
C/C++ Exercise Sheet 2013–2014

Lecture 1

1. What is the difference between ’a’ and "a"?

2. Will char i,j; for(i=0; i<10,j<5; i++,j++) ; terminate? If so, under what circum-
stances?

3. Write an implementation of bubble sort for a fixed array of integers. (An array of integers
can be defined as int i[] = {1,2,3,4}; the 2nd integer in an array can be printed using
printf("%d\n",i[1]);.)

4. Modify your answer to (3) to sort characters into lexicographical order. (The 2nd character
in a character array i can be printed using printf("%c\n",i[1]);.)

Lecture 2

1. Write a function definition which matches the declaration int cntlower(char str[]);.
The implementation should return the number of lower-case letters in a string

2. Use function recursion to write an implementation of merge sort for a fixed array of
integers; how much memory does your program use for a list of length n?

3. Define a macro SWAP(t,x,y) that exchanges two arguments of type t (K&R, Exercise 4-14)

4. Does your macro work as expected for SWAP(int, v[i++], w[f(x)])?

5. Define a macro SWAP(x,y) that exchanges two arguments of the same type (e.g. int or
char) without using a temporary

Lecture 3

1. If p is a pointer, what does p[-2] mean? When is this legal?

2. Write a string search function with a declaration of char *strfind(const char *s, const char *f);

which returns a pointer to first occurrence of s in f (and NULL otherwise)

3. If p is a pointer to a structure, write some C code which uses all the following code snippets:
“++p->i”, “p++->i”, “*p->i”, “*p->i++”, “(*p->i)++” and “*p++->i”; describe the action of
each code snippet

4. Write a program calc which evaluates a reverse Polish expression given on the command line; for
example
$ calc 2 3 4 + *

should print 14 (K&R Exercise 5-10)

1



Lecture 4

1. What is the value of i after executing each of the following:

(a) i = sizeof(char);

(b) i = sizeof(int);

(c) int a; i = sizeof a;

(d) char b[5]; i = sizeof(b);

(e) char *c=b; i = sizeof(c);

(f) struct {int d;char e;} s; i = sizeof s;

(g) void f(int j[5]) { i = sizeof j;}

(h) void f(int j[][10]) { i = sizeof j;}

2. Use struct to define a data structure suitable for representing a binary tree of integers.
Write a function heapify(), which takes a pointer to an integer array of values and a
pointer to the head of an (empty) tree and builds a binary heap of the integer array
values. (Hint: you’ll need to use malloc())

3. What other C data structure can be used to represent a heap? Would using this structure
lead to a more efficient implementation of heapify()?

Lecture 5

1. Write an implementation of a class LinkList which stores zero or more positive integers
internally as a linked list on the heap. The class should provide appropriate constructors
and destructors and a method pop() to remove items from the head of the list. The method
pop() should return -1 if there are no remaining items. Your implementation should
override the copy constructor and assignment operator to copy the linked-list structure
between class instances. You might like to test your implementation with the following:

1 int main() {

2 int test[] = {1,2,3,4,5};

3 LinkList l1(test+1,4), l2(test,5);

4 LinkList l3=l2, l4;

5 l4=l1;

6 printf("%d %d %d\n",l1.pop(),l3.pop(),l4.pop());

7 return 0;

8 }

Hint: heap allocation & deallocation should occur exactly once!

Lecture 6

1. If a function f has a static instance of a class as a local variable, when might the class
constructor be called?

2. Write a class Matrix which allows a programmer to define 2 × 2 matrices. Overload the
common operators (e.g. +, -, *, and /)

3. Write a class Vector which allows a programmer to define a vector of length two. Modify
your Matrix and Vector classes so that they interoperate correctly (e.g. v2 = m*v1 should
work as expected)

4. Why should destructors in an abstract class almost always be declared virtual?

2



Lecture 7

1. Provide an implementation for:
template<class T> T Stack<T>::pop(); and
template<class T> Stack<T>::~Stack();

2. Provide an implementation for:
Stack(const Stack& s); and
Stack& operator=(const Stack& s);

3. Using meta programming, write a templated class prime, which evaluates whether a literal
integer constant (e.g. 7) is prime or not at compile time.

4. How can you be sure that your implementation of class prime has been evaluated at
compile time?

Lecture 8

Past exam questions can be found at:
http://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-ProgramminginCandC++.html.

3


