
1

1

Compiler Construction
Lent Term 2016

Part I : Lectures 1 – 6 (of 16)

The Front End

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

2

Why Study Compilers?

•  Although many of the basic ideas were
developed over 50 years ago, compiler
construction is still an evolving and active
area of research and development.

•  Compilers are intimately related to
programming language design and evolution.

•  Compilers are a Computer Science success
story illustrating the hallmarks of our field ---
higher-level abstractions implemented with
lower-level abstractions.

•  Every Computer Scientist should have a basic
understanding of how compilers work.

2

Compilation is a special kind of translation

Source
Program
Text

The compiler
program for
target
“machine”

Just text – no way to
run program!

We have a “machine”
to run this!

3

•  be correct in the sense that meaning is preserved
•  produce usable error messages
•  generate efficient code
•  itself be efficient
•  be well-structured and maintainable

A good compiler should …

This course!

OptComp, Part II Pick any 2?

Just 1?

4

Mind The Gap

•  “Machine” independent
•  Complex syntax
•  Complex type system
•  Variables
•  Nested scope
•  Procedures, functions
•  Objects
•  Modules
•  …

•  “Machine” specific
•  Simple syntax
•  Simple types
•  memory, registers, words
•  Single flat scope

High Level Language Typical Target Language

Help!!! Where do we begin???

3

5

The Gap, illustrated
public class Fibonacci {
 public Fibonacci();
 Code:
 0: aload_0
 1: invokespecial #1
 4: return
 public static long fib(int);
 Code:
 0: iload_0
 1: ifne 6
 4: lconst_1
 5: lreturn
 6: iload_0
 7: iconst_1
 8: if_icmpne 13
 11: lconst_1
 12: lreturn
 13: iload_0
 14: iconst_1
 15: isub
 16: invokestatic #2
 19: iload_0
 20: iconst_2
 21: isub
 22: invokestatic #2
 25: ladd
 26: lreturn

 public static void
 main(java.lang.String[]);
 Code:
 0: aload_0
 1: iconst_0
 2: aaload
 3: invokestatic #3
 6: istore_1
 7: getstatic #4
 10: new #5
 13: dup
 14: invokespecial #6
 17: iload_1
 18: invokestatic #2
 21: invokevirtual #7
 24: ldc #8
 26: invokevirtual #9
 29: invokevirtual #10
 32: invokevirtual #11
 35: return
}

public class Fibonacci {
 public static long fib(int m) {
 if (m == 0) return 1;
 else if (m == 1) return 1;
 else return
 fib(m - 1) + fib(m - 2);
 }
 public static void
 main(String[] args) {
 int m =
 Integer.parseInt(args[0]);
 System.out.println(
 fib(m) + "\n");
 }
}

javac Fibonacci.java
javap –c Fibonacci.class

JVM bytecodes

6

The Gap, illustrated

(* fib : int -> int *)
let rec fib m =
 if m = 0
 then 1
 else if m = 1
 then 1
 else fib(m - 1) + fib (m - 2)

ocamlc –dinstr fib.ml

branch L2
L1: acc 0

push
const 0
eqint
branchifnot L4
const 1
return 1

L4: acc 0
push
const 1
eqint
branchifnot L3
const 1
return 1

L3: acc 0
offsetint -2
push
offsetclosure 0
apply 1
push
acc 1
offsetint -1
push
offsetclosure 0
apply 1
addint
return 1

L2: closurerec 1, 0
acc 0
makeblock 1, 0
pop 1
setglobal Fib!

OCaml VM bytecodes

fib.ml

4

7

The Gap, illustrated

#include<stdio.h>

int Fibonacci(int);
int main()
{
 int n;
 scanf("%d",&n);
 printf("%d\n", Fibonacci(n));
 return 0;
}

int Fibonacci(int n)
{
 if (n == 0) return 0;
 else if (n == 1) return 1;
 else return (Fibonacci(n-1) + Fibonacci(n-2));
}

gcc –S fib.c

fib.c

8

The Gap, illustrated
.section __TEXT,__text,regular,pure_instructions
.globl _main
.align 4, 0x90

_main: ## @main
.cfi_startproc

BB#0:
pushq %rbp

Ltmp2:
.cfi_def_cfa_offset 16

Ltmp3:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp4:
.cfi_def_cfa_register %rbp
subq $16, %rsp
leaq L_.str(%rip), %rdi
leaq -8(%rbp), %rsi
movl $0, -4(%rbp)
movb $0, %al
callq _scanf
movl -8(%rbp), %edi
movl %eax, -12(%rbp) ## 4-byte Spill
callq _Fibonacci
leaq L_.str1(%rip), %rdi
movl %eax, %esi
movb $0, %al
callq _printf
movl $0, %esi
movl %eax, -16(%rbp) ## 4-byte Spill
movl %esi, %eax
addq $16, %rsp
popq %rbp
ret
.cfi_endproc

.globl _Fibonacci
.align 4, 0x90

_Fibonacci: ## @Fibonacci
.cfi_startproc

BB#0:
pushq %rbp

Ltmp7:
.cfi_def_cfa_offset 16

Ltmp8:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp9:

x86/Mac OS

.cfi_def_cfa_register %rbp
subq $16, %rsp
movl %edi, -8(%rbp)
cmpl $0, -8(%rbp)
jne LBB1_2

BB#1:
movl $0, -4(%rbp)
jmp LBB1_5

LBB1_2:
cmpl $1, -8(%rbp)
jne LBB1_4

BB#3:
movl $1, -4(%rbp)
jmp LBB1_5

LBB1_4:
movl -8(%rbp), %eax
subl $1, %eax
movl %eax, %edi
callq _Fibonacci
movl -8(%rbp), %edi
subl $2, %edi
movl %eax, -12(%rbp) ## 4-byte Spill
callq _Fibonacci
movl -12(%rbp), %edi ## 4-byte Reload
addl %eax, %edi
movl %edi, -4(%rbp)

LBB1_5:
movl -4(%rbp), %eax
addq $16, %rsp
popq %rbp
ret
.cfi_endproc

.section __TEXT,__cstring,cstring_literals

L_.str: ## @.str
.asciz "%d"

L_.str1: ## @.str1

.asciz "%d\n"

.subsections_via_symbols

5

9

Conceptual view of a typical compiler

Front End Back End

 ISA/OS
targeted code

(x86/unix, …)

Source
Program
Text

The compiler

Operating System (OS)

 Virtual Machine (VM)
examples: JVM, Dalvik, .NET CLR

ISA/OS
independent
 “byte code”

 errors,
warnings

 ISA = Instruction Set Architecture

Middle
 End

Key to bridging
The Gap : divide and
conquer. The Big Leap
is broken into small
steps. Each step broken
into yet smaller steps …

10

The shape of a typical “front end”

Source
Program
Text

Lexical
analysis lexical

tokens

Parsing

Lexical theory
based on finite
automaton
and regular
expressions

Parsing Theory
based on
push-down
automaton and
context-free
grammars

AST +
other
info

 AST
= Abstract
 Syntax Tree

Semantic
analysis

Enforce
“static sematics”
of language:
type checking,
def/use rules,
and so on (SPL!)

report
errors

report
errors

report
errors

The AST output from the front-end should represent a legal program in the source language.
(“Legal” of course does not mean “bug-free”!)

SPL = Semantics of Programming Languages, Part 1B

6

11

Our view of the middle- and back-ends :
a sequence of small transformations

•  Each IL has its own semantics (perhaps informal)
•  Each transformation () preserves semantics (SPL!)
•  Each transformation eliminates only a few aspects of the gap
•  Each transformation is fairly easy to understand
•  Some transformations can be described as “optimizations”
•  We will associate each IL with its own interpreter/VM. (Again,

not something typically done in “industrial-strength” compilers.)

 Intermediate Languages

IL-1

Of course
industrial-strength
compilers may
collapse
many small-steps …

IL-2 IL-k . . .

Compilers must be compiled

Source
Program
Text

The compiler

A program in
language A

12

A program in
language B

Something to ponder:
A compiler is just a program.
But how did it get compiled?
The OCaml compiler is written in
OCaml.

How was the compiler compiled?

A program in
language C

7

13

Approach Taken

•  We will develop a compiler for a fragment of L3 introduced
in Semantics of Programming Languages, Part 1B.

•  We will pay special attention to the correctness.
•  We will compile only to Virtual Machines (VMs) of various

kinds. See Part II optimising compilers for generating
lower-level code.

•  Our toy compiler is available on the course web site.
•  We will be using the OCaml dialect of ML.

•  Install from https://ocaml.org.
•  See OCaml Labs :

http://www.cl.cam.ac.uk/projects/ocamllabs.
•  A side-by-side comparison of SML and OCaml Syntax:

http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html

14

SML Syntax vs. OCaml Syntax

type 'a tree =
 Leaf of 'a
 | Node of 'a * ('a tree) * ('a tree)

let rec map_tree f = function
 | Leaf a -> Leaf (f a)
 | Node (a, left, right) ->
 Node(f a, map_tree f left, map_tree f right)

let l =
 map_tree (fun a -> [a]) [Leaf 17; Leaf 21]
in
 List.rev l

datatype 'a tree =
 Leaf of 'a
 | Node of 'a * ('a tree) * ('a tree)

fun map_tree f (Leaf a) = Leaf (f a)
 | map_tree f (Node (a, left, right)) =
 Node(f a, map_tree f left, map_tree f right)

let val l =
 map_tree (fn a => [a]) [Leaf 17, Leaf 21]
in
 List.rev l
end

8

The Shape of this Course
1.  Overview
2.  Slang Front-end, Slang demo. Code tour.
3.  Lexical analysis : application of Theory of Regular Languages and

Finite Automata
4.  Generating Recursive descent parsers
5.  Beyond Recursive Descent Parsing I
6.  Beyond Recursive Descent Parsing II
7.  High-level “definitional” interpreter (interpreter 0). Make the stack

explicit and derive interpreter 2
8.  Flatten code into linear array, derive interpreter 3
9.  Move complex data from stack into the heap, derive the Jargon Virtual

Machine (interpreter 4)
10.  More on Jargon VM. Environment management. Static links on stack.

Closures.
11.  A few program transformations. Tail Recursion Elimination (TRE),

Continuation Passing Style (CPS). Defunctionalisation (DFC)
12.  CPS+TRE+DFC provides a formal way of understanding how we went

from interpreter 0 to interpreter 2. We fill the gap with interpreter 1
13.  Bootstrapping a compiler
14.  Run-time environments, automated memory management (“garbage

collection”)
15.  Assorted topics : exceptions, objects, compilation units, linking
16.  Assorted topics : simple optimisations, stack machine vs. register

16

 LECTURE 2
Slang Front End

•  Slang (= Simple LANGuage)
–  A subset of L3 from Semantics …
–  … with very ugly concrete syntax
–  You are invited to experiment with improvements to this

concrete syntax.
•  Slang : concrete syntax, types
•  Abstract Syntax Trees (ASTs)
•  The Front End
•  A short in-lecture demo of slang and a brief tour

of the code …

9

Clunky Slang Syntax (informal)
uop := - | ~

bop ::= + | - | * | < | = | && | ||

t ::= bool | int | unit | (t) | t * t | t + t | t -> t | t ref

e ::= () | n | true | false | x | (e) | ? |
 e bop e | uop e |
 if e then else e end |
 e e | fun (x : t) -> e end |
 let x : t = e in e end |
 let f(x : t) : t = e in e end |
 !e | ref e | e := e | while e do e end |
 begin e; e; … e end |
 (e, e) | snd e | fst e |
 inl t e | inr t e |
 case e of inl(x : t) -> e | inr(x:t) -> e end

(~ is boolean negation)

(? requests an integer
 input from terminal)

(notice type annotation
 on inl and inr constructs)

18

From slang/examples

let fib(m : int) : int =
 if m = 0
 then 1
 else if m = 1
 then 1
 else fib (m - 1) +
 fib (m -2)
 end
 end
in
 fib(?)
end

let gcd(p : int * int) : int =
 let m : int = fst p
 in let n : int = snd p
 in if m = n
 then m
 else if m < n
 then gcd(m, n - m)
 else gcd(m - n, n)
 end
 end
 end
 end
in gcd(?, ?) end

The ? requests an integer input from the terminal

10

CONTEST!

WIN A COPY!

For the most elegant
concrete syntax for the
Slang fragment of L3.

Reduce required keyword usage
AND make some of the type
annotations optional.

Must be in OCaml. Must use
ocamlyacc.

No parser conflicts allowed!

Slang Front End

Input file foo.slang

Remove “syntactic sugar”, file location information,
and most type information

Parsed AST (Past.expr)

Static analysis : check types, and context-
sensitive rules, resolve overloaded operators

Parse (we use Ocaml versions of LEX and YACC,
covered in Lectures 3 --- 6)

Intermediate AST (Ast.expr)

Parsed AST (Past.expr)

11

Parsed AST
(past.ml)

type var = string

type loc = Lexing.position

type type_expr =
 | TEint
 | TEbool
 | TEunit
 | TEref of type_expr
 | TEarrow of type_expr * type_expr
 | TEproduct of type_expr * type_expr
 | TEunion of type_expr * type_expr

type oper = ADD | MUL | SUB | LT |
 AND | OR | EQ | EQB | EQI

type unary_oper = NEG | NOT

type expr =
 | Unit of loc
 | What of loc
 | Var of loc * var
 | Integer of loc * int
 | Boolean of loc * bool
 | UnaryOp of loc * unary_oper * expr
 | Op of loc * expr * oper * expr
 | If of loc * expr * expr * expr
 | Pair of loc * expr * expr
 | Fst of loc * expr
 | Snd of loc * expr
 | Inl of loc * type_expr * expr
 | Inr of loc * type_expr * expr
 | Case of loc * expr * lambda * lambda
 | While of loc * expr * expr
 | Seq of loc * (expr list)
 | Ref of loc * expr
 | Deref of loc * expr
 | Assign of loc * expr * expr
 | Lambda of loc * lambda
 | App of loc * expr * expr
 | Let of loc * var * type_expr * expr * expr
 | LetFun of loc * var * lambda
 * type_expr * expr
 | LetRecFun of loc * var * lambda
 * type_expr * expr

Locations (loc) are used in
generating error messages.

22

static.mli, static.ml

val infer : (Past.var * Past.type_expr) list -> (Past.expr * Past.type_expr)

val check : Past.expr -> Past.expr (* infer on empty environment *)

•  Check type correctness
•  Rewrite expressions to resolve EQ to EQI (for integers)

or EQB (for bools).
•  Only LetFun is returned by parser. Rewrite to

LetRecFun when function is actually recursive.

Lesson : while enforcing “context-sensitive rules” we can resolve
ambiguities that cannot be specified in context-free grammars.

12

23

Internal AST
(ast.ml)

type var = string

type oper = ADD | MUL | SUB | LT |
 AND | OR | EQB | EQI

type unary_oper = NEG | NOT | READ

type expr =
 | Unit
 | Var of var
 | Integer of int
 | Boolean of bool
 | UnaryOp of unary_oper * expr
 | Op of expr * oper * expr
 | If of expr * expr * expr
 | Pair of expr * expr
 | Fst of expr
 | Snd of expr
 | Inl of expr
 | Inr of expr
 | Case of expr * lambda * lambda
 | While of expr * expr
 | Seq of (expr list)
 | Ref of expr
 | Deref of expr
 | Assign of expr * expr
 | Lambda of lambda
 | App of expr * expr
 | LetFun of var * lambda * expr
 | LetRecFun of var * lambda * expr

and lambda = var * expr

No locations, types.
No Let, EQ.

Is getting rid of types
a bad idea? Perhaps
a full answer would be
language-dependent…

24

past_to_ast.ml

let x : t = e1 in e2 end

(fun (x: t) -> e2 end) e1

This is done to simplify some of our code.
Is it a good idea? Perhaps not.

val translate_expr : Past.expr -> Ast.expr

13

Lecture 3, 4, 5, 6
Lexical Analysis and Parsing

1.  Theory of Regular Languages and Finite
Automata applied to lexical analysis.

2.  Context-free grammars
3.  The ambiguity problem
4.  Generating Recursive descent parsers
5.  Beyond Recursive Descent Parsing I
6.  Beyond Recursive Descent Parsing II

What problem are we solving?

if m = 0 then 1 else if m = 1 then 1 else fib (m - 1) + fib (m -2)

Translate a sequence of characters

into a sequence of tokens

type token =
 | INT of int| IDENT of string | LPAREN | RPAREN
 | ADD | SUB | EQUAL | IF | THEN | ELSE
 | …

IF, IDENT “m”, EQUAL, INT 0, THEN, INT 1, ELSE, IF,
IDENT “m”, EQUAL, INT 1, THEN, INT 1, ELSE, IDENT “fib”,
LPAREN, IDENT “m”, SUB, INT 1, RPAREN, ADD,
IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 2, RPAREN

implemented with some data type

14

Recall from Discrete Mathematics (Part 1A)

Recall from Discrete Mathematics (Part 1A)

15

Recall from Discrete Mathematics (Part 1A)

30

Traditional Regular Language Problem

Given a regular expression,

and an input string , determine if

.

e
w)(eLw∈

Construct a DFA M from e and test if it accepts w.

Recall construction : regular expression à NFA à DFA

16

31

Something closer to the “lexing problem”

Given an ordered list of regular expressions,

and an input string , find a list of pairs

such that

.

1e 2e ke…

nwwww ...)1 21=

w

)()2
jij eLw ∈

)(...),,(),,(,2211 nn wiwiwi

rule)(priority)()3 sieLw jsj ≤→∈

match)(longest)(: sj eLuws ∉∀→
ε≠∈∀∀ ++ uwwwuj njj :)(prefix:)4 21 !

Why ordered? Is “if” a
variable or a keyword?
Need priority to resolve
ambiguity.

Why longest match?
Is “ifif” a variable or two
“if” keywords?

32

Define Tokens with Regular Expressions (Finite
Automata)

Keyword: if

1 i 2 f 3

1 i 2 f 3

0

Σ-{f}
Σ-{i} Σ

This FA is really shorthand for:

Σ “dead state”

17

33

Define Tokens with Regular Expressions (Finite
Automata)

Keyword:
if

1 i 2 f 3 KEY(IF)

Keyword:
then

1 t 2 h 3
KEY(then)

5

e
n

4

Regular Expression Finite Automata Token

Identifier:
[a-zA-Z][a-zA-Z0-9]*

1 2 [a-zA-Z]

[a-zA-Z0-9]

ID(s)

34

Define Tokens with Regular Expressions (Finite
Automata)

Regular Expression Finite Automata Token

number:
[0-9][0-9]*

1 2 [0-9]

[0-9]

NUM(n)

real:
([0-9]+ ‘.’ [0-9]*)
 | ([0-9]* ‘.’ [0-9]+)

1

3

[0-9] NUM(n) 2
[0-9]

[0-9]
.

4

.

[0-9] 5 [0-9]

18

35

No Tokens for “White-Space”

White-space:
(‘ ‘ | ‘\n’ | ‘\t’)+
| ‘%’ [A-Za-z0-9’ ‘]+’\n’

1

3

% 2
[A-za-z0-9’ ‘]

4

‘ ‘

\n

\t
\n

36

Constructing a Lexer

1e
2e

ke

…

 INPUT:
an ordered
list of regular
expressions

1NFA
2NFA

kNFA

…

Construct all
corresponding
finite automata

use priority NFA DFA

Construct a single
non-deterministic
finite automata

Construct a single
deterministic
finite automata

(1) Keyword : then

(2) Ident : [a-z][a-z]*

(2) White-space: ‘ ‘

1 t
2:ID

h 3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID

[a
-g

i-z
]

[a-mo-z]

[a-z]

[a-su-z]

19

37

What about longest match?

1 t
2:ID

h 3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID

[a
-g

i-z
]

[a-mo-z]

[a-z]

[a-su-z]

|then thenx$ 1 0
t|hen thenx$ 2 2
th|en thenx$ 3 3
the|n thenx$ 4 4
then| thenx$ 5 5
then |thenx$ 0 5 EMIT KEY(THEN)
then| thenx$ 1 0 RESET
then |thenx$ 7 7
then t|henx$ 0 7 EMIT WHITE(‘ ‘)
then |thenx$ 1 0 RESET
then t|henx$ 2 2
then th|enx$ 3 3
then the|nx$ 4 4
then then|x$ 5 5
then thenx|$ 6 6
then thenx$| 0 6 EMIT ID(thenx)

Start in initial state,
Repeat:
 (1) read input until dead state is
 reached. Emit token associated
 with last accepting state.
 (2) reset state to start state

| = current position, $ = EOF

Input
current state

last accepting state

38

Concrete vs. Abstract Syntax Trees

S
S + E
E

(S)
5

S + E
S + E (S)

S + E E

E 1
2

3
4

+
5 +

+ +

3 4 1 2

parse tree =
derivation tree =
concrete syntax
tree Abstract Syntax Tree (AST)

An AST contains only the
information needed to generate an
intermediate representation

Normally a compiler constructs the concrete syntax tree only implicitly
(in the parsing process) and explicitly constructs an AST.

20

39

On to Context Free Grammars (CFGs)

E ::= ID

E ::= NUM

E ::= E * E

E ::= E / E

E ::= E + E

E ::= E – E

E ::= (E)

E ::= ID | NUM | E * E | E / E | E + E | E – E | (E)

Usually will write this way

E is a non-terminal symbol

ID and NUM are lexical classes

*, (,), +, and – are terminal symbols.

E ::= E + E is called a production rule.

40

CFG Derivations
(G1) E ::= ID | NUM | ID | E * E | E / E | E + E | E – E | (E)

E à E * E
 à (E) * E
 à (E + E) * E
 à (17 + E) * E
 à (17 + 4) * E
 à (17 + 4) * (E)
 à (17 + 4) * (E – E)
 à (17 + 4) * (2 – E)
 à (17 + 4) * (2 – 10)

E

E E

E

*
()

17 4 2 10

E ()

E E E E + -

E à E * E
 à E * (E)
 à E * (E – E)
 à E * (E – 10)
 à E * (2 – 10)
 à (E) * (2 – 10)
 à (E + E) * (2 – 10)
 à (E + 4) * (2 – E)
 à (17 + 4) * (2 – 10)

The Derivation Tree for
 (17 + 4) * (2 – 10)

 Rightmost
derivation

 Leftmost
derivation

21

41

More formally, …

•  A CFG is a quadruple G = (N, T, R, S) where
–  N is the set of non-terminal symbols
–  T is the set of terminal symbols (N and T disjoint)
–  S ∈N is the start symbol
–  R ⊆ N×(N∪T)* is a set of rules

•  Example: The grammar of nested parentheses
G = (N, T, R, S) where
–  N = {S}
–  T ={ (,) }
–  R ={ (S, (S)) , (S, SS), (S,) }

S ::= (S) | SS | We will normally write R as

42

Derivations, more formally…

•  Start from start symbol (S)
•  Productions are used to derive a sequence of tokens from the

start symbol
•  For arbitrary strings α, β and γ comprised of both terminal and

non-terminal symbols,
and a production A → β,
a single step of derivation is
 αAγ ⇒ αβγ
–  i.e., substitute β for an occurrence of A

•  α ⇒* β means that b can be derived from a in 0 or more single
steps

•  α ⇒+ β means that b can be derived from a in 1 or more single
steps

22

43

L(G) = The Language Generated by Grammar G

}|*{)(wSTwGL +⇒∈=

The language generated by G is the set of all terminal strings
derivable from the start symbol S:

For any subset W of T*, if there exists a CFG G such
that L(G) = W, then W is called a Context-Free
Language (CFL) over T.

44

Ambiguity

E

E E *

1 2

E E + 3

E

E +
1

E

2 3

E E *

Both derivation trees correspond to the string

 1 + 2 * 3

This type of ambiguity will cause problems when we try to
go from strings to derivation trees!

(G1) E ::= ID | NUM | ID | E * E | E / E | E + E | E – E | (E)

23

45

Problem: Generation vs. Parsing

•  Context-Free Grammars (CFGs)
describe how to to generate

•  Parsing is the inverse of generation,
–  Given an input string, is it in the language

generated by a CFG?
–  If so, construct a derivation tree (normally

called a parse tree).
–  Ambiguity is a big problem

Note : recent work on Parsing Expression Grammars (PEGs) represents an
attempt to develop a formalism that describes parsing directly. This is beyond
the scope of these lectures …

46

We can often modify the grammar
in order to eliminate ambiguity

(G2)
 S :: = E$

 E ::= E + T
 | E – T
 | T

T ::= T * F
 | T / F
 | F

F ::= NUM
 | ID
 | (E)

E

E +
1

T

2

3

T F *
F

This is the unique derivation
tree for the string

 1 + 2 * 3$ Note: L(G1) = L(G2).

Can you prove it?

(expressions)

(terms)

(factors)

(start, $ = EOF)

S

24

47

Famously Ambiguous

(G3) S ::= if E then S else S | if E then S | blah-blah

What does

 if e1 then if e2 then s1 else s3

mean?

S

if then E S

if then E S else S

S

if then E S else S

if then E S

OR

48

Rewrite?

(G4)
S ::= WE | NE
WE ::= if E then WE else WE | blah-blah
NE ::= if E then S
 | if E then WE else NE

if then E

if then E S else S

S

NE

S

WE

Now,

 if e1 then if e2 then s1 else s3

has a unique derivation.

Note: L(G3) = L(G4).
Can you prove it?

25

49

Fun Fun Facts

{ } { }1,1|1,1| ≥≥≥≥= nmnmL dcbadcba nmmnmmnn ∪

See Hopcroft and Ullman, “Introduction to Automata
Theory, Languages, and Computation”

(1) Some context free languages are inherently ambiguous --- every
context-free grammar will be ambiguous. For example:

(2) Checking for ambiguity in an arbitrary context-free
 grammar is not decidable! Ouch!

(3) Given two grammars G1 and G2, checking L(G1) = L(G2) is
 not decidable! Ouch!

50

Generating Lexical Analyzers

Lexical
Analyzer

Source
Program tokens

Scanner
Generator
“LEX”

Lexical specification

DFA Transitions

Parser

The idea : use regular expressions as the basis of a
lexical specification. The core of the lexical analyzer is
then a deterministic finite automata (DFA)

26

51

Predictive (Recursive Descent) Parsing
Can we automate this?

(G5)

S :: = if E then S else S
 | begin S L
 | print E

E ::= NUM = NUM

L ::= end
 | ; S L

int tok = getToken();

void advance() {tok = getToken();}
void eat (int t) {if (tok == t) advance(); else error();}

void S() {switch(tok) {
 case IF: eat(IF); E(); eat(THEN);
 S(); eat(ELSE); S(); break;
 case BEGIN: eat(BEGIN); S(); L(); break;
 case PRINT: eat(PRINT); E(); break;
 default: error();
 }}

void L() {switch(tok) {
 case END: eat(END); break;
 case SEMI: eat(SEMI); S(); L(); break;
 default: error();
 }}

void E() {eat(NUM) ; eat(EQ); eat(NUM); }

From Andrew Appel, “Modern Compiler Implementation in Java” page 46

Parse corresponds to a left-most derivation
constructed in a “top-down” manner

52

 Eliminate Left-Recursion

A ::= Aα1 | Aα2 | . . . | Aαk |
 β1 | β2 | . . . | βn

Immediate left-recursion

A ::= β1 A’ | β2 A’ | . . . | βn A’

A’ ::= α1 A’ | α2 A’| . . . | αk A’ | ε

For eliminating left-recursion in general, see Aho and Ullman.

A

A

A

β

α

α

A

A’
β
α

α

A’

A’

ε

27

54

FIRST and FOLLOW

 FIRST[X] = the set of terminal symbols that
 can begin strings derived from X

FOLLOW[X] = the set of terminal symbols that
 can immediately follow X in some
 derivation

 nullable[X] = true of X can derive the empty string,
 false otherwise

For each non-terminal X we need to compute

nullable[Z] = false, for Z in T

nullable[Y1 Y2 … Yk] = nullable[Y1] and … nullable[Yk], for Y(i) in N union T.

FIRST[Z] = {Z}, for Z in T

FIRST[X Y1 Y2 … Yk] = FIRST[X] if not nullable[X]

FIRST[X Y1 Y2 … Yk] =FIRST[X] union FIRST[Y1 … Yk] otherwise

28

55

Computing First, Follow, and nullable

For each terminal symbol Z
 FIRST[Z] := {Z};
 nullable[Z] := false;

For each non-terminal symbol X
 FIRST[X] := FOLLOW[X] := {};
 nullable[X] := false;

repeat
 for each production X à Y1 Y2 … Yk
 if Y1, … Yk are all nullable, or k = 0
 then nullable[X] := true
 for each i from 1 to k, each j from i + I to k
 if Y1 … Y(i-1) are all nullable or i = 1
 then FIRST[X] := FIRST[X] union FIRST[Y(i)]
 if Y(i+1) … Yk are all nullable or if i = k
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X]
 if Y(i+1) … Y(j-1) are all nullable or i+1 = j
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]
until there is no change

29

30

60

But wait! What if there are conflicts in
the predictive parsing table?

(G7)

 S :: = d | X Y S

Y ::= c |

X ::= Y | a

S

Y

X

Nullable FIRST FOLLOW

false

true

true

{ c,d ,a}

{ c }

{ c,a }

{ }

{ c,d,a }

{ c, a,d }

S

Y

X

a c d

{ S ::= X Y S }

{ Y ::= }

{ X ::= a, X ::= Y }

{ S ::= X Y S }

{ Y ::= , Y ::= c}

{ X ::= Y }

{ S ::= X Y S, S ::= d }

{ Y ::= }

{ X ::= Y }

The resulting “predictive” table is not so predictive….

31

61

LL(1), LL(k), LR(0), LR(1), …

•  LL(k) : (L)eft-to-right parse, (L)eft-most
derivation, k-symbol lookahead. Based on
looking at the next k tokens, an LL(k) parser
must predict the next production. We have been
looking at LL(1).

•  LR(k) : (L)eft-to-right parse, (R)ight-most
derivation, k-symbol lookahead. Postpone
production selection until the entire right-hand-
side has been seen (and as many as k symbols
beyond).

•  LALR(1) : A special subclass of LR(1).

62

Example

(G8)

 S :: = S ; S | ID = E | print (L)

E ::= ID | NUM | E + E | (S, E)

L ::= E | L, E

(G8)

 S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN

E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN

L ::= E | L COMMA E

To be consistent, I should write the following, but I won’t…

32

63

A right-most derivation …

(G8)

S ::= S ; S
 | ID = E
 | print (L)

E ::= ID
 | NUM
 | E + E
 | (S, E)

L ::= E
 | L, E

 S
 à S ; S
 à S ; ID = E
 à S ; ID = E + E
 à S ; ID = E + (S, E)
 à S ; ID = E + (S, ID)
 à S ; ID = E + (S, d)
 à S ; ID = E + (ID = E, d)
 à S ; ID = E + (ID = E + E, d)
 à S ; ID = E + (ID = E + NUM, d)
 à S ; ID = E + (ID = E + 6, d)
 à S ; ID = E + (ID = NUM + 6, d)
 à S ; ID = E + (ID = 5 + 6, d)
 à S ; ID = E + (d = 5 + 6, d)
 à S ; ID = ID + (d = 5 + 6, d)
 à S ; ID = c + (d = 5 + 6, d)
 à S ; b = c + (d = 5 + 6, d)
 à ID = E ; b = c + (d = 5 + 6, d)
 à ID = NUM ; b = c + (d = 5 + 6, d)
 à ID = 7 ; b = c + (d = 5 + 6, d)
 à a = 7 ; b = c + (d = 5 + 6, d)

64

Now, turn it upside down …
à  a = 7 ; b = c + (d = 5 + 6, d)
à  ID = 7 ; b = c + (d = 5 + 6, d)
à  ID = NUM; b = c + (d = 5 + 6, d)
à ID = E ; b = c + (d = 5 + 6, d)
à S ; b = c + (d = 5 + 6, d)
à  S ; ID = c + (d = 5 + 6, d)
à  S ; ID = ID + (d = 5 + 6, d)
à S ; ID = E + (d = 5 + 6, d)
à  S ; ID = E + (ID = 5 + 6, d)
à  S ; ID = E + (ID = NUM + 6, d)
à  S ; ID = E + (ID = E + 6, d)
à  S ; ID = E + (ID = E + NUM, d)
à S ; ID = E + (ID = E + E, d)
à S ; ID = E + (ID = E, d)
à S ; ID = E + (S, d)
à S ; ID = E + (S, ID)
à S ; ID = E + (S, E)
à S ; ID = E + E
à S ; ID = E
à S ; S
 S

33

65

Now, slice it down the middle…

ID
ID = NUM
ID = E
S
S ; ID
S ; ID = ID
S ; ID = E
S ; ID = E + (ID
S ; ID = E + (ID = NUM
S ; ID = E + (ID = E
S ; ID = E + (ID = E + NUM
S ; ID = E + (ID = E + E
S ; ID = E + (ID = E
S ; ID = E + (S
S ; ID = E + (S, ID
S ; ID = E + (S, E)
S ; ID = E + E
S ; ID = E
S ; S
S

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 = 5 + 6, d)
 + 6, d)
 + 6, d)
 , d)
 , d)
 , d)
 , d)
)

A stack of terminals and
non-terminals

The rest of the input string

66

Now, add some actions. s = SHIFT, r = REDUCE

ID
ID = NUM
ID = E
S
S ; ID
S ; ID = ID
S ; ID = E
S ; ID = E + (ID
S ; ID = E + (ID = NUM
S ; ID = E + (ID = E
S ; ID = E + (ID = E + NUM
S ; ID = E + (ID = E + E
S ; ID = E + (ID = E
S ; ID = E + (S
S ; ID = E + (S, ID
S ; ID = E + (S, E)
S ; ID = E + E
S ; ID = E
S ; S
S

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 = 5 + 6, d)
 + 6, d)
 + 6, d)
 , d)
 , d)
 , d)
)
)

s
s, s
r E ::= NUM
r S ::= ID = E
s, s
s, s
r E ::= ID
s, s, s
s, s
r E ::= NUM
s, s
r E ::= NUM
r E ::= E+E, s, s
r S ::= ID = E
R E::= ID
s, r E ::= (S, E)
r E ::= E + E
r S ::= ID = E
r S ::= S ; S

ACTIONS
SHIFT = LEX + move token to stack

34

67

LL(k) vs. LR(k) reductions

)',)((' *** TwNTwA ∈∪∈⇒→ ββ

)(kLL)(kLR

'w
k token look ahead

Stack

A β (left-most
symbol at
top)

'w
k token look
ahead

Stack

Aβ(right-most
symbol at
top)

A

The language of this
Stack IS REGULAR!

68

Q: How do we know when to shift and
when to reduce? A: Build a FSA from

LR(0) Items!
(G10)

S ::= A $

A ::= (A)
 | ()

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

LR(0) items indicate what is on the stack
(to the left of the •) and what is still in
the input stream (to the right of the •)

If

 X ::= αβ	

	

is a production, then

 X ::= α • β	

is an LR(0) item.

35

69

LR(k) states (non-deterministic)

),(21 kaaaA !βα •→

'w Stack: α

'*
21 waaa k ⇒!β

(right-most
symbol at
top)

The state

should represent this situation:

Input:

with

70

Key idea behind LR(0) items

•  If the “current state” contains the item
A ::= α • c β and the current symbol in the input buffer is c
–  the state prompts parser to perform a shift action
–  next state will contain A ::= α c • β

•  If the “state” contains the item A ::= α •
–  the state prompts parser to perform a reduce action

•  If the “state” contains the item S ::= α • $
and the input buffer is empty
–  the state prompts parser to accept

•  But How about A ::= α • X β where X is a nonterminal?

36

71

The NFA for LR(0) items

•  The transition of LR(0) items can be represented
by an NFA, in which
–  1. each LR(0) item is a state,
–  2. there is a transition from item A ::= α • c β
 to item A ::= αc • β with label c, where c is a terminal

symbol
–  3. there is an ε-transition from item A ::= α • X β to

X ::= • γ, where X is a non-terminal
–  4. S ::= • A $ is the start state
–  5. A ::= α • is a final state.	

72

Example NFA for Items

 S ::= • A $ S ::= A • $ A ::= • (A)
A ::= (• A) A ::= (A •) A ::= (A) •
A ::= • () A ::= (•) A ::= () •

A ::= (A •)

A ::= (•)

A ::= (A) • S ::= A • $ S ::= • A $

A ::= • () A ::= () •

A ::= (• A) A ::= • (A)

A

A (

()

)ε	

ε	

ε	

37

73

The DFA from LR(0) items

•  After the NFA for LR(0) is constructed, the resulting DFA
for LR(0) parsing can be obtained by the usual
NFA2DFA construction.

•  we thus require
–  ε-closure (I)
–  move(S, a)

Fixed Point Algorithm for Closure(I)
–  Every item in I is also an item in Closure(I)
–  If A ::= α • B β is in Closure(I) and B ::= • γ is an item,

then add B ::= • γ to Closure(I)
–  Repeat until no more new items can be added to

Closure(I)

74

Examples of Closure

Closure({A ::= (• A)}) =
A ::= (• A)
A ::= • (A)
A ::= • ()

S ::= • A $
A ::= • (A)
A ::= • ()

•  closure({S ::= • A $})

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

38

75

Goto() of a set of items

•  Goto finds the new state after consuming a
grammar symbol while in the current state

•  Algorithm for Goto(I, X)
where I is a set of items
and X is a non-terminal

Goto(I, X) = Closure({ A ::= α X • β | A ::= α • X β in I })

•  goto is the new set obtained by
“moving the dot” over X

76

Examples of Goto

•  Goto ({A ::= •(A)}, ()

A ::= (• A)
A ::= • (A)
A ::= • ()

 •  Goto ({A ::= (• A)}, A)

A ::= (A •)

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

39

77

•  Essentially the usual NFA2DFA construction!!
•  Let A be the start symbol and S a new start

symbol.
•  Create a new rule S ::= A $
•  Create the first state to be Closure({ S ::= • A $})
•  Pick a state I

–  for each item A ::= α • X β in I
•  find Goto(I, X)
•  if Goto(I, X) is not already a state, make one
•  Add an edge X from state I to Goto(I, X) state

•  Repeat until no more additions possible

Building the DFA states

78

DFA Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0 S ::= A • $
s1 A

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

(
A ::= (A •)

A

s3
(

A ::= () •

)s5
A ::= (A) •

)
s4

40

79

Building Parse Table Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0 S ::= A • $
s1 A

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

(
A ::= (A •)

A

s3
(

A ::= () •

)s5
A ::= (A) •

)
s4

Creating the Parse Table(s)

State () $ A
s0 shift to s2 goto s1
s1 accept
s2 shift to s2 shift to s5 goto s3
s3 shift to s4
s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

(G10)
(1)   S ::= A$
(2)   A ::= (A)
(3)   A ::= ()

80

Parsing with an LR Table

Use table and top-of-stack and input symbol to get action:

If action is
 shift sn : advance input one token,
 push sn on stack
 reduce X ::= α : pop stack 2* |α| times (grammar symbols
 are paired with states). In the state
 now on top of stack,
 use goto table to get next
 state sn,
 push it on top of stack
 accept : stop and accept
 error : weep (actually, produce a good error
 message)

41

81

Building Parse Table Example Parsing, again…
ACTION Goto

State () $ A
s0 shift to s2 goto s1
s1 accept
s2 shift to s2 shift to s5 goto s3
s3 shift to s4
s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

s0 (())$ shift s2
s0 (s2 ())$ shift s2
s0 (s2 (s2))$ shift s5
s0 (s2 (s2) s5)$ reduce A ::= ()
s0 (s2 A)$ goto s3
s0 (s2 A s3)$ shift s4
s0 (s2 A s3) s4 $ reduce A::= (A)
s0 A $ goto s1
s0 A s1 $ ACCEPT!

(G10)
(1)   S ::= A$
(2)   A ::= (A)
(3)   A ::= ()

82

LR Parsing Algorithm

sm
Ym
sm-1

Ym-1
 .
 .
s1

Y1
s0

a1 ... ai ... an $

Action Table
 terminals and $
s
t four different
a actions
t
e
s

Goto Table
 non-terminal
s
t each item is
a a state
t number
e
s

LR Parsing
Algorithm

Stack of
states and
grammar symbols

input

output

42

83

Problem With LR(0) Parsing

• No lookahead
• Vulnerable to unnecessary

conflicts
– Shift/Reduce Conflicts (may reduce

too soon in some cases)
– Reduce/Reduce Conflicts

• Solutions:
– LR(1) parsing - systematic lookahead

84

LR(1) Items

•  An LR(1) item is a pair:
 (X ::= α . β, a)
–  X ::= αβ is a production
–  a is a terminal (the lookahead terminal)
–  LR(1) means 1 lookahead terminal

•  [X ::= α . β, a] describes a context of the parser
–  We are trying to find an X followed by an a, and
–  We have (at least) α already on top of the stack
–  Thus we need to see next a prefix derived from βa

43

85

The Closure Operation

•  Need to modify closure operation:.

Closure(Items) =
 repeat
 for each [X ::= α . Yβ, a] in Items
 for each production Y ::= γ
 for each b in First(βa)
 add [Y ::= .γ, b] to Items
 until Items is unchanged

86

Constructing the Parsing DFA (2)

•  A DFA state is a closed set of LR(1) items

•  The start state contains (S’ ::= .S$, dummy)

•  A state that contains [X ::= α., b] is labeled
with “reduce with X ::= α on lookahead b”

•  And now the transitions …

44

87

The DFA Transitions

•  A state s that contains [X ::= α.Yβ, b] has
a transition labeled y to the state obtained
from Transition(s, Y)
– Y can be a terminal or a non-terminal

Transition(s, Y)
 Items = {}
 for each [X ::= α.Yβ, b] in s
 add [X ! αY.β, b] to Items
 return Closure(Items)

88

LR(1)-the parse table

•  Shift and goto as before
•  Reduce

– state I with item (A→α., z) gives a reduce
A→α if z is the next character in the input.

•  LR(1)-parse tables are very big

45

89

LR(1)-DFA

From Andrew Appel, “Modern Compiler Implementation in Java” page 65

(G11)

S’ ::= S$

S ::= V = E
 | E

E ::= V

V ::= x
 | *E

90

LR(1)-parse table

x * = $ S E V x * = $ S E V

1 s8 s6 g2 g5 g3 8 r4 r4

2 acc 9 r1

3 s4 r3 10 r5 r5

4 s11 s13 g9 g7 11 r4

5 r2 12 r3 r3

6 s8 s6 g10 g12 13 s11 s13 g14 g7

7 r3 14 r5

46

91

LALR States

•  Consider for example the LR(1) states
 {[X ::= α. , a], [Y ::= β. , c]}
 {[X ::= α. , b], [Y ::= β. , d]}
•  They have the same core and can be

merged to the state
 {[X ::= α. , a/b], [Y ::= β. , c/d]}
•  These are called LALR(1) states

– Stands for LookAhead LR
– Typically 10 times fewer LALR(1) states than

LR(1)

92

For LALR(1), Collapse States ...

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14.

47

93

LALR(1)-parse-table

x * = $ S E V
1 s8 s6 g2 g5 g3
2 acc
3 s4 r3
4 s8 s6 g9 g7
5
6 s8 s6 g10 g7
7 r3 r3
8 r4 r4
9 r1
10 r5 r5

94

LALR vs. LR Parsing

•  LALR languages are not “natural”
–  They are an efficiency hack on LR languages

•  You may see claims that any reasonable programming
language has a LALR(1) grammar, {Arguably this is
done by defining languages without an LALR(1)
grammar as unreasonable J }.

•  In any case, LALR(1) has become a standard for
programming languages and for parser generators, in
spite of its apparent complexity.

