

Optics and cameras

Advanced Graphics

Rafal Mantiuk

Computer Laboratory, University of Cambridge

Why are cameras and optics relevant?

Cameras in

- Computer Vision
- Computer Graphics
- Because real-world cameras are not pin-hole cameras

Human vision

- To understand how the eye works
- To use a camera
 - How to control shutter and apperture

UML Overview

3

DSLR: Digital single-lens reflex camera

Lens

Photoshop PSD file download - Resolution 1280x1024 px - www.psdgraphics.com

Imaging – without lens

Every point in the scene illuminates every point (pixel) on a sensor. Everything overlaps - no useful image.

Imaging – pinhole camera

Pinhole masks all but only tiny beams of light. The light from different points is separated and the image is formed.

But very little light reaches the sensor.

Pinhole camera-body cap

Imaging – lens

Lens can focus a beam of light on a sensor (focal plane).

Much more light-efficient than the pinhole.

Imaging – lens

But it the light beams coming from different distances are not focused on the same plane.

These points will appear blurry in the resulting image.

Camera needs to move lens to focus an image on the sensor.

Depth of field

Depth of field – range of depths that provides sufficient focus

are using. If you the the depth of field will be to infinity. ↓ For an era has a hyperf

Defocus blur is often desirable

To separate the object of interest from background

Defocus blur is a strong depth cue

Imaging – aperture

Aperture (introduced behind the lens) reduces the amount of light reaching sensor, but it also reduces blurriness from defocus (increases depth-of-field).

Imaging – lens

Focal length – length between the sensor and the lens that is needed to focus light coming from an infinite distance.

Larger focal length of a lens – more or less magnification?

Thin lens optics

• We assume a perfect lens of infinitively small thickness

Useful approximation that simplifies math and ray tracing

- Any ray parallel to the axis on one side, passes focal point on the other side
- Any ray that passes though the centre of the lens do not change the direction

Aperture

Aperture – limits the amount of light reaching the sensor, controls effective focus range (depth of field).

lens speed – maximum aperture, minimum f-number

Aperture – Aperture Value

- f-numbers are not intuitive increasing by one has a different effect on brightness depending on the f-number
- Thus some cameras use aperture values (AV)

$$AV = 2\log_2(N)$$

f-number

- AV-1 doubles the amount of light
- AV+1 reduces by half the amount of light
- Typical scale of f-stops and aperture values:

AV	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f/#	0.5	0.7	1.0	1.4	2	2.8	4	5.6	8	11	16	22	32	45	64	90	128

Shutter

- Shutter exposes sensor to light for a given amount of light
 - The time can vary from 1/8000 sec to 30 sec or more

Shutter integrated with aperture

Leaf shutter (very fast)

Focal plane shutter

Shutter captured with a high-speed camera

22 Watch full video at: <u>http://youtu.be/CmjeCchGRQo</u>

Exposure time

Longer exposure times can result in motion-blur

Exposure time

or camera shake (if hand-held)

Example: long exposure time

Example: short or long exposure time?

Review

28

Image sensors

- Transform incoming light into electric current
- The sensors vary from
 - tiny in mobile phones
 (2.3x1.7 mm)
 - large in professional camera (36x24 mm)

Large sensors

- can collect more light
- produce less noise

CMOS vs CCD

- CMOS (Complementary Metal-Oxide-Semiconductors)
 - ,,easier" to fabricate
 - Iow power
 - higher noise
- CCD (Charge-Coupled Devices)
 - cells read line-by-line
 - more sensitive to light
 - slower read-out

Foveon CMOS sensors

- Three photodiodes one of top of the other
- Light of different wavelength enters into different depth of the silicone
 - No need for demosaicing
 - But lower sensitivity to light
 - Noisier images at low light

ISO speed

Sv – speed value [ISO]

Speed value (Sv)	Film speed (ISO)			
0	3.125 [3]			
1	6.25 [6]			
2	12.5 [12]			
3	25			
4	50			
5	100			
6	200			
7	400			
8	800			
9	1600			
10	3200			

$$S_{v} = \log_2 \frac{S}{3.125}$$

ISO speed – sensitivity of the film or digital sensor to light

- Film cameras films of different grain
- Digital cameras digital amplifier

Higher speed makes the signal stronger, but introduces more noise

Color imaging

 Demosaicing – replace intensities registered by a sensor with red, green and blue pixel values.

CFA (Color Filter Array) – Bayer pattern

Simple demosaicing – nearest neighbor

Replicate pixel values

Color engine / JPEG engine

 Camera needs to map electrical charge collected by the sensor to color values in order to produce the best images

This involves

- Demosaicing
- Noise reduction
- White balance
- Tone-mapping
- Enhancement
- Storing the result as a JPEG image

Camera buying guide

What camera parameters are the most important?

from: http://www.dpreview.com/

Side by side 3 cameras compared ADD CAMERA	Canon EOS 5D Mark III Move left move right >	₩ Nikon D3 Move left move right ►	© Sony Alpha DSLR-A900 ✓ move left move right ►
Basic Information			
Price			
Body type			
Sensor			
Max resolution	5760 x 3840	4256 x 2832	6048 x 4032
Other resolutions	3840 x 2560, 2880 x 1920, 1920 x 1280, 720 x 480	3184 x 2120, 2128 x 1416	4400 x 2936, 4400 x 2936, 3024 x 2016, 6048 x 3408, 4400 x 2472, 3024 x 1704, 3924 x 2656, 2896 x 1928, 1984 x 1320
Image ratio w:h	3:2	5:4, 3:2	3:2, 16:9
Effective pixels	22 megapixels	12 megapixels	25 megapixels
Sensor photo detectors	23 megapixels	13 megapixels	26 megapixels
Sensor size	Full frame (36 x 24 mm)	Full frame (36 x 23.9 mm)	Full frame (35.9 x 24 mm)
Sensor type	CMOS	CMOS	CMOS
Processor	Digic 5+	Expeed	Bionz
Color space	sRGB,Adobe RGB		
Color filter array	RGB Color Filter Array		
Image			
ISO	Auto, 100 - 25600 in 1/3 stops, plus 50, 51200, 102400 as option	200, 400, 800, 1600, 3200, 6400 (100 - 25600 with boost)	Auto, 100, 200, 400, 800, 1600, (up to 6400)
White balance presets	6	12	7
Custom white balance	Yes (1)	Yes	Yes (1)

What are the relations?

References

- Erik Reinhard, Erum Arif Khan, Ahmet Oguz Akyuz, G. J. (2008). Color Imaging: Fundamentals and Applications. CRC Press.
 - Chapter III
- Optics advanced topics but with introduction to thinlens optics
 - Modern Optical Engineering, by Warren Smith
- To learn more about sensors
 - Image Sensors, by Blake Jacquot
 - https://youtu.be/4Deyx3RighA? list=PL1x2LOKhjrBdwZhKThR6jBpSPkJczUcii