Leaf 17, Leaf 21]  
in  
     List.rev l  
end  
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The Shape of this Course  
1.  Overview 
2.  Slang Front-end,  Slang demo.  Code tour.  
3.  Lexical analysis : application of Theory of Regular Languages and 

Finite Automata  
4.  Generating Recursive descent parsers 
5.  Beyond Recursive Descent Parsing I 
6.  Beyond Recursive Descent Parsing II 
7.  High-level “definitional” interpreter (interpreter 0).  Make the stack 

explicit and derive interpreter 2  
8.  Flatten code into linear array, derive interpreter 3 
9.  Move complex data from stack into the heap, derive the Jargon Virtual 

Machine (interpreter 4)  
10.  More on Jargon VM. Environment management. Static links on stack. 

Closures.  
11.  A few program transformations. Tail Recursion Elimination (TRE),  

Continuation Passing Style (CPS). Defunctionalisation (DFC)   
12.  CPS+TRE+DFC provides a formal way of understanding how we went 

from interpreter 0 to interpreter 2.  We fill the gap with interpreter 1 
13.  Bootstrapping  a compiler   
14.  Run-time environments, automated memory management (“garbage 

collection”)   
15.  Assorted topics : exceptions, objects, compilation units, linking  
16.  Assorted topics : simple optimisations,  stack machine vs. register 
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 LECTURE 2 
Slang Front End  

•  Slang (= Simple LANGuage)  
–  A subset of L3 from Semantics … 
–  … with very ugly concrete syntax  
–  You are invited to experiment with improvements to this 

concrete syntax.  
•  Slang : concrete syntax, types 
•  Abstract Syntax Trees (ASTs)  
•  The Front End 
•  A short in-lecture demo of slang and a brief tour 

of the code …  
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Clunky Slang Syntax (informal) 
uop := - | ~  
 
bop ::= + | - | * | < | = | && | ||  
 
t ::= bool | int | unit | (t) | t * t | t + t | t -> t | t ref  
 
e ::= () | n | true | false | x | (e) | ? |  
       e bop e |  uop e |  
       if e then else e end |  
       e e | fun (x : t) -> e end |  
       let x : t = e in e end | 
       let f(x : t) : t = e in e end |  
       !e | ref e | e := e | while e do e end | 
       begin e; e; … e end | 
       (e, e) | snd e | fst e |  
       inl t e | inr t e |  
       case e of inl(x : t) -> e | inr(x:t) -> e end  
         
       

(~ is boolean negation) 

 
(? requests an integer  
    input from terminal)  

(notice type annotation 
  on inl and inr constructs) 
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From slang/examples 

let fib( m : int) : int = 
    if m = 0
    then 1 
    else if m = 1 
            then 1 
             else fib (m - 1) + 
                     fib (m -2) 
              end 
     end
in 
    fib(?) 
end 

let gcd( p : int * int) : int =
    let m : int = fst p 
    in let  n : int = snd p 
    in  if m = n 
          then m 
          else if m < n 
                  then gcd(m, n - m)
                  else  gcd(m - n, n)
                  end
           end 
         end  
     end 
in gcd(?, ?) end 

The ? requests an integer input from the terminal  
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CONTEST!  

WIN A COPY!  

For the most elegant  
concrete syntax for the 
Slang fragment of L3. 
 
Reduce required keyword usage  
AND make some of the type 
annotations optional. 
 
Must be in OCaml. Must use  
ocamlyacc. 
 
No parser conflicts allowed!  

Slang Front End  

Input file foo.slang  

Remove “syntactic sugar”, file location information,  
and most type information  

Parsed AST (Past.expr) 

Static analysis : check types, and context- 
sensitive rules, resolve overloaded operators 

  

Parse (we use Ocaml versions of LEX and YACC, 
covered in Lectures 3 --- 6) 

Intermediate AST (Ast.expr)  

Parsed AST (Past.expr) 
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Parsed AST 
(past.ml) 

type var = string 

type loc = Lexing.position 

type type_expr = 
   | TEint
   | TEbool 
   | TEunit 
   | TEref of type_expr 
   | TEarrow of type_expr * type_expr
   | TEproduct of type_expr * type_expr
   | TEunion of type_expr * type_expr

type oper = ADD | MUL | SUB | LT | 
                   AND | OR | EQ | EQB | EQI

type unary_oper = NEG | NOT 


type expr = 
       | Unit of loc  
       | What of loc 
       | Var of loc * var
       | Integer of loc * int
       | Boolean of loc * bool
       | UnaryOp of loc * unary_oper * expr
       | Op of loc * expr * oper * expr
       | If of loc * expr * expr * expr
       | Pair of loc * expr * expr
       | Fst of loc * expr 
       | Snd of loc * expr 
       | Inl of loc * type_expr * expr 
       | Inr of loc * type_expr * expr 
       | Case of loc * expr * lambda * lambda 
       | While of loc * expr * expr 
       | Seq of loc * (expr list)
       | Ref of loc * expr 
       | Deref of loc * expr 
       | Assign of loc * expr * expr
       | Lambda of loc * lambda 
       | App of loc * expr * expr
       | Let of loc * var * type_expr * expr * expr
       | LetFun of loc * var * lambda 
                              * type_expr * expr
       | LetRecFun of loc * var * lambda 
                                * type_expr * expr

Locations (loc) are used in  
generating error messages.   
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static.mli, static.ml 

val infer : (Past.var * Past.type_expr) list -> (Past.expr * Past.type_expr) 

val check : Past.expr -> Past.expr   (* infer on empty environment *) 


•  Check type correctness  
•  Rewrite expressions to resolve EQ to EQI (for integers) 

or EQB (for bools).  
•  Only LetFun is returned by parser.  Rewrite to 

LetRecFun when function is actually recursive.   

Lesson : while enforcing “context-sensitive rules” we can resolve  
ambiguities that cannot be specified in context-free grammars.  
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Internal AST 
(ast.ml) 

type var = string 

type oper = ADD | MUL | SUB | LT | 
                     AND | OR | EQB | EQI

type unary_oper = NEG | NOT | READ 



type expr = 
       | Unit  
       | Var of var
       | Integer of int
       | Boolean of bool
       | UnaryOp of unary_oper * expr
       | Op of expr * oper * expr
       | If of expr * expr * expr
       | Pair of expr * expr
       | Fst of expr 
       | Snd of expr 
       | Inl of expr 
       | Inr of expr 
       | Case of expr * lambda * lambda 
       | While of expr * expr 
       | Seq of (expr list)
       | Ref of expr 
       | Deref of expr 
       | Assign of expr * expr 
       | Lambda of lambda 
       | App of expr * expr
       | LetFun of var * lambda * expr
       | LetRecFun of var * lambda * expr

and lambda = var * expr 


No locations, types. 
No Let,  EQ.                          

Is getting rid of types  
a bad idea? Perhaps 
a full answer would be  
language-dependent…  
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past_to_ast.ml 

let x : t  = e1 in e2 end  

(fun (x: t) -> e2 end) e1

This is done to simplify some of our code.   
Is it a good idea?   Perhaps not.  

val translate_expr : Past.expr -> Ast.expr 
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Lecture 3, 4, 5, 6  
Lexical Analysis and Parsing  

1.  Theory of Regular Languages and Finite 
Automata applied to lexical analysis.  

2.  Context-free grammars 
3.  The ambiguity problem 
4.  Generating Recursive descent parsers  
5.  Beyond Recursive Descent Parsing I 
6.  Beyond Recursive Descent Parsing II 

What problem are we solving? 

if m = 0 then 1 else if m = 1 then 1 else fib (m - 1) +  fib (m -2) 

Translate a sequence of characters  

into a sequence of tokens  

type token = 
     | INT of int| IDENT of string | LPAREN | RPAREN 
     | ADD | SUB | EQUAL | IF | THEN | ELSE 
     | … 
  

IF, IDENT “m”, EQUAL, INT 0, THEN, INT 1, ELSE, IF, 
IDENT “m”, EQUAL, INT 1, THEN, INT 1, ELSE, IDENT “fib”, 
LPAREN, IDENT “m”, SUB, INT 1, RPAREN, ADD, 
IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 2, RPAREN

implemented with some data type  
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Recall from Discrete Mathematics (Part 1A)  

Recall from Discrete Mathematics (Part 1A)  
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Recall from Discrete Mathematics (Part 1A)  
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Traditional Regular Language Problem 

Given a regular expression,  
 
 
 
and an input string    ,  determine if   
 
.  

e
w )(eLw∈

Construct a DFA M from e and test if it accepts w. 

Recall construction : regular expression à NFA à DFA 
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Something closer to the “lexing problem” 

Given an ordered list of regular expressions,  
 
 
 
and an input string    , find a list of pairs  
 
  
 
such that  
  
 
 
 
 
.  

1e 2e ke… 

nwwww ...)1 21=

w

)()2
jij eLw ∈

)(...),,(),,( ,2211 nn wiwiwi

rule)(priority )()3 sieLw jsj ≤→∈

match)(longest )(: sj eLuws ∉∀→
ε≠∈∀∀ ++ uwwwuj njj :)(prefix:)4 21 !

Why ordered?  Is “if” a  
variable or a keyword?  
Need priority to resolve 
ambiguity.  

Why longest match?   
Is “ifif” a variable or two  
“if” keywords?  
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Define Tokens with Regular Expressions (Finite 
Automata) 

Keyword: if 

1 i 2 f 3 

1 i 2 f 3 

0 

Σ-{f} 
Σ-{i} Σ 

This FA is really shorthand for:  

Σ “dead state” 
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Define Tokens with Regular Expressions (Finite 
Automata) 

Keyword:  
if 

1 i 2 f 3 KEY(IF)  

Keyword:  
then 

1 t 2 h 3 
KEY(then)  

5 

e 
n 

4 

Regular Expression Finite Automata Token 

Identifier:   
[a-zA-Z][a-zA-Z0-9]* 

1 2 [a-zA-Z] 

[a-zA-Z0-9] 

ID(s)  
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Define Tokens with Regular Expressions (Finite 
Automata) 

Regular Expression Finite Automata Token 

number:   
[0-9][0-9]* 

1 2 [0-9] 

[0-9] 

NUM(n)  

real:   
([0-9]+ ‘.’ [0-9]*) 
  | ([0-9]* ‘.’ [0-9]+) 

1 

3 

[0-9] NUM(n)  2 
[0-9] 

[0-9] 
. 

4 

. 

[0-9] 5 [0-9] 
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No Tokens for “White-Space”  

White-space:   
(‘ ‘ | ‘\n’ | ‘\t’)+ 
| ‘%’ [A-Za-z0-9’ ‘]+’\n’ 

1 

3 

% 2 
[A-za-z0-9’ ‘] 

4 

‘ ‘ 

\n 

\t 
\n 
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Constructing a Lexer 

1e
2e

ke

…
 

   INPUT:  
an ordered  
list of regular 
expressions 

1NFA
2NFA

kNFA

…
 

Construct all  
corresponding 
finite automata 

use priority NFA DFA

Construct a single  
non-deterministic 
finite automata 

Construct a single  
deterministic 
finite automata 

(1) Keyword : then 
 
(2) Ident : [a-z][a-z]* 
 
(2) White-space: ‘ ‘  

1 t 
2:ID 

h 3:ID 

5:THEN 

e 

n 

4:ID 

7:W 

‘ ‘ 

6:ID 

[a
-g

i-z
] 

[a-mo-z] 

[a-z] 

[a-su-z] 
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What about longest match? 

1 t 
2:ID 

h 3:ID 

5:THEN 

e 

n 

4:ID 

7:W 

‘ ‘ 

6:ID 

[a
-g

i-z
] 

[a-mo-z] 

[a-z] 

[a-su-z] 

|then thenx$   1   0  
t|hen thenx$   2   2 
th|en thenx$   3   3  
the|n thenx$   4   4 
then| thenx$   5   5 
then |thenx$   0   5 EMIT KEY(THEN) 
then| thenx$   1   0 RESET 
then |thenx$   7   7 
then t|henx$   0   7 EMIT WHITE(‘ ‘) 
then |thenx$   1   0 RESET  
then t|henx$   2   2  
then th|enx$   3   3  
then the|nx$   4   4  
then then|x$   5   5  
then thenx|$   6   6  
then thenx$|   0   6 EMIT ID(thenx) 

Start in initial state,  
Repeat: 
   (1) read input until dead state is  
   reached.  Emit token associated 
   with last accepting state.  
   (2) reset state to start state 
 

| = current position,      $ = EOF 

Input         
current state 

last accepting state 
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Concrete vs. Abstract Syntax Trees 

S 
S  +  E 
E 

(  S  ) 
5 

S  +  E 
S + E ( S ) 

S + E E 

E 1 
2 

3 
4 

+ 
5 + 

+ + 

3 4 1 2 

parse tree =  
derivation tree =  
concrete syntax 
tree Abstract Syntax Tree (AST) 

An AST contains only the 
information needed to generate an 
intermediate representation 

Normally a compiler constructs the concrete syntax tree only implicitly 
(in the parsing process) and explicitly constructs an AST. 
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On to Context Free Grammars (CFGs) 

E ::= ID  
 
E ::= NUM 
  
E ::= E * E  
 
E ::= E / E   
 
E ::= E + E  
  
E ::= E – E   
  
E ::= ( E )  

E ::= ID |  NUM |  E * E |  E / E  |  E + E  |  E – E |  ( E )  

Usually will write this way 

E is a non-terminal symbol  
 
ID and NUM are lexical classes 
 
*, (, ), +, and – are terminal symbols.  
 
E ::= E + E is called a production rule.  
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CFG Derivations 
(G1)   E ::= ID |  NUM |  ID | E * E |  E / E  |  E + E  |  E – E |  ( E )  

E  à E * E  
    à ( E ) * E  
    à ( E + E ) * E 
    à ( 17 + E ) * E 
    à ( 17 + 4 ) * E 
    à ( 17 + 4 ) * ( E )  
    à ( 17 + 4 ) * ( E – E )  
    à ( 17 + 4 ) * ( 2 – E )  
    à ( 17 + 4 ) * ( 2 – 10 ) 
 

E 

E E 

E 

* 
( ) 

17 4 2 10 

E ( ) 

E E E E + - 

E  à E * E  
    à E * ( E )  
    à E * ( E – E ) 
    à E * ( E – 10 )  
    à E * ( 2 – 10 ) 
    à ( E ) * ( 2 – 10 ) 
    à ( E + E ) * (2 – 10 ) 
    à ( E + 4 ) * ( 2 – E )  
    à ( 17 + 4 ) * ( 2 – 10 ) 
 

The Derivation Tree for  
  ( 17 + 4 ) * (2 – 10 ) 

 Rightmost  
derivation 

 Leftmost  
derivation 
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More formally, … 

•  A CFG is a quadruple G = (N, T, R, S) where  
–  N is the set of non-terminal symbols 
–  T  is the set of terminal symbols (N and T disjoint) 
–  S ∈N  is the start symbol 
–  R ⊆ N×(N∪T)*  is a set of rules 

•  Example: The grammar of nested parentheses 
G = (N, T, R, S) where  
–  N = {S} 
–  T ={ (, ) } 
–  R ={ (S, (S)) , (S, SS), (S, ) }  

S ::= (S) | SS |  We will normally write R as 
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Derivations, more formally… 

•  Start from start symbol (S) 
•  Productions are used to derive a sequence of tokens from the 

start symbol 
•  For arbitrary strings α, β and γ comprised of both terminal and 

non-terminal symbols,  
and a production A → β,  
a single step of derivation is  
 αAγ ⇒ αβγ 
–  i.e., substitute β for an occurrence of A 

•  α ⇒* β means that b can be derived from a in 0 or more single 
steps 

•  α ⇒+ β means that b can be derived from a in 1 or more single 
steps 
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L(G) = The Language Generated by Grammar G 

}|*{)( wSTwGL +⇒∈=

The language generated by G is the set of all terminal strings  
derivable from the start symbol S:  

For any subset W of T*, if there exists a CFG G such  
that L(G) = W, then W is called a Context-Free  
Language (CFL) over T. 
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Ambiguity 

E 

E E * 

1 2 

E E + 3 

E 

E + 
1 

E 

2 3 

E E * 

Both derivation trees correspond to the string  
 
                          1 + 2 * 3 

This type of ambiguity will cause problems when we try to  
go from strings to derivation trees! 

(G1)   E ::= ID |  NUM |  ID | E * E |  E / E  |  E + E  |  E – E |  ( E )  
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Problem: Generation vs. Parsing 

•  Context-Free Grammars (CFGs) 
describe how to to generate  

•  Parsing is the inverse of generation,  
–  Given an input string, is it in the language 

generated by a CFG? 
–  If so, construct a derivation tree (normally 

called a parse tree).  
–  Ambiguity is a big problem   
 

Note : recent work on Parsing Expression Grammars (PEGs) represents an  
attempt to develop a formalism that describes parsing directly.  This is beyond  
the scope of these lectures …   
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We can often modify the grammar 
in order to eliminate ambiguity 

(G2)  
 S :: = E$ 
 
 E ::= E + T 
      |  E – T 
      |  T 
 
T ::= T * F 
      |  T / F 
      |  F  
 
F ::= NUM 
      | ID  
      | ( E )  

E 

E + 
1 

T 

2 

3 

T F * 
F 

This is the unique derivation  
tree for the string  
 
             1 + 2 * 3$ Note: L(G1) = L(G2).  

Can you prove it?  

(expressions) 

(terms) 

(factors) 

(start, $ = EOF) 

S 
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Famously Ambiguous 

(G3)  S ::= if E then S else S  |   if E then S |  blah-blah  

What does  
 
          if e1 then if e2 then s1 else s3  
 
mean?  

S 

if  then E S 

if  then E S else S 

S 

if  then E S else S 

if  then E S 

OR 
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Rewrite?  

(G4) 
S ::= WE | NE 
WE ::=  if E then WE else WE | blah-blah  
NE  ::=  if E then S  
          |  if E then WE else NE 

if  then E 

if  then E S else S 

S 

NE 

S 

WE 

Now,   
 
  if e1 then if e2 then s1 else s3  
 
has a unique derivation.  

Note: L(G3) = L(G4).  
Can you prove it?  
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Fun Fun Facts 

{ } { }1,1|1,1| ≥≥≥≥= nmnmL dcbadcba nmmnmmnn ∪

See Hopcroft and Ullman, “Introduction to Automata  
Theory, Languages, and Computation” 

(1) Some context free languages are inherently ambiguous --- every  
context-free grammar will be ambiguous.  For example:  

(2) Checking for ambiguity in an arbitrary context-free 
     grammar is not decidable!  Ouch!  

(3) Given two grammars G1 and G2, checking L(G1) = L(G2) is 
      not decidable!  Ouch!  
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Generating Lexical Analyzers  

Lexical  
Analyzer 

Source 
Program tokens 

Scanner  
Generator 
“LEX” 

Lexical specification 

DFA Transitions 

Parser      

The idea : use regular expressions as the basis of a  
lexical specification.  The core of the lexical analyzer is  
then a deterministic finite automata (DFA)   
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Predictive (Recursive Descent) Parsing 
Can we automate this?  

(G5)  
  
S :: = if E then S else S 
        | begin S L 
        | print E 
 
E ::= NUM = NUM  
 
L ::= end 
      |  ; S L  

int tok = getToken(); 
 
void advance() {tok = getToken();}  
void eat (int t) {if (tok == t) advance(); else error();} 
 
void S() {switch(tok) { 
      case IF:    eat(IF); E(); eat(THEN);  
                  S(); eat(ELSE); S(); break;  
      case BEGIN: eat(BEGIN); S(); L(); break;  
      case PRINT: eat(PRINT); E(); break;  
      default: error(); 
     }} 
 
void L() {switch(tok) { 
      case END:  eat(END); break; 
      case SEMI: eat(SEMI); S(); L(); break;  
      default: error();  
     }} 
 
void E() {eat(NUM) ; eat(EQ); eat(NUM); } 
 

From Andrew Appel, “Modern Compiler Implementation in Java” page 46 

Parse corresponds to a left-most derivation 
constructed in a “top-down” manner 
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 Eliminate Left-Recursion 

A ::= Aα1 | Aα2 | . . . | Aαk | 
        β1 | β2 | . . . | βn  

Immediate left-recursion  

A ::= β1 A’ | β2 A’ | . . . | βn A’   

A’ ::= α1 A’ | α2 A’| . . . | αk A’ | ε 

For eliminating left-recursion in general, see Aho and Ullman. 

A 

A 

A

β 

α 

α 

A 

A’ 
β 
α 

α 

A’ 

A’ 

ε 



27 

54 

FIRST and FOLLOW  

    FIRST[X] = the set of terminal symbols that  
                      can begin strings derived from X 
 
FOLLOW[X] = the set of terminal symbols that  
                        can immediately follow X in some  
                        derivation 
 
   nullable[X] = true of X can derive the empty string,  
                        false otherwise 
                     

For each non-terminal X we need to compute 

nullable[Z] = false, for Z in T 
  
nullable[Y1 Y2 … Yk] = nullable[Y1] and … nullable[Yk], for Y(i) in N union T.  

FIRST[Z] = {Z}, for Z in T 
  
FIRST[ X Y1 Y2 … Yk] = FIRST[X] if not nullable[X] 
 
FIRST[ X Y1 Y2 … Yk] =FIRST[X] union FIRST[Y1 … Yk] otherwise 
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Computing First, Follow, and nullable 

For each terminal symbol Z 
   FIRST[Z] := {Z};  
   nullable[Z] := false;  
 
For each non-terminal symbol X 
  FIRST[X] := FOLLOW[X] := {};  
  nullable[X] := false;  
 
repeat 
   for each production X à Y1 Y2 … Yk 
      if Y1, … Yk are all nullable, or k = 0 
         then nullable[X] := true  
      for each i from 1 to k, each j from i + I to k 
         if Y1 … Y(i-1) are all nullable or i = 1 
            then  FIRST[X] := FIRST[X] union FIRST[Y(i)] 
         if Y(i+1) … Yk are all nullable or if i = k 
            then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X] 
         if Y(i+1) … Y(j-1) are all nullable or i+1 = j 
            then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]  
until there is no change 
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But wait! What if there are conflicts in 
the predictive parsing table?  

(G7)  
 
 S :: = d | X Y S 
 
Y ::= c |  
 
X ::= Y | a 
  

S 
 
Y  
 
X 

Nullable          FIRST          FOLLOW 

false 
 
true  
 
true 

{ c,d ,a} 
 
{ c }  
 
{ c,a }  

{  } 
 
{ c,d,a }  
 
{ c, a,d }  

S 
 
Y  
 
X 

a                            c                                    d 

{ S ::= X Y S } 
 
{ Y ::=  }  
 
{ X ::= a,  X ::= Y }  

{ S ::= X Y S } 
 
{ Y ::=  , Y ::= c}  
 
{ X ::= Y }  

{ S ::= X Y S, S ::= d } 
 
{ Y ::=  }  
 
{ X ::= Y }  

The resulting “predictive” table is not so predictive…. 



31 

61 

LL(1), LL(k), LR(0), LR(1), …  

•  LL(k) : (L)eft-to-right parse, (L)eft-most 
derivation, k-symbol lookahead.  Based on 
looking at the next k tokens, an LL(k) parser 
must predict the next production. We have been 
looking at LL(1).  

•  LR(k) : (L)eft-to-right parse, (R)ight-most 
derivation, k-symbol lookahead. Postpone 
production selection until the entire right-hand-
side has been seen (and as many as k symbols 
beyond).   

•  LALR(1) : A special subclass of LR(1).  

62 

Example  

(G8)  
 
 S :: = S ; S | ID = E | print (L) 
 
E ::= ID | NUM | E + E | (S, E)  
 
L ::= E | L, E 

(G8)  
 
 S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN 
 
E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN 
 
L ::= E | L COMMA E 

To be consistent, I should write the following, but I won’t… 
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A right-most derivation …  

(G8)  
 
S ::= S ; S  
      | ID = E  
      | print (L) 
 
E ::= ID  
      | NUM  
      | E + E  
      | (S, E)  
 
L ::= E  
      | L, E 

        S 
    à S ; S  
    à S ; ID = E 
    à S ; ID = E + E 
    à S ; ID = E + ( S, E ) 
    à S ; ID = E + ( S, ID ) 
    à S ; ID = E + ( S, d ) 
    à S ; ID = E + ( ID = E, d )  
    à S ; ID = E + ( ID = E + E, d ) 
    à S ; ID = E + ( ID = E + NUM, d ) 
    à S ; ID = E + ( ID = E + 6, d ) 
    à S ; ID = E + ( ID = NUM + 6, d ) 
    à S ; ID = E + ( ID = 5 + 6, d ) 
    à S ; ID = E + ( d = 5 + 6, d ) 
    à S ; ID = ID + (d = 5 + 6, d ) 
    à S ; ID = c + ( d = 5 + 6, d )  
    à S ; b = c + ( d = 5 + 6, d ) 
    à ID = E ; b = c + ( d = 5 + 6, d ) 
    à ID = NUM ; b = c + ( d = 5 + 6, d) 
    à ID = 7 ; b = c + ( d = 5 + 6, d ) 
    à a = 7 ; b = c + ( d = 5 + 6, d ) 
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Now, turn it upside down …  
à  a = 7 ; b = c + ( d = 5 + 6, d ) 
à  ID = 7 ; b = c + ( d = 5 + 6, d ) 
à  ID = NUM; b = c + ( d = 5 + 6, d ) 
à ID = E ; b = c + ( d = 5 + 6, d ) 
à S ; b = c + ( d = 5 + 6, d ) 
à  S ; ID = c + ( d = 5 + 6, d )  
à  S ; ID = ID + ( d = 5 + 6, d) 
à S ; ID = E + ( d = 5 + 6, d ) 
à  S ; ID = E + ( ID = 5 + 6, d ) 
à  S ; ID = E + ( ID = NUM + 6, d ) 
à  S ; ID = E + ( ID = E + 6, d )  
à  S ; ID = E + ( ID = E + NUM, d ) 
à S ; ID = E + ( ID = E + E, d ) 
à S ; ID = E + ( ID = E, d )  
à S ; ID = E + ( S, d ) 
à S ; ID = E + ( S, ID ) 
à S ; ID = E + ( S, E ) 
à S ; ID = E + E 
à S ; ID = E 
à S ; S  
    S 
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Now, slice it down the middle…  
 
ID  
ID = NUM 
ID = E  
S 
S ; ID  
S ; ID = ID 
S ; ID = E 
S ; ID = E + ( ID  
S ; ID = E + ( ID = NUM 
S ; ID = E + ( ID = E 
S ; ID = E + ( ID = E + NUM 
S ; ID = E + ( ID = E + E 
S ; ID = E + ( ID = E 
S ; ID = E + ( S 
S ; ID = E + ( S, ID  
S ; ID = E + ( S, E ) 
S ; ID = E + E 
S ; ID = E 
S ; S  
S 
 

a = 7 ; b = c + ( d = 5 + 6, d ) 
  = 7 ; b = c + ( d = 5 + 6, d )           
      ; b = c + ( d = 5 + 6, d ) 
      ; b = c + ( d = 5 + 6, d ) 
      ; b = c + ( d = 5 + 6, d ) 
          = c + ( d = 5 + 6, d )  
              + ( d = 5 + 6, d ) 
              + ( d = 5 + 6, d ) 
                    = 5 + 6, d ) 
                        + 6, d ) 
                        + 6, d )  
                           , d ) 
                           , d ) 
                           , d )  
                           , d ) 
                               )                                             
 
 
 
 

A stack of terminals and  
non-terminals 

The rest of the input string  
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Now, add some actions. s = SHIFT, r = REDUCE 

 
ID  
ID = NUM 
ID = E  
S 
S ; ID  
S ; ID = ID 
S ; ID = E 
S ; ID = E + ( ID  
S ; ID = E + ( ID = NUM 
S ; ID = E + ( ID = E 
S ; ID = E + ( ID = E + NUM 
S ; ID = E + ( ID = E + E 
S ; ID = E + ( ID = E 
S ; ID = E + ( S 
S ; ID = E + ( S, ID  
S ; ID = E + ( S, E ) 
S ; ID = E + E 
S ; ID = E 
S ; S  
S 
 
 
 
 

a = 7 ; b = c + ( d = 5 + 6, d ) 
   = 7 ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
              = c + ( d = 5 + 6, d )  
                    + ( d = 5 + 6, d ) 
                    + ( d = 5 + 6, d ) 
                            = 5 + 6, d ) 
                                  + 6, d ) 
                                  + 6, d )  
                                       , d ) 
                                       , d ) 
                                       , d )  
                                            ) 
                                            ) 
 
 
 
 
 
 

s 
s, s 
r E ::= NUM 
r S ::= ID = E 
s, s 
s, s 
r E ::= ID 
s, s, s 
s, s 
r E ::= NUM 
s, s 
r E ::= NUM 
r E ::= E+E, s, s 
r S ::= ID = E 
R E::= ID 
s, r E ::= (S, E) 
r E ::= E + E 
r S ::= ID = E 
r S ::= S ; S  
 
 
 
 
 
 
 

ACTIONS 
SHIFT = LEX + move token to stack 
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LL(k) vs. LR(k) reductions  

)',)((' *** TwNTwA ∈∪∈⇒→ ββ

)(kLL )(kLR

'w
k token look ahead 

Stack 

A β (left-most  
symbol at 
top) 

'w
k token look  
ahead 

Stack 

Aβ(right-most  
symbol at 
top) 

A

The language of this 
Stack IS REGULAR! 

68 

Q: How do we know when to shift and 
when to reduce? A: Build a FSA from 

LR(0) Items! 
(G10) 
 

S  ::= A $   
 
A ::=  (A )   
      |  (   ) 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 

LR(0) items indicate what is on the stack 
(to the left of the • ) and what is still in  
the input stream (to the right of the • ) 

If  
 
   X ::= αβ	

	

is a production, then 
 
   X ::= α • β	

 
is an LR(0) item. 
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LR(k) states (non-deterministic)  

),( 21 kaaaA !βα •→

'w Stack: α

'*
21 waaa k ⇒!β

(right-most  
symbol at 
top) 

The state 

should represent this situation:  

Input: 

with 
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Key idea behind LR(0) items 

•  If the “current state” contains the item  
A ::=  α • c β  and the current symbol in the input buffer is c  
–  the state prompts parser to perform a shift action 
–  next state will contain A ::=  α c • β  

•  If the “state” contains the item A ::=  α • 
–  the state prompts parser to perform a reduce action 

•  If the “state” contains the item S ::= α • $  
and the input buffer is empty 
–  the state prompts parser to accept 

•  But How about  A ::=  α • X β  where X is a nonterminal? 
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The NFA for LR(0) items 

•  The transition of LR(0) items can be represented 
by an NFA, in which 
–  1. each LR(0) item is a state, 
–  2. there is a transition from item A ::= α • c β  
   to item A ::= αc • β with label c, where c is a terminal 

symbol 
–  3. there is an ε-transition from item A ::= α • X β  to 

X ::= • γ,  where X is a non-terminal 
–  4. S ::= • A $ is the start state 
–  5. A ::= α • is a final state.	
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Example NFA for Items 

     S ::= • A $  S ::= A • $   A ::= • (A) 
A ::= ( • A )  A ::= (A • )   A ::= (A) • 
A ::= • ( )   A ::= (•)   A ::= ( ) • 

A ::= ( A • ) 

A ::= ( • ) 

A ::= (A) • S ::= A • $ S ::= • A $ 

A ::= • ( )  A ::= (  ) • 

A ::= ( • A ) A ::= • (A ) 

A 

A (

( )

)ε	


ε	


ε	
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The DFA from LR(0) items 

•  After the NFA for LR(0) is constructed, the resulting DFA 
for LR(0) parsing can be obtained by the usual 
NFA2DFA construction. 

•  we thus require  
–   ε-closure (I)   
–   move(S, a)  

Fixed Point Algorithm for Closure(I) 
–  Every item in I is also an item in Closure(I) 
–  If A ::=  α • B β  is in Closure(I) and B ::= • γ is an item,  

then add B ::= • γ to Closure(I) 
–  Repeat until no more new items can be added to 

Closure(I) 
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Examples of Closure 

Closure({A ::= ( • A )}) =  
A ::=      (  • A)  
A  ::=   •  (A) 
A  ::=  •  (   ) 

 

S ::=    • A $  
A ::=   •  (A) 
A ::=  •  (   ) 

 

•  closure({S  ::=  • A $}) 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 
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Goto() of a set of items 

•  Goto finds the new state after consuming a 
grammar symbol while in the current state 

•  Algorithm for Goto(I, X) 
where I is a set of items  
and X is a non-terminal  

Goto(I, X) = Closure( { A ::=  α X • β | A ::=  α • X β in I })  

•  goto is the new set obtained by 
“moving the dot” over X 
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Examples of Goto 

•  Goto ({A ::= •(A)}, () 



A ::=      (   • A)  
A ::=   •  (A) 
A ::=  •  (   ) 

 •  Goto ({A ::= ( • A)}, A) 

A ::= (A •   ) 
 

 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 
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•  Essentially the usual NFA2DFA construction!! 
•  Let A be the start symbol and S a new start 

symbol.  
•  Create a new rule S ::= A $ 
•  Create the first state to be Closure({ S ::= • A $}) 
•  Pick a state I 

–  for each item A ::= α • X β  in I 
•  find Goto(I, X) 
•  if Goto(I, X) is not already a state, make one 
•  Add an edge X from state I to Goto(I, X) state 

•  Repeat until no more additions possible 

Building the DFA states 
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DFA Example 

S ::= • A$ 
A  ::= • (A) 
A ::= • ( ) 

s0 S ::= A • $ 
s1 A 

A ::= ( • A) 
A ::=  ( • ) 
A ::= • (A) 
A  ::= • ( ) 

s2 

(
A ::= (A • ) 

A 

s3 
(

A ::=  ( ) • 

)s5 
A ::= (A) • 

)
s4 
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Building Parse Table Example 

S ::= • A$ 
A  ::= • (A) 
A ::= • ( ) 

s0 S ::= A • $ 
s1 A 

A ::= ( • A) 
A ::=  ( • ) 
A ::= • (A) 
A  ::= • ( ) 

s2 

(
A ::= (A • ) 

A 

s3 
(

A ::=  ( ) • 

)s5 
A ::= (A) • 

)
s4 

Creating the Parse Table(s) 

State ( ) $ A
s0 shift to s2 goto s1
s1 accept  
s2 shift to s2 shift to s5  goto s3
s3 shift to s4  
s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

(G10) 
(1)   S  ::= A$  
(2)   A ::=  (A ) 
(3)   A ::=  (   ) 
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Parsing with an LR Table 

Use table and top-of-stack and input symbol to get action: 
 
If action is  
            shift sn  : advance input one token,  
                            push sn on stack 
  reduce X ::= α : pop stack 2* |α| times (grammar symbols  
                            are paired with states).  In the state  
                            now on top of stack,  
                            use goto table to get next  
                            state sn,  
                            push it on top of stack 
              accept : stop and accept 
                 error : weep (actually, produce a good error 
                                        message)  
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Building Parse Table Example Parsing, again… 
ACTION Goto

State ( ) $ A
s0 shift to s2 goto s1
s1 accept  
s2 shift to s2 shift to s5  goto s3
s3 shift to s4  
s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

s0                                   (())$                           shift s2 
s0 ( s2                             ())$                           shift s2 
s0 ( s2 ( s2                        ))$                          shift s5 
s0 ( s2 ( s2 ) s5                  )$                           reduce A ::= () 
s0 ( s2 A                            )$                            goto s3 
s0 ( s2 A s3                       )$                            shift s4 
s0 ( s2 A s3 ) s4                 $                            reduce A::= (A) 
s0 A                                    $                            goto s1 
s0 A s1                               $                            ACCEPT! 
                    

(G10) 
(1)   S  ::= A$  
(2)   A ::=  (A ) 
(3)   A ::=  (   ) 
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LR Parsing Algorithm 

sm 
Ym 
sm-1 

Ym-1 
   . 
   . 
s1 

Y1 
s0 

a1  ... ai  ... an $ 

Action Table 
      terminals and $ 
s 
t         four different  
a         actions 
t 
e 
s 

Goto Table 
       non-terminal 
s 
t            each item is 
a           a state  
t           number 
e 
s 

 
LR Parsing 
Algorithm 

Stack of  
states and  
grammar symbols 

input 

output 
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Problem With LR(0) Parsing 

• No lookahead 
• Vulnerable to unnecessary 

conflicts 
– Shift/Reduce Conflicts (may reduce 

too soon in some cases) 
– Reduce/Reduce Conflicts 

• Solutions: 
– LR(1) parsing - systematic lookahead 
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LR(1) Items 

•  An LR(1) item is a pair: 
             (X ::= α . β,  a) 
–  X ::= αβ is a production 
–  a is a terminal (the lookahead terminal) 
–  LR(1) means 1 lookahead terminal 

 

•  [X ::= α . β, a] describes a context of the parser   
–  We are trying to find an X followed by an a, and  
–  We have  (at least) α already on top of the stack 
–  Thus we need to see next a prefix derived from βa 
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The Closure Operation 

•  Need to modify closure operation:. 

Closure(Items) = 
   repeat 
      for each [X ::= α . Yβ, a] in Items 
          for each production Y ::= γ  
               for each b in First(βa) 
                    add [Y ::= .γ, b] to Items 
   until Items is unchanged 
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Constructing the Parsing DFA (2) 

•  A DFA state is a closed set of LR(1) items 

•  The start state contains (S’ ::= .S$, dummy)  

•  A state that contains [X ::= α., b] is labeled 
with “reduce with X ::= α on lookahead b” 

•  And now the transitions … 
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The DFA Transitions 

•  A state s that contains [X ::= α.Yβ, b] has 
a transition labeled y to the state obtained 
from Transition(s, Y) 
– Y can be a terminal or a non-terminal 

 
Transition(s, Y)  
   Items = {} 
   for each [X ::= α.Yβ, b] in s 
        add [X ! αY.β, b] to Items 
   return Closure(Items) 
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LR(1)-the parse table 

•  Shift and goto as before 
•  Reduce 

– state I with item (A→α., z) gives a reduce 
A→α if z is the next character in the input.  

•  LR(1)-parse tables are very big 
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LR(1)-DFA 

From Andrew Appel, “Modern Compiler Implementation in Java” page 65 

(G11)  
 
S’ ::= S$ 
 
S ::= V = E  
      | E 
 
E ::= V 
 
V ::= x 
      | *E 
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LR(1)-parse table 

x * = $ S E V x * = $ S E V 

1 s8 s6 g2 g5 g3 8 r4 r4 

2 acc 9 r1 

3 s4 r3 10 r5 r5 

4 s11 s13 g9 g7 11 r4 

5 r2 12 r3 r3 

6 s8 s6 g10 g12 13 s11 s13 g14 g7 

7 r3 14 r5 
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LALR States 

•  Consider for example the LR(1) states 
             {[X ::= α. , a], [Y ::= β. , c]} 
             {[X ::= α. , b], [Y ::= β. , d]} 
•  They have the same core and can be 

merged to the state  
             {[X ::= α. , a/b], [Y ::= β. , c/d]} 
•  These are called LALR(1) states  

– Stands for LookAhead LR 
– Typically 10 times fewer LALR(1) states than 

LR(1) 
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For LALR(1), Collapse States ... 

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14. 
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LALR(1)-parse-table 

x * = $ S E V 
1 s8 s6 g2 g5 g3 
2 acc 
3 s4 r3 
4 s8 s6 g9 g7 
5 
6 s8 s6 g10 g7 
7 r3 r3 
8 r4 r4 
9 r1 
10 r5 r5 
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LALR vs. LR Parsing 

•  LALR languages are not “natural” 
–  They are an efficiency hack on LR languages 

•  You may see claims that any reasonable programming 
language has a LALR(1) grammar, {Arguably this is 
done by defining languages without an LALR(1) 
grammar as unreasonable J }. 

•  In any case, LALR(1) has become a standard for 
programming languages and for parser generators, in 
spite of its apparent complexity.  


