
Computer Laboratory

Algorithms— Exercises for students

Academic year 2015–2016

Lent term 2016

http://www.cl.cam.ac.uk/teaching/1516/Algorithms/
frank.stajano––algs@cl.cam.ac.uk (author of this handout)

thomas.sauerwald@cl.cam.ac.uk

Revised 2016 edition
Revision 2 of 2016-01-09 14:14:57 +0000 (Sat, 09 Jan 2016).

c© 2005–2016 Frank Stajano

http://www.cl.cam.ac.uk/teaching/1516/Algorithms/

Introduction

From 2013–2014 I encourage all students and supervisors to use the wonderful Otter
system, even though it is still somewhat experimental (feedback on your experience with
it will help improve it). This document is now more or less frozen and Otter will eventually
also contain additional exercises that do not appear in this document.

This document contains a mix of exercises of various levels of difficulty, from the
simpler ones just to check you’re not reading the handout on autopilot all the way up to
real exam questions. The official historical repository of exam questions is accessible from
the course web page and will have more questions than appear here.

Students who study this course are encouraged and expected to use the CLRS3 text-
book as opposed to relying only on the course handout.

Each of the recommended textbooks, and in particular CLRS3, has a copious supply
of additional problems, both easier and harder than exam questions.

Students seeking clarification about these exercises are encouraged to contact their
supervisor in the first instance. If this is unsuccessful, email to the lecturers about this
course will be treated with higher priority if sent to the correct address listed on the front
page (note that Dr Stajano’s priority address contains two consecutive hyphens).

This is a 24-lecture course with 8 supervisions, thus averaging one supervision every
three lectures. Topics to be covered in supervisions are at the discretion of the supervisor
but as a rough guideline they might be assigned as follows:

1. Sorting. Review of complexity and O-notation. Trivial sorting algorithms of quadratic
complexity. Review of merge sort and quicksort, understanding their memory be-
haviour on statically allocated arrays. Heapsort.

2. Stability. Other sorting methods including sorting in linear time. Median and order
statistics. Strategies for algorithm design. Dynamic programming.

3. Divide and conquer, greedy algorithms and other useful paradigms. Data structures.
Primitive data structures. Abstract data types. Pointers, stacks, queues, lists, trees.
Binary search trees.

4. Red-black trees. B-trees. Hash tables. Priority queues and heaps.

5. Advanced data structures. Amortized analysis: aggregate analysis, potential method.
Fibonacci heaps.

6. Disjoint sets. Graph algorithms. Graph representations. Breadth-first and depth-
first search. Topological sort. Minimum spanning tree. Kruskal and Prim algo-
rithms.

2

7. Single-source shortest paths: Bellman-Ford and Dijkstra algorithms. All-pairs short-
est paths: matrix multiplication and Johnson’s algorithms.

8. Maximum flow: Ford-Fulkerson method, Max-Flow Min-Cut Theorem. Matchings
in bipartite graphs. Geometric algorithms. Intersection of segments. Convex hull:
Graham’s scan, Jarvis’s march.

Acknowledgements
Thanks to Daniel Bates, Ramana Kumar, Robin Message, Myra VanInwegen, Sebastian
Funk, Wenda Li and Jannis Bulian for sending corrections or suggesting better solutions
to some of the exercises. If you have any more suggestions or corrections, please keep
them coming.

Exercise 1
Assume that each swap(x, y) means three assignments (namely tmp = x; x
= y; y = tmp). Improve the insertsort algorithm pseudocode shown in the
handout to reduce the number of assignments performed in the inner loop.

Exercise 2
Provide a useful invariant for the inner loop of insertion sort, in the form of
an assertion to be inserted between the “while” line and the “swap” line.

Exercise 3

|sin(n)| = O(1)

|sin(n)| 6= Θ(1)

200 + sin(n) = Θ(1)

123456n+ 654321 = Θ(n)

2n− 7 = O(17n2)

lg(n) = O(n)

lg(n) 6= Θ(n)

n100 = O(2n)

1 + 100/n = Θ(1)

For each of the above “=” lines, identify the constants k, k1, k2, N as appropri-
ate. For each of the “ 6=” lines, show they can’t possibly exist.

c© Frank Stajano 3

Exercise 4
What is the asymptotic complexity of the variant of insertsort that does fewer
swaps?

Exercise 5
The proof of Assertion 1 (lower bound on exchanges) convinces us that Θ(n)
exchanges are always sufficient. But why isn’t that argument good enough to
prove that they are also necessary?

Exercise 6
When looking for the minimum ofm items, every time one of them−1 compar-
isons fails the best-so-far minimum must be updated. Give a permutation of
the numbers from 1 to 7 that, if fed to the Selection sort algorithm, maximizes
the number of times that the above-mentioned comparison fails.

Exercise 7
Code up the details of the binary partitioning portion of the binary insertion
sort algorithm.

Exercise 8
Prove that Bubble sort will never have to perform more than n passes of the
outer loop.

Exercise 9
Can you spot any problems with the suggestion of replacing the somewhat
mysterious line a3[i3] = smallest(a1, i1, a2, i2) with the more explicit
and obvious a3[i3] = min(a1[i1], a2[i2])? What would be your preferred
way of solving such problems? If you prefer to leave that line as it is, how
would you implement the procedure smallest it calls? What are the trade-
offs between your chosen method and any alternatives?

4 Algorithms— Exercises for students (2015–2016)

Exercise 10
In one line we return the same array we received from the caller, while in
another we return a new array created within the mergesort subroutine. This
asymmetry is suspicious. Discuss potential problems.

Exercise 11
Never mind the theoretical computer scientists, but how do you mergesort in
n/2 space?

Exercise 12
Justify that the merging procedure just described will not overwrite any of the
elements in the second half.

Exercise 13
Write pseudocode for the bottom-up mergesort.

Exercise 14
Can picking the pivot at random really make any difference to the expected
performance? How will it affect the average case? The worst case? Discuss.

Exercise 15
Justify why running Insertion sort over the messy array produced by the trun-
cated Quicksort might not be as stupid as it may sound at first. How should
the threshold be chosen?

Exercise 16
What is the smallest number of pairwise comparisons you need to perform to
find the smallest of n items?

c© Frank Stajano 5

Exercise 17
(More challenging.) And to find the second smallest?

Exercise 18
What are the minimum and maximum number of elements in a heap of height
h?

Exercise 19
For each of the sorting algorithms seen in this course, establish whether it is
stable or not.

Exercise 20
Give detailed pseudocode for the counting sort algorithm (particularly the
second phase), ensuring that the overall cost stays linear. Do you need to
perform any kind of precomputation of auxiliary values?

Exercise 21
Why couldn’t we simply use counting sort in the first place, since the keys are
integers in a known range?

6 Algorithms— Exercises for students (2015–2016)

Exercise 22
Leaving aside for brevity Fibonacci’s original 1202 problem on the sexual ac-
tivities of a pair of rabbits, the Fibonacci sequence may be more abstractly
defined as follows:

F0 = 1
F1 = 1
Fn = Fn−2 + Fn−1 for n ≥ 2

(This yields 1, 1, 2, 3, 5, 8, 13, 21, . . .)
In a couple of lines in your favourite programming language, write a recursive
program to compute Fn given n, using the definition above. And now, finally,
the question: how many function calls will your recursive program perform to
compute F10, F20 and F30? First, guess; then instrument your program to tell
you the actual answer.

Exercise 23
Prove (an example is sufficient) that the order in which the matrix multi-
plications are performed may dramatically affect the total number of scalar
multiplications—despite the fact that, since matrix multiplication is associa-
tive, the final matrix stays the same.

Exercise 24
Provide a small counterexample that proves that the greedy strategy of choos-
ing the item with the highest £/kg ratio is not guaranteed to yield the optimal
solution.

Exercise 25
Draw the memory layout of these two representations for a 3×5 matrix, point-
ing out where element (1,2) would be in each case.

Exercise 26
Show how to declare a variable of type list in the C case and then in the Java
case. Show how to represent the empty list in the Java case. Check that this
value (empty list) can be assigned to the variable you declared earlier.

c© Frank Stajano 7

Exercise 27
As a programmer, do you notice any uncomfortable issues with your Java
definition of a list? (Requires some thought and O-O flair.)

Exercise 28
Draw a picture of the compact representation of a list described in the notes.

Exercise 29
Invent (or should I say “rediscover”?) a linear-time algorithm to convert an
infix expression such as
(3+12)*4 - 2
into a postfix one without parentheses such as
3 12 + 4 * 2 -.
By the way, would the reverse exercise have been easier or harder?

Exercise 30
How would you deal efficiently with the case in which the keys are English
words? (There are several possible schemes of various complexity that would
all make acceptable answers provided you justified your solution.)

Exercise 31
Should the new key-value pair added by set() be added at the start or the
end of the list? Or elsewhere?

Exercise 32
Solve the f(n) = f(n/2)+k recurrence, again with the trick of setting n = 2m.

8 Algorithms— Exercises for students (2015–2016)

Exercise 33
(Clever challenge, straight from CLRS3—exercise 12.2-4.) Professor Bunyan
thinks he has discovered a remarkable property of binary search trees. Suppose
that the search for key k in a binary search tree ends up in a leaf. Consider
three sets: A, the keys to the left of the search path; B, the keys on the search
path; and C, the keys to the right of the search path. Professor Bunyan claims
that any three keys a ∈ A, b ∈ B, and c ∈ C must satisfy a ≤ b ≤ c. Give a
smallest possible counterexample to the professor’s claim.

Exercise 34
Why, in BSTs, does this up-and-right business find the successor? Can you
sketch a proof?

Exercise 35
(Important.) Prove that, in a binary search tree, if node n has two children,
then its successor has no left child.

Exercise 36
Prove that this deletion procedure, when applied to a valid binary search tree,
always returns a valid binary search tree.

Exercise 37
What are the smallest and largest possible number of nodes of a red-black tree
of height h, where the height is the length in edges of the longest path from
root to leaf?

c© Frank Stajano 9

Exercise 38
For each of the three possible types of 2-3-4 nodes, draw an isomorphic “node
cluster” made of 1, 2 or 3 red-black nodes. The node clusters you produce
must:

• Have the same number of keys, incoming links and outgoing links as the
corresponding 2-3-4 nodes. as the corresponding 2-3-4 nodes.

• Respect all the red-black rules when composed with other node clusters.

Exercise 39
(The following is not hard but it will take somewhat more than five minutes.)
Using a soft pencil, a large piece of paper and an eraser, draw a B-tree with
t = 2, initially empty, and insert into it the following values in order:

63, 16, 51, 77, 61, 43, 57, 12, 44, 72, 45, 34, 20, 7, 93, 29.

How many times did you insert into a node that still had room? How many
node splits did you perform? What is the depth of the final tree? What is the
ratio of free space to total space in the final tree?

Exercise 40
Prove that, if a key is not in a bottom node, its successor, if it exists, must be.

Exercise 41
(Trivial) Make a hash table with 8 slots and insert into it the following values:

15, 23, 12, 20, 19, 8, 7, 17, 10, 11.

Use the hash function

h(k) = (k mod 10) mod 8

and, of course, resolve collisions by chaining.

10 Algorithms— Exercises for students (2015–2016)

Exercise 42
Non-trivial Imagine redoing the exercise above but resolving collisions by open
addressing. When you go back to the table to retrieve a certain element, if
you land on a non-empty location, how can you tell whether you arrived at the
location for the desired key or on one occupied by the overspill from another
one? (Hint: describe precisely the low level structure of each entry in the table.)

Exercise 43
How can you handle deletions from an open addressing table? What are the
problems of the obvious naïve approach?

Exercise 48
Prove that the sequence of trees in a binomial heap exactly matches the bits
of the binary representation of the number of elements in the heap.

Exercise 44
Why do we claim that keeping the sorted-array priority queue sorted using
bubble sort has linear costs? Wasn’t bubble sort quadratic?

Exercise 45
Before reading ahead: what is the most efficient algorithm you can think of to
merge two binary heaps? What is its complexity?

Exercise 46
Draw a binomial tree of order 4.

c© Frank Stajano 11

Exercise 47
Give proofs of each of the stated properties of binomial trees (trivial) and
heaps (harder until you read the next paragraph—try before doing so).

Exercise 49
Explain with an example why, if the “peculiar constraint” were not enforced,
it would be possible for a node with n descendants to have more than O(lg n)
children.

Exercise 50
If we are so obsessed with keeping down the height of all these trees, why don’t
we just maintain all trees at height ≤ 1 all along?

Exercise 51
Build a “7-bridge” graph with this property. Then look up Euler and Königs-
berg and check whether your graph is or isn’t isomorphic to the historical one.
(Hint: you don’t have to reconstruct the historical layout but note for your
information that the river Pregel, which traversed the city of Königsberg, in-
cluded two islands, which were connected by some of the 7 bridges.) Finally,
build the smallest graph you can find that has this property.

Exercise 52
Draw in the margin an example of each of the following:

1. An anti-reflexive directed graph with 5 vertices and 7 edges.

2. A reflexive directed graph with 5 vertices and 12 edges.

3. A DAG with 8 vertices and 10 edges.

4. An undirected tree with 8 vertices and 10 edges.

5. A tree that is not “an undirected graph without cycles”.

6. A graph without cycles that is not a tree.

Actually, I cheated. Some of these can’t actually exist. Which ones? Why?

12 Algorithms— Exercises for students (2015–2016)

Exercise 53
Draw a random DAG in the margin, with 9 vertices and 9 edges, and then
perform a depth-first search on it, marking each vertex with two numbers as
you proceed—the discovery time (the time the vertex went grey), then a slash
and the finishing time (the time it went black). Then draw the linearized
DAG by arranging the vertices on a line in reverse order of their finishing time
and reproducing the appropriate arrows between them. Do the arrows all go
forward?

Exercise 54
Develop a proof of the correctness of the topological sort algorithm. (Requires
some thought.)

Exercise 55
Find, by hand, a minimum spanning tree for the graph drawn in CLRS3 figure
23.4.(a) (trying not to look at nearby figures). Then see if you can find any
others.

Exercise 56
Starting with fresh copies of the graph you used earlier, run these two algo-
rithms on it by hand and see what you get. Note how, even when you reach
the same end result, you may get to it via wildly different intermediate stages.

Exercise 57
Give a formal proof of the intuitive “triangle inequality”

v.δ ≤ u.δ + w(u, v)

(where w(u, v) is the weight of the edge from vertex u to vertex v) but covering
also the case in which there is actually no path between s and v.

c© Frank Stajano 13

Exercise 58
Write out explicitly the elements of matrix L(0).

Exercise 59
To what matrix would L(0) map? What is the role of that matrix in the
corresponding algebraic structure?

Exercise 60
Draw suitable pictures to illustrate and explain the previous comments. Very
easy; but failure to do this, or merely seeing it done by someone else, will make
it unnecessarily hard to understand what follows.

Exercise 61

• Draw a 3D picture of ~p1, ~p2 and ~p3.

• Draw a 2D picture of ~p1, ~p2 and the parallelogram.

• Prove that the absolute value of the determinant of the matrix(
x1 x2
y1 y2

)
, equal to x1y2−x2y1, gives the magnitude of ~p3 and that its

sign says whether ~p3 “comes out” of the plane (�) or “goes into” it (⊗).

Exercise 62
Sketch an algorithm (not the best possible: just any vaguely reasonable algo-
rithm) to compute the convex hull; then do a rough complexity analysis. Stop
reading until you’ve done that. (Requires thought.)

14 Algorithms— Exercises for students (2015–2016)

Exercise 63
How can you sort a bunch of points by their polar coordinates using efficient
computations that don’t include divisions or trigonometry? (Hint: use cross
products.) Don’t read beyond this box until you’ve found a way.

Exercise 64
Imagine a complex CAD situation in which the set contains about a million
points. Which of the two algorithms we have seen would you use to compute
the convex hull if you expected it to have about 1,000 vertices? And what
is the rough boundary value (for the expected number of vertices of the hull)
above which you would use one algorithm instead of the other? (Is this a trick
question? If so, why?)

c© Frank Stajano 15

Past exam questions

You may obtain PDFs of these and many more exam questions from the course web site.
Check for exams from all the predecessor courses:

• Data structures and algorithms

• Algorithms

• Algorithms I

• Algorithms II

but also double-check, perhaps with the help of your supervisor, that the questions are
covered in this year’s syllabus as defined in this year’s course web page.

16

Data Structures and Algorithms 2005–2006 — Paper 3 Question 2
(FMS)

(a) Briefly explain what a BST (binary search tree) is, listing its properties. Is
the following binary tree a BST or not, and why? [3 marks]

I

G S X

A L V

E T

R

(b) Describe an optimally efficient algorithm to find the predecessor of a given
node n in a BST and explain why it works. [6 marks]

(c) Describe an optimally efficient algorithm for deleting a node d from a BST
when neither of d’s subtrees is empty. Explain why it works and prove that
what remains is still a BST. [5 marks]

(d) Assume that node l, whose key is kl, is a leaf of a BST and that its parent is
node p, with key kp. Prove that, of all the keys in the BST, kp is either the
smallest key greater than kl or the largest key smaller than kl. [6 marks]

1

c© Frank Stajano 17

Data Structures and Algorithms 2005–2006 — Paper 6 Question 1
(FMS)

(a) Explain what the heap data structure is, state its defining properties and
explain how to convert between the tree and vector representations of a heap.

[2 marks]

(b) Describe an optimally efficient algorithm for transforming any random vector
into a heap vector and explain why it works. [4 marks]

(c) Using the tree instead of the vector representation for clarity, apply this
algorithm to the binary tree isomorphic to the letter vector “P I S K T Z

O P V N”, producing a frame by frame trace of the execution. [5 marks]

For readability, please do not draw trees any smaller than these samples, which you
may use as a drawing template. Draw a new tree whenever any elements change. If
you write and align your letters very neatly, it is acceptable not to draw the nodes
and arcs. Hard to read traces will be penalized.

(d) Explain how to rearrange the heap after having extracted its top so that what
remains is still a heap. Follow this procedure to extract the top three values,
one by one, from the heap you built, producing a frame by frame trace as
above. [5 marks]

(e) Describe a way to insert a new value into an existing heap in time O(lg n)
where n is the heap size. [4 marks]

1

18 Algorithms— Exercises for students (2015–2016)

Data Structures and Algorithms 2006–2007 – Paper 10 Question 10
(FMS)

(a) Give a clear description of an efficient algorithm for finding the k-th smallest
element of an n-element vector. Write some pseudocode for the algorithm
and discuss its time complexity. Compare it with other plausible ways of
achieving the same result. (Notes: Use zero-based indexing. You may assume
for simplicity that all the elements of the vector are different.) [4 marks]

(b) Give a clear description of an efficient algorithm for finding the k smallest
elements of a very large n-element vector. Compare its running time with
that of other plausible ways of achieving the same result, including that of
applying k times your solution for (a). (Note that in (a) the result of the
function consists of one element, whereas here it consists of k elements. As
above, you may assume for simplicity that all the elements of the vector are
different.) [6 marks]

(c) Give an optimal algorithm for solving question (b) for k = 1. Give the worst-
case number of comparisons performed by your algorithm as a function of n.
(Note: exact number of comparisons, not just asymptotic complexity.)

[4 marks]

(d) Same as question (c), but for k = 2. [6 marks]

1

c© Frank Stajano 19

Data Structures and Algorithms 2006–2007 – Paper 11 Question 9
(FMS)

(a) Without dwelling on the structure of the nodes and on the positional
relationship between keys and subtrees (for which an example picture will
be sufficient), give an otherwise complete and concise definition of a B-tree of
minimum degree t, listing all the defining structural properties. [2 marks]

(b) Explain how to insert a new item into a B-tree, showing that the algorithm
preserves the B-tree properties you gave in (a). Then insert the following
values, in this order, into an initially empty B-tree whose nodes hold at most
3 keys each: C A M B R I D G E X. Produce a frame-by-frame “movie” in
which you redraw the tree whenever it changes in any way. [4 marks]

(c) Let’s call “bottom node” any internal node whose children are (keyless) leaves.
Prove that, for any key in any node of a B-tree, either the key is in a bottom
node or its successor is. You may, for simplicity, assume that all keys are
distinct. [4 marks]

(d) Explain how to delete a value from a B-tree: [10 marks]

(i) Explain the overall strategy, with diagrams and pseudocode where
helpful, convincing the reader that it covers all possible cases and
preserves the B-tree properties.

(ii) Apply this procedure to the deletion of values M, Q, Y, in that order,
from the following B-tree, producing a frame-by-frame movie as requested
for (b). As before, each node holds at most 3 keys.

J-------------------------V

C-----G M-----Q---T Y

AB DEF HI KL NOP R U X Z

1

20 Algorithms— Exercises for students (2015–2016)

Data Structures and Algorithms 2007–2008 – Paper 10 Question 9
(FMS)

(a) Take an initially empty hash table with 5 slots, with hash function h(x) =
x mod 5, and with collisions resolved by chaining. Draw a sketch of what
happens when inserting the following sequence of keys into it: 35, 2, 18,

6, 3, 10, 8, 5. You are not requested to draw the intermediate stages as
separate figures, nor to show all the fields of each entry in detail. [3 marks]

(b) Same as question (b) but the hash table now has 10 slots, the hash function
is h(x) = x mod 10, and collisions are resolved by linear probing. [3 marks]

(c) Imagine a hash table implementation where collisions are resolved by chaining
but all the data stays within the slots of the original table. All entries not
containing key-value pairs are marked with a boolean flag and linked together
into a free list.

(i) Give clear explanations on how to implement the set(key, value)

method in expected constant time, highlighting notable points and using
high level pseudocode where appropriate. Make use of doubly-linked lists
if necessary. [8 marks]

(ii) Assume the hash table has 5 slots, is initially empty and uses the
hash function h(x) = x mod 5. Draw five diagrams of the hash table
representing the initially empty state and then the table after the insertion
of each of the following key-value pairs: (2, A), (2, C), (12, T),

(5, Z). In the final diagram (and optionally in the others if it helps you—
but no requirement), draw all the fields and pointers of all the entries.

[6 marks]

1

c© Frank Stajano 21

Data Structures and Algorithms 2007–2008 – Paper 11 Question 7
(FMS)

Quicksort can be described as a recursive in-place sorting algorithm that performs
a partition() operation on the given array and then invokes itself twice on two
distinct subranges of the array.

(a) Describe the purpose, I/O parameters and effect of the partition() procedure
and explain what the pivot is. Pseudocode not required. [3 marks]

(b) Give pseudocode for the quicksort() procedure that would call the
partition() procedure you described in (a). Prove that your quicksort()

will always terminate. [3 marks]

(c) Analyze the worst-case behaviour of Quicksort and discuss possible ways of
improving it. [4 marks]

(d) Some researchers have suggested choosing the pivot from a randomly chosen
location in the input array. Discuss the advantages and disadvantages of such
a solution. How does it affect the worst-case and average-case behaviour?

[5 marks]

(e) Define the median of an array of n numbers. Then explain clearly how to
implement a median() procedure that would use the partition() procedure
you described in (a). Pseudocode accepted but not required. Briefly analyze
the complexity of this procedure. [5 marks]

1

22 Algorithms— Exercises for students (2015–2016)

Algorithms I 2008–2009 – Paper 1 Question 5 (FMS)

(a) State the five invariants of Red-Black Trees and briefly explain the advantages
and disadvantages or Red-Black Trees over Binary Search Trees. [4 marks]

(b) For each of the possible types of 2-3-4-tree nodes, draw an isomorphic node
cluster made of Red-Black nodes. The node clusters you produce must have
the same number of keys and external links as the 2-3-4 nodes they replace
and they must respect all the Red-Black tree rules when composed with other
node clusters. [3 marks]

(c) What are the minimum and maximum possible number of nodes of a Red-
Black tree with black-height h? Justify your answer. [4 marks]

(d) Explain, with clear pictures, what a “rotation” operation is, in the context of
Binary Search Trees. [2 marks]

(e) Give a procedure for transforming any arbitrary n-node Binary Search Tree
containing n distinct keys into any other arbitrary Binary Search Tree with
the same keys. [7 marks]

1

c© Frank Stajano 23

Algorithms I 2008–2009 – Paper 1 Question 6 (FMS)

(a) State the defining properties of a min-heap. Show how to convert between the
tree and the (zero-based) array representation of a min-heap. [3 marks]

(b) “An array sorted in ascending order is always a min-heap.” True or false?
If false, offer a counter-example; otherwise, prove the correctness of this
statement with respect to the defining properties of a min-heap you listed
in response to question (a). [3 marks]

(c) This array is not a min-heap. Why? Redraw it as a binary tree and turn
it into a heap using the O(n) heapify() procedure normally used as part of
heapsort. Draw the intermediate stages as you go along and add any necessary
explanations so that a reader can follow what you are doing and why.

[4 marks]

A I E R P M S N L

(d) Perform extractMin() on the min-heap you produced in the previous
question. As before, draw the intermediate stages and add explanations as
necessary. [3 marks]

(e) What is the asymptotic running time of the heapsort algorithm on an array
of length n that is already sorted in ascending order? Justify your answer.

[3 marks]

(f) What is the asymptotic running time of the heapsort algorithm on an array
of length n that is already sorted in descending order? Justify your answer.

[4 marks]

1

24 Algorithms— Exercises for students (2015–2016)

Algorithms I 2009–2010 – Paper 1 Question 5 (RKH)

(a) Describe the basic principle of the mergesort algorithm. Illustrate your answer
by showing the steps involved in sorting the array { 9, 3, 6, 2, 4, 1, 5}.

[6 marks]

(b) Insertion sort can be considered as a mergesort where each step divides an
array of size n into two arrays; one of size 1 (the element to be inserted) and
one of size (n − 1) for array length n. By solving an appropriate recurrence
relation, show that this recursive version of insertion sort has a time complexity
of O(n2). Assume the time complexity for merging two arrays is O(n).

[5 marks]

(c) A programmer is tasked with sorting both arrays and linked lists. For both
data structures, they intend to use the mergesort algorithm.

(i) Show that the time complexity of a linked list mergesort is O(nlogn).
Show also that the space complexity is O(1), taking care to demonstrate
how this can be achieved. [6 marks]

(ii) The programmer only knows how to merge two arrays in O(n) space and
linked lists in O(1) space. They thus propose converting the arrays to
linked lists before applying the mergesort algorithm to save on space.
Comment on this strategy. [3 marks]

1

c© Frank Stajano 25

Algorithms I 2009–2010 – Paper 1 Question 6 (RKH)

The product of two n× n matrices, A and B is a third n× n matrix, Z, where

Zij =
n∑

k=1

AikBkj. (1)

(a) A programmer directly implements this formula when writing a function to
multiply two matrices. Find the asymptotic time complexity of such an
algorithm, taking care to justify your answer. [3 marks]

(b) An alternative strategy to compute Z is to divide A and B into four n
2
× n

2

matrices. Computing Z then involves eight n
2
× n

2
matrix multiplications

followed by a series of matrix additions. This approach is then applied
recursively.

(i) Identify the algorithmic strategy in use. [1 mark]

(ii) Show that the run time of this alternative strategy is given by the
recurrence relation

tn = Ktdf(n)e + O(g(n)) (2)

where tn is the time to compute the product of two n× n matrices, K is
a constant you should determine, and f(n) and g(n) are functions that
you should identify. [5 marks]

(iii) Solve the recurrence relation to find an asymptotic complexity for tn.
[5 marks]

(c) An optimisation of the algorithm presented in (b) means that only seven
matrix multiplications are needed rather than the eight previously suggested.
State the new recurrence relation and solve it to show that this algorithm is
O(nlog27). [5 marks]

1

26 Algorithms— Exercises for students (2015–2016)

Algorithms I 2010–2011 – Paper 1 Question 5 (FMS)

Mathematical hint: the following series converges to the indicated value if |x| < 1 :

∞∑

m=1

mxm =
x

(1− x)2
.

(a) The binary min-heap provides a decreaseKey() method that, when applied
to an element, decreases its key while preserving the properties of the data
structure.

(i) Give a brief and clear description of how decreaseKey() works.
[3 marks]

(ii) The standard decreaseKey() only accepts a positive argument. Describe
an implementation that removes that restriction, that is to say a heap
method that can move the key value up as well as down, as specified by
the sign of its argument. [4 marks]

(b) Generalize the binary min-heap to one where nodes have not 2 but k children.

(i) State the two defining properties of a min-heap, one constraining the
shape and one constraining the keys of the data structure, and describe
how to represent a k-ary min-heap as an array. [4 marks]

(ii) Give a clear description of an algorithm (a simple generalization of the
well-known one for binary heaps) that takes an arbitrary n-item array and
efficiently rearranges its elements to turn it into an array representing a
k-ary heap. [4 marks]

(iii) Analyze its complexity as a function of n and k. [5 marks]

1

c© Frank Stajano 27

Algorithms I 2010–2011 – Paper 1 Question 6 (FMS)

Mathematical hint: the following series converges to the indicated value if |x| < 1 :

∞∑

m=1

mxm =
x

(1− x)2
.

(a) You are given an unsorted array of n items of which you must return the
top k, in any order. Give a clear and accurate description of two efficient
algorithms for solving the problem, following the hints below, and derive their
time complexity in terms of n and k.

(i) For this attempt, use a priority queue. [2 marks]

(ii) For this attempt, start by finding the k-th largest item, as when
computing order statistics. Describe all the steps in detail. [8 marks]

(b) You are given a hash table that stores n keys. It has m slots, collisions are
resolved by chaining (each hash table slot contains a pointer to the head of the
corresponding chain; no elements are stored in the table itself) and no chain
is longer than L elements. Each slot has an extra field giving the length of
the corresponding chain. Give a clear and accurate description of an efficient
algorithm for returning a random key from the table, such that each key has
equal probability of being selected, and analyze its time complexity. Assume
the availability of a function random(x) that returns in constant time a random
integer between 0 and x. The time complexity of a reasonable algorithm will
not exceed O(m + L), but solutions awarded full marks will improve on that.

[10 marks]

1

28 Algorithms— Exercises for students (2015–2016)

