

Applications of computational photography: HDR merging and digital refocusing

Rafał Mantiuk Computer Laboratory, University of Cambridge

Computational photography

- Photography used to rely on optics (lens) and chemical reactions (analog film)
- Because the vast majority of cameras are digital today, each camera needs to do computation to take pictures
 - Bayes demosaicing
 - JPEG encoding,
 - etc.
- But it is possible to perform much more advanced computation, thus much extending the capabilities of cameras

HDR merging

HDR image capture

4

Multi-exposure HDR capture

- Combine information from multiple-exposures
 - Weighted average
- Pros.
 - Can capture any dynamic range
 - Reduces noise level
 - Improves performance of small sensors (mobile phones)
- Cons.
 - Problematic for moving scenes

Multi-exposure in photography

- The first photographic films could capture very low dynamic range
- In 1858 H.P. Robinson used 5 exposures to capture a high dynamic range scene

1858 Robson *Fading away* (combined 5 negatives)

 The dynamic range of film negatives improved significantly over the years

Impact of multi-exposure HDR

- Debevec, P.E. and Malik, J., Recovering high dynamic range radiance maps from photographs, SIGGRAPH'97
 - > 2500 citations on Google Scholar
 - Not the first and not the best technique
- HDR Photography
 - Books on Amazon
- "HDR mode" in almost every mobile phone

How to capture multi-exposure HDR? 1/3

You need

- A camera with "manual" mode: separate adjustment for exposure time (Tv) and aperture (Av)
 - Any DSLR or "prosumer" camera
- Tripod (not necessary but recommended)
- HDR merging software
 - For panoramas: Hugin from <u>http://hugin.sourceforge.net/</u>
 - Mac: PhotoSphere from <u>http://www.anyhere.com/</u>
 - Linux/PC/Mac: Luminance <u>http://qtpfsgui.sourceforge.net/</u>
 - Adobe Photoshop
 - And many more

How to capture multi-exposure HDR? 2/3

- Fix the setting of
 - ISO
 - The lower, the better you are using a tripod
 - But higher ISO could be better in low light conditions
 - White-balance
 - Focus
 - switch to manual so it does not change between exposures
 - Aperture
 - Switch off image stabilization

How to capture multi-exposure HDR? 3/3

Take a series of photographs

- Increase/decrease exposure by I or 2 exposure values (EVs)
 - Stop when almost all pixels are white/black
- You can use exposure bracketing to make the process faster
- Copy images to your computer and load into HDR merging software
- Some software can merge directly from RAW images, most will merge JPEGs
- Tone-map

Model of camera noise

$n \sim N(0, \sigma_i^2(x, y))$

HDR capture: 4 images, each with different exposure time

Adjust values for exposure time

Average values - naive average

| 15

Average values – minimum-variance unbiased estimator

16

Note on HDR-mode in cameras

- Newer iPhones, Android phones and some cameras offer "HDR" mode
- But as of today, none of these devices is able to store actual HDR image
- The HDR mode takes multiple exposures and tone-maps the image before it is stored as JPEG
- For mobile phones (small sensors), HDR mode enables to capture the dynamic range comparable to DSLR cameras (large sensors)
 - Dynamic range and quality (noise) rarely surpasses that of DSLR cameras

High dynamic range (video) cameras

Prototypes exist but are expensive

- Usually build from 2 or more low-dynamic range sensors
- Professional (cinematographic) cameras offer extended dynamic range

B/W prototype camera with a log-response sensor

HDR photography resources

- Tutorial on how to use free software to create an HDR image
 - http://garmahis.com/tutorials/hdr-tutorial-free-software/
- General FAQ about shooting HDR images:
 - http://www.hdrlabs.com/tutorials/index.html
- Tutorials that involve commercial software:
 - http://speckyboy.com/2009/03/25/19-tutorials-for-creatingbeautiful-hdr-high-dynamic-range-imagery/
- Some test HDR images (to experiment with tonemapping)
 - http://pfstools.sourceforge.net/hdr_gallery.html

Light fields

Digital Refocusing using Light Field Camera

Lenslet

array

125µ square-sided microlenses

[Ng et al 2005]

Z

Lytro-cameras

- First commercial light-field cameras
- Lytro illum camera
 - 40 Mega-rays
 - > 2D resolution: 2450 x 1634 (4 MPixels)
- www.lytro.com

Raytrix camera

- Similar technology to Lytro
- But profiled for computer vision applications

Stanford camera array

96 cameras

Application: Reconstruction of occluded surfaces

PiCam camera array module

- Array of 4 x 4 cameras on a single chip
- Each camera has its own lens and senses only one spectral colour band
 - Optics can be optimized for that band
- The algorithm needs to reconstruct depth

4D Light field

2D slice of the light field

Refocusing and view point adjustment

Screen capture from http://www.lytro.com/

Light field image – with microlens array

- To refocus synthetic film plane needs to be shifted
- Generating refocused image requires computing the integral:

$$\overline{E}(s',t') = \iint L'(u',v',s',t')A(u',v') \, du \, dv$$
Pixel coordinates
film plane
Ray direction
(coords on
aperture plane)
Synthetic
aperture (0 or 1)

Digital refocusing

For each pixel on the s't' plane

Integrate all rays passing through that pixel

References

HDR merging - more detailed noise model

- Granados, M., Ajdin, B., Wand, M., Theobalt, C., Seidel, H. P., & Lensch, H. (2010). Optimal HDR reconstruction with linear digital cameras. In *Computer Vision and Pattern Recognition (CVPR)*, 2010 IEEE Conference on (pp. 215–222). IEEE.
- Hasinoff, S.W., Durand, F., & Freeman, W.T. (2010). Noiseoptimal capture for high dynamic range photography. In *Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on* (pp. 553–560). IEEE.

Light field – refocusing

Ng, Ren and Levoy, Marc and Bredif, M. and D., & Gene and Horowitz, Mark and Hanrahan, P. (2005). Light field photography with a hand-held plenoptic camera.