

Light and colour

Advanced Graphics

Rafal Mantiuk Computer Laboratory, University of Cambridge

Accurate colour is important

DTP

Displays

Cameras

Computational photography

2

Today: Colour perception

3

Electromagnetic spectrum

- Visible light
 - Electromagnetic waves of wavelength in the range 380nm to 730nm
 - Earth's atmosphere lets through a lot of light in this wavelength band
 - Higher in energy than thermal infrared, so heat does not interfere with vision

Colour

There is no physical definition of colour – colour is the result of our perception

Black body radiation

- Electromagnetic radiation emitted by a perfect absorber at a given temperature
 - Graphite is a good approximation of a black body

Correlated colour temperature

- The temperature of a black body radiator that produces light most closely matching the particular source
- Examples:
 - Typical north-sky light: 7500 K
 - Typical average daylight: 6500 K
 - Domestic tungsten lamp (100 to 200 W): 2800 K
 - Domestic tungsten lamp (40 to 60 W): 2700 K
 - Sunlight at sunset: 2000 K
- Useful to describe colour of the illumination (source of light)

Standard illuminant D65

- Mid-day sun in Western Europe / Northern Europe
- Colour temperature approx. 6500 K

Color

There is no physical definition of colour – colour is the result of our perception

Reflectance

- Most of the light we see is reflected from objects
- These objects absorb a certain part of the light spectrum

Reflected light

Reflected light = illumination * reflectance

400

500

600

WAVELENGTH & (nm)

700

The same object may appear to have different color under different illumination.

Example

| 12

Colour

There is no physical definition of colour – colour is the result of our perception

Colour vision

- Cones are the photreceptors responsible for color vision
 - Only daylight, we see no colors when there is not enough light
- Three types of cones
 - S sensitive to short wavelengths
 - M sensitive to medium wavelengths
 - L sensitive to long wavelengths

Sensitivity curves – probability that a photon of that wavelengths will be absorbed by a photoreceptor

Perceived light

cone response = sum(sensitivity * reflected light)

Although there is an infinite number of wavelengths, we have only three photoreceptor types to sense differences between light spectra Formally $R_{S} = \int_{380}^{730} S_{S}(\lambda) \cdot L(\lambda) d\lambda$

Ce:YAG

| 17

Metamers

- Even if two light spectra are different, they may appear to have the same colour
- The light spectra that appear to have the same colour are called metamers
- Example:

Practical application of metamerism

- Displays do not emit the same light spectra as real-world objects
- > Yet, the colours on a display look almost identical

On display

Tristimulus Colour Representation

- Interpolation of primaries yields triangle of colours
- Making use of the three cones and their weighting functions

Tristimulus Color Representation

Observation

- Any color can be matched using three linear independent reference colours
- May require "negative" contribution to test colour
- Matching curves describe the value for matching monochromatic spectral colours of equal intensity
 - With respect to a certain set of primary colours

Standard Colour Space CIE-XYZ

CIE Experiments [Guild and Wright, 1931]

- Color matching experiments
- Group ~12 people with ,,normal" color vision (from London area)
- 2 degree visual field (fovea only)
- Other Experiment in 1964
 - ▶ 10 degree visual field, ~50 people (with foreigners)
 - More appropriate for larger field of view but rarely used
- CIE-XYZ Colour Space
 - Goals
 - Abstract from concrete primaries used in experiment
 - All matching functions are positive
 - One primary is roughly proportionally to light intensity

23

Standard Colour Space CIE-XYZ

- Standardized imaginary primaries CIE XYZ (1931)
 - Could match all physically realizable colour stimuli
 - > Y is roughly equivalent to luminance
 - Shape similar to luminous efficiency curve
 - Monochromatic spectral colours form a curve in 3D XYZ-space

Cone sensitivity curves can be obtained by a linear transformation of CIE XYZ

CIE Chromacity diagram

• Normalization:

- Concentrate on colour, not light intensity
- Relative colour coordinates

$$- x = \frac{X}{X + Y + Z} \quad \text{etc}$$

- Chromaticity diagram: 2D-Plot over x and y
- Points in diagram are called ,,colour locations"
- White point: ~(0.3, 0.3)
 - Device dependent
 - Adaptation of the eye

Monitor Color Gamut

- CIE XYZ gamut
 - Device-independent
- Device color gamut
 - Cube inside CIE color space with additive color blending

Different Color Gamuts

What is the colour of the large square?

What is the colour of the large square?

Colour constancy

Colour constancy

Chromatic adaptation = colour constancy

- Visual system estimates the colour of the illuminant
 - and then attempts to discount it
- This works well if the scene fills the entire field of view
 - But is less effective for images
 - E.g. image on the computer monitor or developed print
- Therefore photographs require white balance
 - To discount the illuminant that is not discounted by the visual system

from Wikipedia

White point

Displays are expected to have the white point D65

- This corresponds to the color temperature of 6500K
- But most displays do not strictly adhere to this specification
- It is often possible to adjust the white point of a display
- Digital cameras need to discount illuminant
 - They estimate the color of white and make it D65 so that it looks white on displays
 - This is called white balance

From: http://en.wikipedia.org/wiki/File:Incand-3500-5500-color-temp-comparison.png

Luminous efficiency function

To match the brightness of colors produced by the light of different wavelength

Photometric units

Luminance – perceived brightness of light, adjusted for the sensitivity of the visual system to wavelengths

Rod and cone luminous efficiency functions

Purkinje shift (effect)

- A shift in spectral sensitivity associated with the transition of cone to rod vision
- Blue appears brighter and red appears darker in twilight
- And the reverse is observed in daylight

Photometric units

Quantity	Units	Symbol
Luminous flux	lumen (lm = cd*sr)	F
Luminance	candela per sq. meter (cd/m ² =lm/(sr*m ²))	L _v
Illuminance	$lux (lx = lm/m^2 = cd^*sr/m^2)$	Ev

Luminance – light emitted from a point on a surface in a particular direction **Illuminance** – light emitted from a point on a surface in all directions

Luminous flux – light emitted from the entire surface in all directions

All these units can measure either incoming or emitted light

44

Luminous flux - lumens

- Total light emitted
- Useful to measure and compare light sources
 - For example fluorescent and incandescent light bulbs
- But also used for digital projectors

Integrating sphere – to measure all light emitted

Illuminance - lux

- Measures light coming (or emitted) from all directions
- Useful to measure lighting conditions
 - Whether street lighting is bright enough, etc.

Illuminance meter

Luminance – candela per square meter

- Light emitted (or incomming) from a point in a particular direction
- Luminance is the same regardless of the distance to the emitter
- The light sensed by our eyes is relative to luminance

Gamma correction

 Gamma correction is used to encode luminance or tristimulus color values (RGB) in imaging systems (displays, printers, cameras, etc.)

Gamma

Higher gamma

(c) c=1

(d) c=1.7

Lower gamma

49

Gamma Testing Chart

Why gamma is needed?

- "Gamma corrected" pixel values give a scale of brightness levels that is more perceptually uniform
- At least 12 bits (instead of 8) would be needed to encode each color channel without gamma correction
- And accidentally it was also the response of the CRT gun

sRGB color space (LDR)

- "RGB" color space is not a standard. Colors may differ depending on the choice of the primaries
- "sRGB" is a standard color space, which most displays try to mimic.

Chromaticity	Red	Green	Blue	White point
x	0.6400	0.3000	0.1500	0.3127
У	0.3300	0.6000	0.0600	0.3290
z	0.0300	0.1000	0.7900	0.3583

sRGB color space

• Two step XYZ – sRGB transformation:

Step I: Linear color transform

$$\begin{bmatrix} R_{\text{linear}} \\ G_{\text{linear}} \\ B_{\text{linear}} \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986 \\ -0.9689 & 1.8758 & 0.0415 \\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Step 2: Non-linearity

$$C_{\text{srgb}} = \begin{cases} 12.92C_{\text{linear}}, & C_{\text{linear}} \le 0.0031308\\ (1+a)C_{\text{linear}}^{1/2.4} - a, & C_{\text{linear}} > 0.0031308 \end{cases}$$

References

- Well written textbook
 - Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley & Sons.
- More detailed introduction to light and colour phenomena
 - Erik Reinhard, Erum Arif Khan, Ahmet Oguz Akyuz, G. J. (2008). Color Imaging: Fundamentals and Applications. CRC Press.