PERL(1) PerProgrammers Reference Guide PERL(1)

NAME
perl — The Perl 5 language interpreter
SYNOPSIS
perl [=sTtuUWX] [=hv][=V[:configval]

[—ew] [—d[t][:debuger]] [-D[number/lis}]

[-pna][—Fpattern] [—I[octal]] [—O[octal/hexadecimal

[=Idir][=m[-]module] [-M[-]'module../][—f] [=C [number/list]] [-S]
[=x[dir]] [—i[exension]
[[-€]-E] 'command’] [——] [programfile] [argumend]...

For more information on these options, you can pendoc perirun

GETTING HELP
The perldoc program gies you access to all the documentation that comes with Retl.can get more
documentation, tutorials and community support online at <http://www.perl.org/>.

If you're nev to Perl, you should start by runningeridoc perlintro , Which is a general intro for
beginners and provides some background to help yoigaie the rest of Pesl'extensive documentation.
Runperldoc perldoc to learn more things you can do whrldoc

For ease of access, the Perl manual has been split up ir@@lsgections.

Overview
perl Perl overview (this section)
perlintro Perl introduction for beginners
perlrun Perl execution and options
perltoc Perl documentation table of contents
Tutorials
perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays
perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial
perlootut Perl OO tutorial for beginners
perlperf Perl Performance and Optimization Techniques
perlistyle Perl style guide
pericheat Perl cheat sheet
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial
perlfaq Perl frequently asked questions
perlfaql General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perl v5.18.2 2014-03-27 1

PERL(1)

perlsyn
perldata
perlop
perisub
perlfunc
perlopentut
perlpacktut
perlpod
perlpodspec
perlpodstyle
perldiag
perllexwarn
perldebug
perlvar
perire

perlrebackslash
perlrecharclass

perlreref
perlref
perlform
perlobj
perltie

perldbmfilter

perlipc
perlfork
perlnumber

perlthrtut

perlport
perllocale
perluniintro
perlunicode
perlunifaq
perluniprops
perlunitut
perlebcdic

perlsec
perimod
perimodlib
perimodstyle
perimodinstall
perlnewmod
perlpragma
perlutil
perlfilter

perldtrace

perlglossary

PerProgrammers Reference Guide

Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl

Perl
Perl
Perl

Perl

Perl
Perl
Perl
Perl
Perl
Index
Perl

Considerations

Perl
Perl
Perl
Perl
Perl
Perl
Perl
utilities
Perl

Perl's

Perl

Internals and C Language Interface

PERL(1)

syntax

data structures

operators and precedence

subroutines

built-in functions

open() tutorial

pack() and unpack() tutorial

plain old documentation

plain old documentation format specification
POD style guide

diagnostic messages

warnings and their control

debugging

predefined variables

regular expressions, the rest of the story
regular expression backslash sequences
regular expression character classes
regular expressions quick reference
references, the rest of the story

formats

objects

objects hidden behind simple variables
DBM filters

interprocess communication
fork() information
number semantics

threads tutorial

portability guide
locale support
Unicode introduction
Unicode support
Unicode FAQ
of Unicode properties in Perl
Unicode tutorial
for running Perl on EBCDIC platforms

security
modules: how they work
modules: how to write and use
modules: how to write modules with style
modules: how to install from CPAN
modules: preparing a new module for distribution
modules: writing a user pragma
packaged with the Perl distribution
source filters

support for DTrace

Glossary

2014-03-27 per/5.18.2

PERL(1)

perlembed
perldebguts
perixstut
perixs
perixstypemap
perliclib
perlguts
perlcall
perimroapi
perlreapi
perlreguts

perlapi
perlintern
perliol
perlapio

perlhack
perlsource
perlinterp
perlhacktut
perlhacktips
perlpolicy
perlgit

Miscellaneous
perlbook
perlcommunity

perldoc

perlhist
perldelta
perl5181delta
perl5180delta
perl5161delta
perl5162delta
perl5163delta
perl5160delta
peri5144delta
perl5143delta
perl5142delta
perli5141delta
perl5140delta
perl5125delta
perl5124delta
perl5123delta
perl5122delta
perl5121delta
perl5120delta
perl5101delta
perl5100delta
perl589delta
perl588delta
perl587delta
perl586delta
perl585delta
perl584delta
perl583delta

perl v5.18.2

PerProgrammers Reference Guide

Perl ways to embed perl in your C or C++ application
Perl debugging guts and tips
Perl XS tutorial
Perl XS application programming interface
Perl XS C/Perl type conversion tools
Internal replacements for standard C library functions
Perl internal functions for those doing extensions
Perl calling conventions from C
Perl method resolution plugin interface
Perl regular expression plugin interface
Perl regular expression engine internals
Perl API listing (autogenerated)
Perl internal functions (autogenerated)
C API for Perl's implementation of 10 in Layers
Perl internal 10 abstraction interface
Perl hackers guide
Guide to the Perl source tree
Overview of the Perl interpreter source and how it works
Walk through the creation of a simple C code patch
Tips for Perl core C code hacking
Perl development policies
Using git with the Perl repository
Perl book information
Perl community information
Look up Perl documentation in Pod format
Perl history records
Perl changes since previous version
Perl changes in version 5.18.1
Perl changes in version 5.18.0
Perl changes in version 5.16.1
Perl changes in version 5.16.2
Perl changes in version 5.16.3
Perl changes in version 5.16.0
Perl changes in version 5.14.4
Perl changes in version 5.14.3
Perl changes in version 5.14.2
Perl changes in version 5.14.1
Perl changes in version 5.14.0
Perl changes in version 5.12.5
Perl changes in version 5.12.4
Perl changes in version 5.12.3
Perl changes in version 5.12.2
Perl changes in version 5.12.1
Perl changes in version 5.12.0
Perl changes in version 5.10.1
Perl changes in version 5.10.0
Perl changes in version 5.8.9
Perl changes in version 5.8.8
Perl changes in version 5.8.7
Perl changes in version 5.8.6
Perl changes in version 5.8.5
Perl changes in version 5.8.4
Perl changes in version 5.8.3

2014-03-27

PERL(1)

PERL(1) PerProgrammers Reference Guide PERL(1)

perl582delta Perl changes in version 5.8.2
perl581delta Perl changes in version 5.8.1
perl58delta Perl changes in version 5.8.0
perl561delta Perl changes in version 5.6.1
perl56delta Perl changes in version 5.6
perl5005delta Perl changes in version 5.005
perl5004delta Perl changes in version 5.004
perlexperiment A listing of experimental features in Perl
perlartistic Perl Artistic License
perlgpl GNU General Public License
Language-Specific
perlcn Perl for Simplified Chinese (in EUC-CN)
perlip Perl for Japanese (in EUC-JP)
perlko Perl for Korean (in EUC-KR)
perltw Perl for Traditional Chinese (in Big5)
Platform-Specific
perlaix Perl notes for AIX
perlamiga Perl notes for AmigaOS
perlbs2000 Perl notes for POSIX-BC BS2000
perice Perl notes for WinCE
perlcygwin Perl notes for Cygwin
perldgux Perl notes for DG/UX
perldos Perl notes for DOS
perlfreebsd Perl notes for FreeBSD
perlhaiku Perl notes for Haiku
perlhpux Perl notes for HP-UX
perlhurd Perl notes for Hurd
perlirix Perl notes for Irix
perllinux Perl notes for Linux
perlmacos Perl notes for Mac OS (Classic)
perlmacosx Perl notes for Mac OS X
perlnetware Perl notes for NetWare
perlopenbsd Perl notes for OpenBSD
perlos2 Perl notes for OS/2
perlos390 Perl notes for OS/390
perlos400 Perl notes for OS/400
perlplan9 Perl notes for Plan 9
perlgnx Perl notes for QNX
perlriscos Perl notes for RISC OS
perlsolaris Perl notes for Solaris
perlsymbian Perl notes for Symbian
perltru64 Perl notes for Tru64
perlvms Perl notes for VMS
perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows
Stubs for Deleted Documents
perlboot
perlbot
perltodo
perltooc
perltoot

perlrepository

On Debian systems, you need to install pleel-doc package which contains the majority of the standard
Perl documentation and tiperldocprogram.

Extensve alditional documentation for Perl modules wsiable, both those distributed with Perl and third-

4 2014-03-27 per5.18.2

PERL(1) PerProgrammers Reference Guide PERL(1)

party modules which are packaged or locally installed.
You should be able to vie Perl’'s documentation with youman(1) program operldoc(1).

Some documentation is notailable as man pages, so if a cross-reference is not found by man, try it with
perldoc. Perldocan also tai& you directly to documentation for functions (with thé& switch). See
perldoc ——help (or perldoc perldoc or man perldoc) for other helpful options perldoc has to
offer.

In general, if something strange has gone wrong with your program arré yot'sure where you should
look for help, try making your code comply witise strictanduse wamnings. These will often point out
exactly where the trouble is.

DESCRIPTION
Perl officially stands for Practical Extraction and Report Language, except when it doesn't.

Perl was originally a language optimized for scanning arbitrary text files, extracting information from those
text files, and printing reports based on that informatitinquickly became a good language for man
system management tasks. Over the years, Perl has grto a general-purpose programming language.
It's widely used for eerything from quick “one-liners'to full-scale application delopment.

The language is intended to be practical (easy to Udsseef, complete) rather than beautiful {tidegant,
minimal). It combines (in the authar'gpinion, aryway) some of the best featuressefd awk, and sh,
making it familiar and easy to use for Unix users to whip up quick solutions tyiagraroblems. Its
general-purpose programmingcflities support procedural, functional, and object-oriented programming
paradigms, making Perl a comfortable language for the long haul on major projectsematebent.

Perl’s roots in text processing ven't been fogotten @er the years. It still boasts some of the most
powerful regular expressions to be found anywhere, and its support for Unictde world-class. It
handles all kinds of structuredxte too, through an»ensive ollection of etensions. Thosdébraries,
collected in theCPAN, provide ready-made solutions to an astounding array of problékisen thg
haven't set the standard themselves ytisteal from the best— just like Perl itself.

AVAILABILITY
Perl is a@ailable for most operating systems, including virtually all Unielifatforms. Se€ Supported
Platforms’ in perlport for a listing.

ENVIRONMENT
See perlrun.

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wisbdatadke use of Perl
in their applications, or if you wish to simply express your gratitude to Larry and the Redpdes,
please write to perl-thanks@pergjor

FILES
"@INC" locations of perl libraries
SEE ALSO
http://www.perl.org/ the Perl homepage
http://www.perl.com/ Perl articles (O'Reilly)
http://www.cpan.org/ the Comprehensive Perl Archive
http://www.pm.org/ the Perl Mongers
DIAGNOSTICS
Using theuse strict pragma ensures that all variables are properly declared awehtsrether

misuses of lgacy Perl features.

Theuse warnings pragma produces somevlly diagnostics. One can also use tiveflag, kut its use
is normally discouraged, because it gets applied toxetlueed Perl code, including that not under your
control.

See perldiag forx@lanations of all Ped’ dagnostics. Thaise diagnostics pragma automatically
turns Perk normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the ermith an indication of the next token or &k
type that was to bexamined. (Ina <ript passed to Perl vige switches, eacheis counted as one line.)

perl v5.18.2 2014-03-27 5

PERL(1) PerProgrammers Reference Guide PERL(1)

BUGS

Setuid scripts hae alditional constraints that can produce error messages such as “Insecure dggendenc
See perlsec.

Did we mention that you should definitely consider usingugeewarningspragma?

The behavior implied by thgse warningspragma is not mandatory.

Perl is at the meycof your machines definitions of various operations such as type castif(), and
floating-point output witlsprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so d¢€ki$erl.
doesnt apply tosysread(andsyswrite())

While none of the built-in data typesvaaany abitrary size limits (apart from memory size), there are still

a few abitrary limits: a gven variable name may not be longer than 251 characters. Line numbers
displayed by diagnostics are internally stored as short integers,ysarehigmited to a maximum of 65535
(higher numbers usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, orfmrl -V) to perlbug@perl.ay . If you've sicceeded in compiling
perl, the perlbug script in theils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Listgrdont tell anyone | said that.

NOTES

The Perl motto isThere’s more than one way to do”itD ivining hov mary more is left as anxercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and FHdwithe Camel Book for
why.

2014-03-27 per/5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

NAME
perlsyn — Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements which run from the top to the bottom.
Loops, subroutines, and other control structuresvaftou to jump around within the code.

Perl is afree-form language: you can format and indent itveeer you like. Whitespacsenes mostly to
separate tokens, unédanguages lik Bithon where it is an important part of the syntax, or Fortran where it
is immaterial.

Many of Perl's g/ntactic elements amptional. Rather than requiring you to put parentheses arovey e
function call and declarevery variable, you can often lea such explicit elements dand Perl will figure
out what you meant. This is kwwa asDo What | Mean, abbreviatedwIM . It alows programmers to be
lazy and to code in a style with which thare comfortable.

Perlborrows s/ntax and concepts from mgranguages: awk, sed, C, Bourne Shell, Smalltalk, Lisp and
even English. Otherlanguages hee lorroved syntax from Perl, particularly its regulaxpeession
extensions. Sdf you hare programmed in another language you will see familiar pieces in Fady
often work the same, but see perltrap for information aboutthey differ.

Declarations
The only things you need to declare in Perl are report formats and subroutines (and sometires not e
subroutines). Ascalar variable holds the undefined valuadgf) until it has been assigned a defined
value, which is anything other thamdef . When used as a numbandef is treated a®; when used as
a gdring, it is treated as the empty stritig,; and when used as a reference thattiseing assigned to, it is
treated as an errotf you enable warnings, you'll be notified of an uninitializede wheneer you treat
undef as a string or a numbewell, usually Boolean contexts, such as:

if ($a) {}
are eempt from warnings (because theare about truth rather than definedness). Operators sueh, as
——,+=, —=, and .=, that operate on undefined variables such as:

undef $a;

$a++;

are also alays exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect xectitere of the primary
sequence of statements: declarations adl tflect at compile timeAll declarations are typically put at the
beginning or the end of the scriptowever, if you're using lexically-scoped pdte variables created with
my() , state() , or our() , you'll have o make aure your format or subroutine definition is within the
same block scope as the my if you expect to be able to access thasevariables.

Declaring a subroutine alls a subroutine name to be used as if it were a list operator from that point
forward in the programYou can declare a subroutine without defining it by saginlg name , thus:

sub myname;
$me = myname $0 or die "can't get myname";

A bare declaration li& that declares the function to be a list opetatot a unary operatpso you hare ©

be careful to use parentheses gorinstead of|| .) The|| operator binds too tightly to use after list
operators; it becomes part of the last eleméfoiu can alvays use parentheses around the list operators
amguments to turn the list operator back into something thatvbehaore like a function call.
Alternatively, you can use the prototyg®) to turn the subroutine into a unary operator:

sub myname ($);

$me = myname $0 | die "can't get myname";
That nav parses as yod'expect, lut you still ought to get in the habit of using parentheses in that situation.
For more on prototypes, see perlsub

Subroutines declarations can also be loaded up withethére statement or both loaded and imported
into your namespace withuse statement. Seeerlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration actselikn @dinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time

perl v5.18.2 2014-01-06 7

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

effects.

Comments
Text from a"#" character until the end of the line is a comment, and is ignored. Exceptions i#tlude
inside a string or regular expression.

Simple Statements
The only kind of simple statement is axpeession eduated for its side-éfcts. Ewery simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. But put the semicolon inyavay if the block takes up more than one line, because you may
evantually add another lineNote that there are operatorseligval {} ,sub{} ,anddo {} thatlook
like compound statementsubarent—they're just TERMs in an>@ression — andhus need anxglicit
termination when used as the last item in a statement.

Truth and Falsehood
The number 0, the string8 and™ , the empty list)) , and undef are all false in a boolean corte
All other values are trueNegation of a true value by or not returns a special falseale. When
evduated as a string it is treated'ds, but as a numbeit is treated as OMost Perl operators that return
true or false beha tis way.

Statement Modifiers
Any simple statement may optionally be followed bySENGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
for LIST
foreach LIST
when EXPR

The EXPRfollowing the modifier is referred to as theondition”. Its truth or falsehood determineswviho
the modifier will behee.

if executes the statement on€éeand only if the condition is trueunless is the opposite, it>@cutes the
statementinlessthe condition is true (that is, if the condition is false).

print "Basset hounds got long ears" if length $ear >= 10;
go_outside() and play() unless $is_raining;

Thefor(each) modifier is an iterator: itxecutes the statement once for each item irLtB& (with $_
aliased to each item in turn).

print "Hello $_\n" for gw(world Dolly nurse);

while repeats the statemenhile the condition is trueuntil does the opposite, it repeats the statement
until the condition is true (or while the condition is false):

Both of these count from O to 10.
print $i++ while $i <= 10;
print $j++ until $j > 10;
The while anduntil modifiers hae the usual While loop" semantics (conditionalvauated first),

except when applied to do-BLOCK (or to the Perlddlo-SUBROUTINE statement), in which case the
block executes once before the conditional velaated.

This is so that you can write loops like:
do {
$line = <STDIN>;
} u ntil !defined($line) || $line eq ".\n"

See “‘do” in perlfunc. Notealso that the loop control statements described laterN@itt work in this
construct, because modifiers dotake loop labels.Sorry. You can alvays put another block inside of it
(for next) or around it (forlast) to do hat sort of thing.For next , just double the braces:

8 2014-01-06 perv5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

do {{

next if $x == $y;

do s omething here
} until $x++ > $z;

For last , you hare o be nore elaborate:

LOOP: {
do {
last if $x = $y**2;
do s omething here
} while $x++ <= $z;

}

NOTE: The behaviour of any, state , or our modified with a statement modifier conditional or loop
construct (for gample,my $x if ...) isundefined The value of theny variable may baindef , any
previously assigned value, or possibly anything elB@n't rely on it. Future versions of perl might do
something different from the version of perl you try it out on. Here be dragons.

Thewhen modifier is an experimental feature that first appeared in Perl 5dldse it, you should include
ause vb5.14 declaration. (€chnically it requires only thewitch feature, but that aspect of it was not
awailable before 5.14.0peratve mly from within aforeach loop or agiven block, it executes the
statement only if the smartmat$h ™ EXPRis true. If the statemenkecutes, it is followed by aext
from inside @oreach andbreak from inside agiven .

Under the current implementation, tfi@each loop can be anywhere within thehen modifier's
dynamic scope, but must be within thigen block’s lexical scope. This restricted may be relaxed in a
future release. See “Switch Statemeriglow.

Compound Statements
In Perl, a sequence of statements that defines a scope is called a3uoetimes a block is delimited by
the file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of\a).e

But generally a Hock is delimited by curly brackets, also known as brad&s. will call this syntactic
construct 88LOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ...

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

unless (EXPR) BLOCK

unless (EXPR) BLOCK else BLOCK

unless (EXPR) BLOCK elsif (EXPR) BLOCK ...

unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

given (EXPR) BLOCK

LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK

LABEL until (EXPR) BLOCK
LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK
LABEL for VAR (LIST) BLOCK
LABEL for VAR (LIST) BLOCK continue BLOCK

LABEL foreach (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

perl v5.18.2 2014-01-06 9

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

10

LABEL BLOCK
LABEL BLOCK continue BLOCK

PHASE BLOCK

The &perimentalgiven statement isiot automatically enabledee “Switch Statementsbelow for how
to do so, and the attendanveats.

Unlike in C and Pascal, in Perl these are all defined in terms of BLOCKS, not staterigsneans that
the curly brackets amequired-—no dangling statements alled. Ifyou want to write conditionals without
curly brackets, there areveeal other ways to do it. The following all do the same thing:

if (lopen(FOQ)) { die "Can't open $FOO: $!" }
die "Can't open $FOO: $!" unless open(FOO);
open(FOO) || die "Can't open $FOO: $!";
open(FOO) ? () : die "Can't open $FOO: $!";

a bit exotic, that last one

The if statement is straightfoavd. Becaus®LOCKSs are alays bounded by curly brackets, there is
never any ambiguity about whichf anelse goes with. If you us@nless in place ofif , the sense of

the test is neersed. Lileif ,unless can be followed bglse . unless can &en be bllowed by one or

more elsif statements, though you may want to think twice before using that particular language
construct, asweryone reading your code will fia o think at least twice before thean understand what’

going on.

Thewhile statementecutes the block as long as the expression is file.until statementecutes
the block as long as thepression isdlse. ThaLABEL is optional, and if present, consists of an identifier
followed by a colon.The LABEL identifies the loop for the loop control statememéxt , last , and
redo . If the LABEL is omitted, the loop control statement refers to the innermost enclosing Todp.
may include dynamically looking back your call-stack at run time to findLABEL. Such desperate
behavior triggers a warning if you use tie® warnings pragma or thew flag.

If there is acontinue BLOCK, it is aways executed just before the conditional is about to tauated
again. Thusit can be used to increment a loogriable, &en when the loop has been continued via the
next statement.

When a block is preceding by a compilation phasgvkrd such asBEGIN, ENDQ INIT , CHECK or
UNITCHECK then the block will run only during the corresponding phasexefution. Segerlmod for
more details.

Extension modules can also hook into the Perl parser to definkimeés of compound statement¥hese
are introduced by aeyword which the extension recognizes, and the syntaxwoilp the leyword is
defined entirely by thex¢éension. Ifyou are an implementosee ‘PL_keyword_plugin’ in perlapi for the
mechanism. Ifyou are using such a module, see the moslalEumentation for details of the syntax that
it defines.

Loop Control

Thenext command starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /"#/; # discard comments

}

The last command immediatelyxé@s the loop in question.The continue block, if ary, is rot
executed:

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header

}

The redo command restarts the loop block withowtlaating the conditional agn. Thecontinue
block, if ary, is not executed. Thiscommand is normally used by programs that want to lie to theesselv
about what was just input.

2014-01-06 perl v5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

For example, when processing a file diketc/termcap If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (sN\$//) {
$_ =<

redo unless eof();

}

now process $_
}

which is Perl shorthand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =" sN\$//) {
$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!
}

now process $line
}

Note that if there were aontinue block on the abeée wde, it would get xecuted only on lines
discarded by the gex (since redo skips the continue blockd.continue block is often used to reset line
counters om?pat? one-time matches:

i nspired by :1,$g/fred/s//WILMA/

while (<>) {
m?(fred)? && S/IWILMA $1 WILMA/;
m?(barney)? && S//BETTY $1 BETTY/;
m?(homer)? && s//IMARGE $1 MARGE/;

} ¢ ontinue {
print "SARGV $.: $_";
close ARGV if eof; # reset$.
reset if eof; # reset ?pat?
}

If the word while is replaced by the evd until , the sense of the test isreesed, but the conditional is
still tested before the first iteration.

Loop control statements daniork in anif or unless , since theg aren't loops. Yu can double the
braces to makthem such, though.

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last",
but doesn't document as well
do s omething here

b

This is caused by the fact that a block by itself acts as a loopkttates once, see “Basic BLOCKs”.

The form while/if BLOCK BLOCK , available in Perl 4, is no longervailable. Replaceany
occurrence off BLOCK by if (do BLOCK)

For L oops
Perl's C-stylefor loop works lile the correspondinghile loop; that means that this:

for ($i = 1; $i < 10; $i++) {

}

is the same as this:

perl v5.18.2 2014-01-06 11

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

12

$i=1,
while ($i < 10) {

} ¢ oﬁ.t.inue{
Pi++;
}

There is one minor difference: if variables are declared mitin the initialization section of thior , the
lexical scope of those variables is exactlyftre loop (the body of the loop and the control sections).

Besides the normal array indoping,for can lend itself to manother interesting applicationddere’s
one that woids the problem you get into if yoxgicitly test for end-of-file on an interagé file descriptor
causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do s omething
}

Usingreadline (or the operator formsEXPR> as he conditional of dor loop is shorthand for the
following. Thisbehaviour is the same asvaile loop conditional.

for (prompt(); defined($_ = <STDIN>); prompt()) {
do s omething
}

Foreach Loops

Theforeach loop iterates wer a rormal list value and sets thariableVAR to be each element of the list
in turn. If the variable is preceded with theylword my, then it is lexically scoped, and is therefore visible
only within the loop. Otherwise, the variable is implicitly local to the loop agdns its former alue
upon exiting the loop. If the variable was previously declared mithit uses that variable instead of the
global one, but i8 dill localized to the loop. This implicit localization occuwslyin aforeach loop.

The foreach keyword is actually a syngm for thefor keyword, so you can use eithelf VAR is
omitted,$_ is set to each value.

If any element ofLIST is an Ivalue, you can modify it by modifyin@R inside the loop.Corversely if any
element ofLIST is NOT an Ivalue, ap attempt to modify that element willafl. In other words, the
foreach loop index variable is an implicit alias for each item in the list that you're loopirag o

If any part of LIST is an arrayforeach will get very confused if you add or rew® dements within the
loop body for example wittsplice . So don't do that.

foreach probably won't do what you expect if/AR is a tied or other speciabxiable. Dont do that
either.

Examples:
for (@ary) { s/foo/bar/ }
for my $elem (@elements) {

$elem *= 2;
}

for $count (reverse(1..10), "BOOM") {
print $count, "\n";
sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:\\n:]*/, SENV{TERMCAP})) {
print "ltem: $item\n";
}

2014-01-06 perl v5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

Here's how a C pogrammer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {
if ($ary1[$i] > Sary2[$i]) {
last; # can't go to outer :—(
}

$ary1[$i] += $ary2[$i];
}

t his is where that last takes me

}

Whereas herg’how a Rerl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1) {

INNER: for my $jet (@ary2) {
next OUTER if $wid > $jet;
$wid += $jet;

}

See hw much easier this is™t’'s deaner safer, and faster It's deaner because st'less noisy It's safer
because if code gets added between the inner and outer loops later on; tbdeneon’'t be acidentally
executed. Thenext explicitly iterates the other loop rather than merely terminating the inner Ané.
it's faster because PeReeutes doreach statement more rapidly than it would the eglgintfor loop.

Basic BLOCKs
A BLOCK by itself (labeled or not) is semantically ecpléent to a loop that»ecutes once. Thus you can
use ag of the loop control statements in it to Veaa restart the block. (Note that this MOT true in
eval{} , sub{} , or contrary to popular belieflo{} blocks, which doNOT count as loops.)The
continue block is optional.

TheBLOCK construct can be used to emulate case structures.

SWITCH: {
if (/"abc/) { $abc = 1; last SWITCH; }
if (/"def/) { $def = 1, last SWITCH,; }
if (/"xyz/) { $xyz = 1, last SWITCH; }

$nothing = 1;
}
You'll also find thatforeach loop used to create a topicalizer and a switch:
SWITCH:
for ($var) {
if (/"abc/) { $abc = 1; last SWITCH; }
if (/"def/) { $def = 1, last SWITCH; }
if (/"xyz/) { $xyz = 1, last SWITCH; }
$nothing = 1;
}

Such constructs are quite frequently used, both because eldtons of Perl had no fafial switch
statement, and also because the mersion described immediately belaemains experimental and can
sometimes be confusing.

Switch Statements
Starting from Perl 5.10.1 (well, 5.10.0, but it didwork right), you can say

use feature "switch";

to enable an experimental switch feature. This is loosely based on agrsitthvof a Perl 6 proposal, but it
no longer resembles the Perl 6 construt¥bu dso get the switch feature whesee you declare that your
code prefers to run under a version of Perl that is 5.10 or Edeexample:

use v5.14,

Under the ‘switch” feature, Perl gains the experimentayWordsgiven , when, default , continue ,
and break . Starting from Perl 5.16, one can prefix the swit@wkords with CORE:: to access the

perl v5.18.2 2014-01-06 13

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

feature without aise feature statement. Th&eywordsgiven andwhen are analogous tewitch
andcase in other languages, so the code in the previous section could be rewritten as

use v5.10.1;
for ($var) {

when (/"abc/) { $abc =1}

when (/"def/) { $def =1}

when (I"xyz/) { $xyz=1}

default { $nothing =11}
}

Theforeach is the non-gperimental way to set a topicalizdf you wish to use the highlykperimental
given , that could be written li this:

use v5.10.1;

given ($var) {
when (/"abc/) { $abc =1}
when (/"def/) { $def =1}
when (I"xyz/) { $xyz=1}

default { $nothing =11}
}
As of 5.14, that can also be written this way:
use v5.14,
for ($var) {
$abc = 1 when /"abc/;
$def = 1 when /"def/;
$xyz = 1 when /"xyz/;
default { $nothing =1}
}
Or if you dont care to play it safe, likthis:
use v5.14,

given ($var) {
$abc = 1 when /"abc/;
$def = 1 when /"def/;
$xyz = 1 when /"xyz/;
default { $nothing =1}
}

The arguments tgiven andwhen are in scalar context, argiven assigns thé_ variable its topic
value.

Exactly what theEXPRargument tovhen does is hard to describe precisdiyt in general, it tries to guess
what you vant done. Sometimes it is interpreteddas™ EXPR, and sometimes it is not. It also
behaes dfferently when lexically enclosed bygiven block than it does when dynamically enclosed by
aforeach loop. Therules are far too ditult to understand to be described here. S&eerimental
Details on gien and when” | ater on.

Due to an unfortunateuly in hav given was implemented between Perl 5.10 and 5.16, under those
implementations the version 8f governed bygiven is merely a lexically scoped cppf the original,

not a dynamically scoped alias to the original, as it would be if it wéogeach or under both the
original and the current Perl 6 language specification. This bug was fixed in Perdffyd8.really want a
lexical $_, specify that eplicitly, but note thaimy $_ is nav deprecated and will warn unlesamings
have teen disabled:

given(my $_=EXPR){ ... }

If your code still needs to run on older versions, stidoteach for your topicalizer and you will be less
unhapyp.

Goto
Although not for the dint of heart, Perl does supportgato statement. Therare three forms:
goto —LABEL, goto —EXPR, andgoto —-&NAME. A loop’s LABEL is not actually a alid target for a

14 2014-01-06 perl v5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

goto ; it's just the name of the loop.

Thegoto —LABEL form finds the statement labeled witABEL and resumesxecution there.It may not

be used to go into grconstruct that requires initialization, such as a subroutineforeach loop. It
also cart be used to go into a construct that is optimizedya It can be used to go almost anywhere else
within the dynamic scope, including out of subroutines,itss usually better to use some other construct
such adast ordie . The author of Perl has ver felt the need to use this form gbto (in Perl, that
is — Cis another matter).

The goto —EXPR form expects a label name, whose scope will be resolved dynamidaibyallows for
computed goto s per FORTRAN, but isnt necessarily recommended if you're optimizing for
maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto —&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used BYTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (excgpt that an
modifications to@_in the current subroutine are propagated to the other subroutine.) Afgatthe not

even caller() will be able to tell that this routine was called first.

In almost all cases lkthis, it's isually a &r, far better idea to use the structured contreV fleechanisms
of next , last , orredo instead of resorting togoto . For certain applications, the catch and thgair
ofeval{} anddie()for exception processing can also be a prudent approach.

The Ellipsis Statement
Beginning in Perl 5.12, Perl accepts an ellipsis, "', as a placeholder for code that youvdret
implemented yet.This form of ellipsis, the unimplemented statement, should not be confused with the
binary flip-flop... operator One is a statement and the other an operdRerl doesrt’usually confuse
them because usually Perl can tell whether dints an operator or a statement, but seewbétr
exceptions.)

When Perl 5.12 or later encounters an ellipsis statement, it parses this withqutugrifoand when you
should actually try toxecute it, Perl throws an exception with the teximplemented

use v5.12;

sub unimplemented { ... }

eval { unimplemented() };

if (3@ =" /"Unimplemented at /) {
say "l found an ellipsis!";

}

You can only use the elliptical statement to stand in for a complete statelferge examples of twothe
ellipsis works:

use v5.12;
{. .}
sub foo{... }
eval{.. };
sub somemeth {
my $self = shift;
}
$x =do {
my $n;
say "Hurrah!";
$n;
h

The elliptical statement cannot stand in for gapression that is part of a larger statement, since.theis
also the three-dot version of the flip-flop operator (see “Range Operatqurstiop).

These examples of attempts to use an ellipsis are syntax errors:

perl v5.18.2 2014-01-06 15

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

use v5.12;

print ...;
open(my $fh, ">", "/dev/passwd") or ...;
if ($condition && ...) { say "Howdy" };

There are some cases where Perl tcanmediately tell the difference between an expression and a
statement. &1 instance, the syntax for a block and an anonymous hash reference constructor look the same
unless there' omething in the braces tovgi Rerl a hint. The ellipsis is a syntax error if Perl doegness

thatthe{ . ..} is a block. In that case, it doesthink the... is an ellipsis becausestipecting an
expression instead of a statement:

@transformed = map { ... } @input; # syntax error

You can use g inside your block to denote that tie. .. } is a block and not a hash reference
constructar Now the ellipsis works:

@transformed = map {; ... } @input; # ; disambiguates

@transformed = map { ...; } @input; # ; disambiguates

Note: Some folks colloquially refer to this bit of punctuation dgada-yadd’ or ‘‘triple-dot”, but its true
name is actually an ellipsisPerl does not yet accept the Unicode version, U+200&RIZONTAL
ELLIPSIS,as an alias for. , but someday it may.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source stide it's expecting the bginning
of a nev statement, if the compiler encounters a line that begins with an equal sign and a waind lik

=headl Here There Be Pods!

Then that text and all remaining text up through and including a lgierieg with=cut will be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text fiedly
=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;

Note that pod translators should look at only paragraphs beginning with a podrelifectiakes parsing
easier), whereas the compiler actually wado look for pod escapesen in the middle of a paragraph.
This means that the following secret stufll be ignored by both the compiler and the translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";
You probably shouldrt’rely upon thevarn() being podded out fover. Not all pod translators are well-
behaed in this regard, and perhaps the compiler will become pickier.

One may also use pod direes to quickly comment out a section of code.

Plain Old Comments (Not!)
Perl can process line diregs, much lile the C preprocessoiJsing this, one can control Periidea of
filenames and line numbers in error caming messages (especially for strings that are processed with
eval()). Thesyntax for this mechanism is almost the same as for most C preprocessors: it matches the

16 2014-01-06 perl v5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

regular expression

example: '# line 42 "new_filename.plx"
n# \s*
line\s+ (\d+) \s*
(2:\s("?)([M"+)\g2)? \s*
$Ix

with $1 being the line number for the next line, ab8l being the optional filename (specified with or
without quotes). Note that no whitespace may precedg, thrdike modern C preprocessors.

There is a fairly obvious gotcha included with the line divectbebuggers and profilers will only stothe
last source line to appear at a particular line number ixea §le. Careshould be taken not to cause line
number collisions in code yalilike to cebug later.

Here are some examples that you should be able to type into your command shell:

% perl

| ine 200 "bzzzt"

t he '# on the previous line must be the first char on line
die 'foo’;

__END__

foo at bzzzt line 201.

% perl

| ine 200 "bzzzt"

eval qg[\n#line 2001 ""\ndie 'foo']; print $@;
__END__

foo at - line 2001.

% perl

eval gg[\n#line 200 "foo bar"\ndie ‘foo"]; print $@;
__END__

foo at foo bar line 200.

% perl

| ine 345 "goop"

eval "\n#line " . _ _LINE__
print $@;

__END__

foo at goop line 345.

_FILE__ ."\"\ndie 'foo";

Experimental Details on gven and when
As previously mentioned, thé&witch” feature is considered highly experimental; it is subject to change
with little notice. In particularwhen has tricly behaviours that are expected to change to become less
tricky in the future. Do not rely upon its current (mis)implementation. Before Perl ji@n also had
tricky behaviours that you should still\were of if your code must run on older versions of Perl.

Here is a longer example given :

use feature ":5.10";
given ($foo) {
when (undef) {
say '$foo is undefined';
}

when ("foo") {
say '$foo is the string "foo™;
}

when ([1,3,5,7,9]) {
say '$foo is an odd digit";
continue; # Fall through

}
when ($_ < 100) {

perl v5.18.2 2014-01-06 17

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

18

say '$foo is numerically less than 100';

}

when (\&complicated_check) {
say 'a complicated check for $foo is true';

}
default {

die g(l don't know what to do with $foo);
}

}

Before Perl 5.18given(EXPR) assigned the value &XPRto merely a lexically scopetbpy (!) of $_,
not a dynamically scoped alias the Waseach does. Thamade it similar to

do{my$_=EXPR;..}

except that the block was automatically beakout of by a successfwhen or an eplicit break .
Because it was only a cgpand because it was onlyxieally scoped, not dynamically scoped, you could
not do the things with it that you are used to foraach loop. Inparticular it did not work for arbitrary
function calls if those functions might try to acc8ss Best stick tdoreach for that.

Most of the power comes from the implicit smartmatching that can sometimes &gy of the time,
when(EXPR) is treated as an implicit smartmatch $f, that is,$_ ™ EXPR . (See ‘Smartmatch
Operator’in perlop for more information on smartmatchindgdut wheneEXPRis one of the 10x&eptional
cases (or things lkthem) listed belw, it is used directly as a boolean.

1. A user-defined subroutine call or a methoebaation.

2. Aregular expression match in the form IREGEX/, $foo =~ IREGEX/ , or $foo =~ EXPR
Also, a ngated regular expression match in the fafREGEX/ , $foo " /REGEX/ , or $foo
I"EXPR .

A smart match that uses an expli€it operatoysuch asEXPR ™ EXPR .

A boolean comparison operator suchfas< 10 or $x eq "abc" . The relational operators that
this applies to are the six numeric comparisons>, <=, >=, ==, and !=), and the six string
comparisonsl{ , gt,le , ge, eq, andne).
NOTE: You will often have b use$c ~™ $_ because the default case u$es™ $c , which is
frequently the opposite of what you want.

5. At least the three builtin functiordefined(...) , exists(...) , and eof(...) . We might

someday add more of these later if we think of them.

6. A negded expression, whethHEXPR) or not(EXPR) , or a logical exclusive-or, (EXPR1) xor
(EXPR2) . The bitwise versions (and™) are not included.

7. A filetest operatomwith exactly 4 &ceptions:—s, —M —A, and —C, as hese return numericahlues,
not boolean ones. The filetest operator is not included in the exception list.

8. The.. and... flip-flop operators. Note that the flip-flop operator is completely different from
the... elliptical statement just described.

In those 8 cases ab® the value oEXPRIis used directly as a boolean, so no smartmatching is déme.
may think ofwhen as a smartsmartmatch.

Furthermore, Perl inspects the operands of logical operators to decide whether to use smartmatching for

each one by applying the almtest to the operands:

9. If EXPRis EXPR1 && EXPR2 or EXPR1 and EXPR2, the test is appliedecursivelyto both
EXPR1andEXPR2. Only if bothoperands also pass the testursively will the expression be treated
as boolean. Otherwise, smartmatching is used.

10. If EXPRis EXPR1 || EXPR2 , EXPR1 // EXPR2 , or EXPR1 or EXPR2 , the test is applied
recursivelyto EXPR1only (which might itself be a highgrecedenc@ND operatoyfor example, and
thus subject to the prmus rule), not t&EXPR2. If EXPRL1is to use smartmatching, th&xPR2also
does so, no matter whaXPR2 contains. Buif EXPR2does not get to use smartmatching, then the
second argument will not be eithefhis is quite different from th&& case just described, so be
careful.

2014-01-06 perl v5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

These rules are complicatedjtkthe goal is for them to do what you wantete if you dont quite
understand winthey are doing it). For example:

when ("\d+$/ && $_<75){...}

will be treated as a boolean match because the rules say bgtx aneech and an explicit test dh_ will
be treated as boolean.

Also:
when ([qw(foo bar)] && /baz/) { ... }

will use smartmatching because owlye of the operands is a boolean: the other uses smartmatching, and
that wins.

Further:
when ([qw(foo bar)] || /'baz/) { ... }

will use smart matching (only the first operand is considered), whereas
when (/"baz/ || [qw(foo ban]) { ... }

will test only the rgex, which causes both operands to be treated as bodlganh out for this one, then,
because an arrayref isxays a true value, which makes it effeety redundant. Not a good idea.

Tautologous boolean operators are still going to be optimiaegl. aDon’t be £mpted to write
when (“*foo" or "bar") { ... }

This will optimize down td'foo" , so"bar" will never be mnsidered (een though the rules say to use a
smartmatch orffoo"). For an alternation li& this, an array ref will work, because this will instig
smartmatching:

when ([qw(foo bar)] { ... }

This is somewhat equalent to the C—style switch statemertfallthrough functionality (not to be confused
with Perl's fallthrough functionality—see bel@), wherein the same block is used fowvesal case
statements.

Another useful shortcut is that, if you use a literal array or hash as the argumgieentq, it is turned into
a reference. Sgiven(@foo) is the same agiven(\@foo) , for example.

default behaes exactly likewhen(1 ==1) , which is to say that it alays matches.
Breaking out

You can use thebreak keyword to break out of the enclosirgjven block. Ewery when block is
implicitly ended with éreak .

Fall-through
You can use theontinue keyword to fall through from one case to the next:

given($foo) {
when (/x/) { say '$foo contains an x'; continue }
when (/y/) { say '$foo contains a y' }
default { say '$foo does not contain a y' }
}

Return value

When agiven statement is also akd expression (for example, whersithe last statement of a block), it
evduates to:

 Anempty list as soon as an explisieak is encountered.

» The value of the lastvaeluated expression of the successfilen/default clause, if there happens
to be one.

e The value of the lastveluated expression of thgven block if no condition is true.
In both last cases, the last expressiovauated in the context that was applied todhen block.
Note that, unlikef andunless , failedwhen statements alays evaluate to an empty list.

perl v5.18.2 2014-01-06 19

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

20

my $price = do {
given ($item) {
when (["pear”, "apple']) { 1}

break when "vote"; # My vote cannot be bought
1lel0 when /Mona Lisa/;
"unknown";

%
Currently,given blocks cart always be used as propexpgessions. Thisnay be addressed in a future
version of Perl.

Switching in a loop

Instead of usingiven() , you can use foreach() loop. For example, here’ane way to count he
mary times a particular string occurs in an array:

use v5.10.1;
my $count = 0;
for (@array) {
when (“foo") { ++$count }
}

print “\@array contains $count copies of ‘foo\n";
Or in a more recent version:

use v5.14;
my $count = 0;
for (@array) {

++$count when "foo";

}

print “\@array contains $count copies of ‘foo\n";

At the end of allwhen blocks, there is an implicitext . You can eerride that with anplicit last if
you're interested in only the first match alone.

This doesrt work if you explicitly specify a loop variable, asfior $Sitem (@array) . You hare ©
use the default variabf .

Differences from Perl 6

The Perl 5 smartmatch amgiven /when constructs are not compatible with their Perl 6 analogiiés.

most visible difference and least importanfetfiénce is that, in Perl 5, parentheses are required around the
agument togiven() and when() (except when this last one is used as a statement modifier).
Paentheses in Perl 6 arenalys optional in a control construct suchif@s , while() , or when() ; they

cant be nade optional in Perl 5 without a great deal of potential confusion, because Perl 5 would parse the
expression

given $foo {

}

as though the argument given were an element of the ha8tfoo, interpreting the braces as hash-
element syntax.

However, their are may mary other diferences. &r example, this works in Perl 5:

use v5.12;
my @primary = ("red", "blue", "green");

if (@primary ™ "red") {
say "primary smartmatches red";
}

if ("red" ™ @primary) {
say "red smartmatches primary";
}

2014-01-06 perl v5.18.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

say "that's all, folks!";
But it doesnt work at all in Perl 6. Instead, you should use the (parallelizablg)operator instead:

if any(@primary) eq "red" {
say "primary smartmatches red";
}

if "red" eq any(@primary) {
say "red smartmatches primary";
}

The table of smartmatches in “Smartmatch Operatoperlop is not identical to that proposed by the Perl
6 gecification, mainly due to dérences between Perlsénd Perl 56 data models, but also because the
Perl 6 spec has changed since Perl 5 rushed into early adoption.

In Perl 6,when() will always do an implicit smartmatch with its argument, while in Perl 5 it is@ovant
(albeit potentially confusing) to suppress this implicit smartmatch anows rather loosely-defined
situations, as roughly outlined alo (The difference is largely because Perl 5 does nué, heven
internally, a oolean type.)

POD ERRORS
Hey! The above document had some coding errors, which & explained below:

Around line 1008:
Expected text after =item, not a number

perl v5.18.2 2014-01-06 21

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

NAME

perldata — Perl data types

DESCRIPTION

22

Variable names

Perl has threeuilt-in data types: scalars, arrays of scalars, and assecitays of scalars, known as
“hashes! A scalar is a single string (of yarsize, limited only by the \@ilable memory), numberor a
reference to something (which will be discussed in perlrBfdrmal arrays are ordered lists of scalars
indexed by number starting with 0. Hashes are unordered collections of scalres indged by their
associated stringely

Values are usually referred to by name, or through a named reference. The first character of the name tells
you to what sort of data structure it refefhe rest of the name tells you the particular value to which it
refers. Usuallythis name is a singlelentifier, that is, a string kgnning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by
(or by the slightly archait); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (se®ackages’'in perlmod for details).For a nore in-depth
discussion on identifiers, setdéntifier parsing’. It's possible to substitute for a simple identifian
expression that produces a reference to the value at runtime. This is described in more detailcoiio

perlref.

Perl also has its own built-iraviables whose names dbfollow these rules.They havestrange names so
they don't accidentally collide with one of your normahrables. Stringthat match parenthesized parts of
a reqular expression are s under names containing only digits after th¢see perlop and perlre)n
addition, segeral special variables that provide windows into the innerkiag of Perl hae rames
containing punctuation characters and control characters. These are documented in perlvar.

Scalar values arewadys named with '$’, een when referring to a scalar that is part of an array or a hash.
The '$’ symbol works semantically lig the English word ‘the” in that it indicates a single value is
expected.

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb'} # the 'Feb' value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by '@’, which works much as theea®td *
or “those’ does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{'a','c"} # same as ($days{'a'},$days{'c?})

Entire hashes are denoted by '%’:
%days # (keyl, vall, key2, val2 ...)

In addition, subroutines are named with an initial '&’, though this is optional when unambiguous, just as
the word ‘do” is often redundant in English. Symbol table entries can be named with an initiaut*', b
you dont really care about that yet (ifer :-).

Every variable type has its own namespace, as\iwaaon-variable identifiers. This means that you can,
without fear of conflict, use the same name for a scald@ble, an arrgyr a lkash — oyfor that matterfor

a filehandle, a directory handle, a subroutine name, a format name, or aTlaiseineans tha$foo and
@foo are two different \ariables. lialso means th&foo[l] is a part of@foo, not a part ofsfoo . This
may seem a bit weird, but thawtkay, because it is weird.

Because variable referencewayfs start with '$’, '@’, or '%’, the ‘reserved’words arert'in fact resered
with respect to variable name$hey are resered with respect to labels and filehandlesyéar, which
don't havean initial special charactetYou cant havea filehandle namedlo6g’’, for instance. Hint: you
could say open(LOG,'logfile") rather than open(log,'logfile") . Using uppercase
filehandles also impkas readability and protects you from conflict with future reservedda. Casds
significant——"FO0", “Foo”, and ‘foo’’ are all different names.Names that start with a letter or
underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the

2014-01-06 perl v5.18.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

appropriate typeFor a description of this, see perlref.

Names that start with a digit may contain only more digitames that do not start with a letter
underscore, digit or a caret (i.a.control character) are limited to one chargatay., $%or $$. (Most of
these one character nameséa pedefined significance to Perkor instance$$ is the current process
id.)

Identifier parsing
Up until Perl 5.18, the actual rules of what a valid identifier was were a bit. flitayeve, in general,
arything defined here should work on previous versions of Perl, while the oppesiédge cases that
work in previous versions, but arentlefined here— probably won't work on newer grsions. Asan
important side note, please note that the ¥alg only applies to baveord identifiers as found in Perl
source code, not identifiers introduced through symbolic references, whieimheh fewer restrictionslf
working under the effect of these utf8; pragma, the following rules apply:

[(?[(\p{Word} & \p{XID_Start}) +[_]1]) \p{XID_Continue}* /x

If not underuse utf8 , the source is treated ASCIl + 128extra controls, and identifiers should match
[(?aa) (?\d) \w+ /x

That is, ag word character in th&SClI range, as long as the first character is not a digit.

There are tw package separators in Perl: A double colon)(and a single quote §. Normalidentifiers
can start or end with a double colon, and can contaieraleparts delimited by double colon&ingle
guotes hee smilar rules, but with the exception that yhare not lgd at the end of an identifier: That is,
$'foo and$foo'bar are l@d, but$foo'bar’ are not.

Finally, if the identifier is preceded by a sigi+ More so, normal identifiers can start or end witl an
number of double colons (::), and can contairessé parts delimited by double colons. And additionafly
the identifier is preceded by a sigH that is, if the identifier is part of aaxiable name— it may
optionally be enclosed in braces.

While you can mix double colons with singles quotes, the quotes must come after thekoltos:
and$foo::'bar are lgd, but$::"::foo and$foo'::bar are not.

Put togethera gammar to match a basic identifier becomes
/

(?(DEFINE)
(?<variable>
(?&sigil)
(2
(?&normal_identifier)
| \ {\ s* (?&normal_identifier) \s* \}
)
)
(?<normal_identifier>
(?:)"

(?&basic_identifier)
(?: (?=(2:)+ 2| (?:::)* ") (?&normal_identifier))?
(?:)
)
(?<basic_identifier>
is u se utf8 on?
(?(?{ (caller(0))[8] & $utf8::hint_bits })
(?&Perl_XIDS) \p{XID_Continue}*
| (?aa) (?"\d) \w+

)

)

(?<sigil> [&1\5\@\%0))

(?<Perl_XIDS> (?[(\p{Word} & \p{XID_Start}) +[_1]))
)

Ix
Meanwhile, special identifiers ddrfollow the abee wles; For the most part, all of the identifiers in this

perl v5.18.2 2014-01-06 23

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

24

catgory have a pecial meaning gen by Rerl. Becausehey havespecial parsing rules, these generally
cant be fully-qualified. Thg come in four forms:

A sigil, followed solely by digits matching \p{POSIX_Digit}, lik§0, $1, or $10000 .

A sigil, followed by either a caret and a singl@SIX uppercase lettelike $°V or $ "W, or a sgil followed

by a literal control character matching ipéPOSIX_Cntrl} property Due to a historical oddityf not
running undeuse utf8 |, the 128 &tra controls in th¢0x80—-0xff] range may also be used in length
one variables.

Similar to the abee, a ggil, followed by bargvord text in brackets, where the first character is either a caret
followed by an uppercase letteror a lteral control, lile ${"GLOBAL_PHASE} or
${\7LOBAL_PHASE} .

A sigil followed by a single character matching tpgPOSIX_Punct} property like $! or %+

Context

The interpretation of operations andlues in Perl sometimes depends on the requirements of thetconte
around the operation oalue. Thereare two major contexts: list and scalaCertain operations return list
values in contexts wanting a list, and scalar values otherwfsthis is true of an operation it will be
mentioned in the documentation for that operatibnother words, Perlv@rloads certain operations based
on whether the expected return value is singular or pliBame words in English work thisay like
“fish” and “sheep”.

In a reciprocal fashion, an operation provides either a scalar or a listtcmnéach of its guments. Br
example, if you say

int(<STDIN>)

the integer operation primles scalar context for the <> operatohich responds by reading one line from
STDIN and passing it back to the iger operation, which will then find the integer value of that line and
return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation prides list context for <>, which will proceed to reaetrg line available up to the
end of file, and pass that list of lines back to the sort routine, which will then sort those lines and return
them as a list to whater the context of the sort was.

Assignment is a little bit special in that it uses its lefuanent to determine the context for the right
argument. Assignmertb a scalar wluates the right-hand side in scalar context, while assignment to an
array or hashwaluates the righthand side in list coxtte Assignmento a list (or slice, which is just a list
anyway) alsoluates the right-hand side in list context.

When you use these warnings pragma or Ped —w command-line option, you may seamvings
about useless uses of constants or functiong@id' contet”. Void context just means thalue has been
discarded, such as a statement containing tndgd"; or getpwuid(0); . It still counts as scalar
context for functions that care whether or not they're being called in list context.

Userdefined subroutines may choose to care whethgrateebeing called in a void, scalar list context.
Most subroutines do not need to botithough. That because both scalars and lists are automatically
interpolated into lists. Se&vantarray’ in perlfunc for hav you would dynamically discern your functien’
calling context.

Scalar values

All data in Perl is a scalaan aray of scalars, or a hash of scala#sscalar may contain one single value in
ary of three different flaors: a numbera gring, or a reference. In general, gersion from one form to
another is transparenfAlthough a scalar may not directly hold multiple values, it may contain a reference
to an array or hash which in turn contains multiple values.

Scalars arem’necessarily one thing or anothérheres no pace to declare a scalar variable to be of type
“string’, type “number’, type “‘reference’, or anything else.Because of the automatic a@msion of

scalars, operations that return scalars tdo@éd to care (and in fact, cannot care) whether their caller is
looking for a string, a numbeor a reference. Peiik a contextually polymorphic language whose scalars

can be strings, numbers, or references (which includes objects). Although strings and numbers are
considered pretty much the same thing for nearly all purposes, references are strongly-typed, uncastable
pointers with builtin reference-counting and destructeogation.

A scalar value is interpreted 88LSE in the Boolean sense if it is undefined, the null string or the number 0

2014-01-06 perl v5.18.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

(or its string equialent, “0’"), and TRUE if it is anything else. The Boolean context is just a special kind of
scalar context where no c@nsion to a string or a number igee performed.

There are actually twvarieties of null strings (sometimes referred to‘aspty” strings), a defined one

and an undefined oneThe defined version is just a string of length zero, sucl’ asThe undefined

version is the value that indicates that there is no real value for something, such as when there was an error
or at end of file, or when you refer to an uninitializediable or element of an array or hash. Although in

early \ersions of Perl, an undefined scalar could become defined when first used in a place expecting a
defined value, this no longer happens except for rare cases wafvdiatation as explained in perlrefyou

can use thdefined()operator to determine whether a scalar value is defined (this has no meaning on arrays
or hashes), and thendef()operator to produce an undefined value.

To find out whether a gén gring is a valid non-zero numheét's metimes enough to test itagst both
numeric 0 and alsoxeal “0"’ (although this will cause noises if warnings are ofat’s because strings
that arent numbers count as 0, just asytu® in awk:

if ($str == 0 && $strne "0") {
warn "That doesn't look like a number";
}

That method may be best because otherwise ymnitvreat IEEE notations lilke NaN or Infinity
properly At other times, you might prefer to determine whether string data can be used numerically by
calling thePOSIX::strtod()function or by inspecting your string with a regulapeession (as documented

in perlre).
warn "has nondigits" if N\D/,
warn "not a natural number" unless /"\d+$/; # rejects -3
warn "not an integer" unless I"=\d+$/; # rejects +3
warn "not an integer" unless /" [+-]\d+$/;
warn "not a decimal number" unless /"=\d+\.2\d*$/; # rejects .2

warn "not a decimal number" unless /"=?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"
unless /"([+=]?)(?=\d\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;

The length of an array is a scalalue. You may find the length of arrg@days by evaluating $#days ,

as incsh Howeva, this isnt the length of the array; &'the subscript of the last element, which is a
different value since there is ordinarily a Oth eleméssigning to$#days actually changes the length of
the array Shortening an array this way destroys intervenirdu®s. Lengtheningn array that as
previously shortened does not reeovalues that were in those elements.

You can also gain some minuscule measure fidiency by pre-extending an array that is going to get big.
You can also extend an array by assigning to an element thatieafnd of the arrayYou can truncate an
array down to nothing by assigning the null list () to it. The following arevelguit:

@whatever = ();
$#whatever = -1;

If you evaluate an array in scalar cortgit returns the length of the arragNote that this is not true of
lists, which return the last value, dkhe C comma operatonor of built-in functions, which return
whatever they feel like returning.) Thédollowing is alvays true:

scalar(@whatever) == $#twhatever + 1;
Some programmers choose to use an explicitesion so as to le& rothing to doubt:
$element_count = scalar(@whatever);

If you evaluate a hash in scalar coxtgit returns false if the hash is emptythere are ankey/value pairs,

it returns true; more preciselhe \alue returned is a string consisting of the number of usekkbts and
the number of allocatedubkets, separated by a slashhis is pretty much useful only to find out whether
Perl’s internal hashing algorithm is performing poorly on your data Bet.example, you stick 10,000
things in a hash, butvaluating %HASHN scalar conte reveals "1/16" , which means only one out of
sixteen hickets has been touched, and presumably contains all 10,000 of your items. Thig@nsed to
happen. Ifa fed hash is wauated in scalar context, tHRCALARmethod is called (with a fallback to
FIRSTKEY).

You can preallocate space for a hash by assigning tdkejys) function. Thisrounds up the allocated

perl v5.18.2 2014-01-06 25

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

26

buckets to the next power of two:
keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors

Numeric literals are specified inyaaf the following floating point or integer formats:

12345

12345.67

.23E-10 # a very small number

3.14 15 92 # a very important number

4 294 967 296 # underscore for legibility

Oxff # hex

Oxdead_beef # more hex

0377 # octal (only numbers, begins with 0)
0b011011 # binary

You are allowed to use underscores (underbars) in numeric literals between digits for legibility (but not
multiple underscores in awo23__ 500 is not legd; 23_500 is). You could, for example, group binary
digits by threes (as for a Unix-style modgument such as 0b110 100 _100) or by fours (to represent
nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double qudtkey work much lile quotes in the
standard Unix shells: double-quoted string literals are subject to backslastriahtevsubstitution; single-
quoted strings are not (except for and\\). The usual C-style backslash rules apply for making
characters such as newline, tab, etc., as well as some muife ferms. See “Quote and Quotedik
Operators’in perlop for a list.

Hexadecimal, octal, or binaryepresentations in string literals (e.g. 0fare not automatically comrted
to their intger representationThe hex()andoct() functions mak these cowversions for you. Seehex” in
perlfunc and “oct’in perlfunc for more details.

You can also embed newlines directly in your strings, i.ey tam end on a different line than thieegn.

This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote characterhich may be much further on in the scriMariable substitution inside
strings is limited to scalar variables, arrays, and array or hash dlicegher words, names beginning with

$ or @, bllowed by an optional bracketed expression as a subscript.) The following cpdenserints

out “The price is$100.”

$Price = '$100"; # not interpolated
print "The price is $Price.\n"; # i nterpolated

There is no double interpolation in Perl, so$i€0 is left as is.

By default floating point numbers substituted inside strings use the‘'dqgt é the decimal separatoif
use locale is in effect, andPOSIX::setlocale(has been called, the character used for the decimal
separator is affected by the_NUMERIC locale. Segerllocale andPOSIX.

As in some shells, you can enclose ttaiable name in braces to disambiguate it from vVahg
alphanumerics (and underscore¥pu must also do this when interpolating a variable into a string to
separate the variable name from a following double-colon or an apostrophe, sinceothlddgevotherwise
treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/peri\n";
print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl wouldvgalooked for a$whospeak , a$who::0 , and a$who's variable. The
last two would be theb0 and thebs variables in the (presumably) non-existent packape.

In fact, a simple identifier within such curlies is forced to be a string, agdidi&k within a hash subscript.
Neither need quoting. Our earliexanple, $days{'Feb'} can be written a$days{Feb} and the
guotes will be assumed automaticalBut arything more complicated in the subscript will be interpreted
as an gpression. Thisneans for example th&version{2.0}++ is equialent to$version{2}++

not to$version{'2.0'}++

Version Strings

2014-01-06 perl v5.18.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

A literal of the formv1.20.300.4000 is parsed as a string composed of characters with the specified
ordinals. Thisform, known as v-strings, provides an altewgtmore readable way to construct strings,
rather than use the sowleat less readable interpolation fort{1}\x{14}\x{12c}\x{fa0}" .

This is useful for representing Unicode strings, and for comparing vefsiombers’ using the string
comparison operatorsmp, gt , It etc. Ifthere are tw or more dots in the literal, the leadingmay be

omitted.
print v9786; # prints SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same

Such literals are accepted by bodguire anduse for doing a version check. Note that using the
v-strings for IPv4 addresses is not portable unless you also useth&ton(Jinet_ntoa()routines of the
Socket package.

Note that since Perl 5.8.1 the single-number v—stringe {6) are not v—strings before the> operator
(which is usually used to separate a hash kom a hash value); instead yhere interpreted as literal
strings (V65”). They were v-strings from Perl 5.6.0 to Perl 5.8.0, but that caused more confusion and
breakage than good. Multi-number v-stringseli65.66 and 65.66.67 continue to be v-strings
always.

Special Literals

The special literals FILE , LINE__, and _ PACKAGE_ _represent the current filename, line
number and package name at that point in your programSUB_ _ gives a eference to the current
subroutine. Thgmay be used only as separate tokeng; wi# not be interpolated into strings. If there is
no current package (due to an empaégkage; directive), PACKAGE_ _is the undefinedalue. (But
the emptypackage; is no longer supported, as of version 5.100tside of a subroutine, SUB_ _is
the undefinedalue. _ SUB__is only available in 5.16 or higherand only with ause v5.16 or use
feature "current_sub" declaration.

The two control characters "D and “Z, and the token&ND __and _ DATA__ nmay be used to indicate
the logical end of the script before the actual end of filey faltowing text is ignored.

Text after _ DATA__ may be read via the filehandRACKNAME::DATA where PACKNAMEs the
package that was current when theDATA __ token was encountered.he filehandle is left open pointing
to the line after _DATA__. The program shoulatlose DATA when it is done reading from it.
(Leaving it open leaks filehandles if the module is reloaded fgreason, so it a @fer practice to close
it.) For compatibility with older scripts written before DATA__ was introduced, END___behaes like
__DATA__ in the top led script (but not in files loaded withequire or do) and leaves the remaining
contents of the file accessible wigin::DATA .

See SelfLoader for more description of DATA__, and an example of its uséNote that you cannot read
from the DATA filehandle in aBEGIN block: the BEGIN block is eecuted as soon as it is seen (during
compilation), at which point the corresponding ATB.__ (or _ END_)token has not yet been seen.

Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quotedTstesg.
are known asbarewords”. As with filehandles and labels, a baad that consists entirely ofwercase
letters risks conflict with future reserved words, and if you useuskewarnings pragma or the-w
switch, Perl will warn you about grsuch words. Perllimits barevords (like identifiers) to about 250
characters. Futuneersions of Perl are likely to eliminate these arbitrary limitations.

Some people may wish to owtldarevords entirely If you say
use strict 'subs’;

then ay baravord that wuld NOT be interpreted as a subroutine call produces a compile-time error
instead. Theestriction lasts to the end of the enclosing blo&k. inner block may countermand this by
sayingno strict 'subs'

Array Interpolation

Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the" variable $LIST_SEPARATORIf “use English;’ is specified), space by dafilt. The
following are equiaent:

perl v5.18.2 2014-01-06 27

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

28

$temp = join($", @ARGV);
system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate ambiguity:
Is /$foo[bar]/ to be interpreted asb{foo}[bar]/ (where[bar] is a character class for the
regular expression) or a${foo[bar]}/ (where[bar] is the subscript to arra@foo)? If @foo

doesnt otherwise exist, then &' doviously a character clas$f @foo exists, Perl takes a good guess about
[bar] , and is almost abays right. If it does guess wrong, or if yo@'just plain paranoid, you can force

the correct interpretation with curly braces asvabo

If you're looking for the information on koto use here-documents, which used to be here,sthaén
moved to “Quote and Quote-li& Operators’in perlop.

List value constructors

List values are denoted by separating\vitiial values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is sim@juthefithe
final element, as with the C comma operatar example,

@foo = (‘cc', '-E', $bar);
assigns the entire list value to ar@foo, but
$foo = (‘cc', '-E', $har);

assigns the value ofaviable$bar to the scalar ariable$foo . Note that the value of an actual array in
scalar context is the length of the array; the following assigns the val&&to

@foo = (‘cc', '-E', $bar);

$foo = @foo; # $foo gets 3
You may hare an optional comma before the closing parenthesis of a list literal, so that you can say:
@foo = (
11
21
31
);

To use a here-document to assign an awag line per element, you might use an approaehtiis:

@sauces = <<End_Lines =~ m/(\S.x\S)/qg;
normal tomato
spicy tomato
green chile
pesto
white wine
End_Lines

LISTs do automatic interpolation of sublists. That is, whersa is evaluated, each element of the list is
evduated in list context, and the resulting list value is interpolated Lileio just as if each indidual
element were a memberldBT. Thus arrays and hashes lose their identity in a e list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements @foo followed by all the elements @®bar, followed by all the elements
returned by the subroutine named SomeSub called in listxtpfddiowed by the ky/value pairs of
%glarch . To make a Ist reference that do@&Tinterpolate, see perlref.

The null list is represented by (). Interpolating it in a list has fecef Thus((),(),()) is equvalent to ().
Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

This interpolation combines with thadts that the opening and closing parentheses are opticuap{e
when necessary for precedence) and lists may end with an optional comma to mean that multiple commas

2014-01-06 perl v5.18.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

within lists are lgd syntax. Thelist 1,,3 is a concatenation of twlists,1, and3, the first of which ends
with that optional commal,,3 is (1,),(3) is 1,3 (And similarly for1,,,3 is (1,),(,),3 is
1,3 and so on.) Not that we'advise you to use this obfuscation.

A list value may also be subscriptedelik rormal array You must put the list in parentheses toid
ambiguity For example:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = (a','b','c','d",'e",'f")[$digit-10];
A "reverse comma operator”.
return (pop(@foo),pop(@f00))[0];
Lists may be assigned to only when each element of the list is ig&lfdessign to:
(%$a, $b, $c) = (1, 2, 3);

($map{'red’}, $map{'blue’}, Smap{'green’}) = (0x00f, 0x0f0, 0xfO0);

An exception to this is that you may assigrutmef in a list. This is useful for thiwing avay some of
the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

List assignment in scalar cortereturns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set$xto 3, not2
$x = (($foo,$bar) = f()); # set $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpfete8@as

It's dso the source of a useful idiom foreeuting a function or performing an operation in list context and
then counting the number of return values, by assigning to an empty list and then using that assignment in
scalar contet. For example, this code:

$count = () = $string =~ \d+/g;

will place into$count the number of digit groups found $string . This happens because the pattern
match is in list context (since it is being assigned to the empty list), and will therefore return a list of all
matching parts of the stringlThe list assignment in scalar context will translate that into the number of
elements (here, the number of times the pattern matched) and assign$itairib . Note that simply
using

$count = $string =~ N\d+/g;

would not hae worked, since a pattern match in scalar cointdgll only return true or false, rather than a
count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;
my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the ligtfhe first one in the list will soak up all the
values, and anything after it will become undefined. This may be usefuhyrf)ar local().

A hash can be initialized using a literal list holding pairs of items to be interpretectpsalla value:

same as map assignment above
%map = (‘red',0x00f,'blue’,0x0f0,'green’,0xf00);

While literal lists and named arrays are often interchangeables thathe case for hashes. Just because
you can subscript a lisalue like a rormal array does not mean that you can subscript a list value as a hash.

perl v5.18.2 2014-01-06 29

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

30

Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into &y/value pairs. That' why it's good to use references sometimes.

It is often more readable to use tire operator betweendy/value pairs.The => operator is mostly just a
more visually distinctie synonym for a comma, it it also arranges for its left-hand operand to be
interpreted as a string if $t'a larevord that would be a lgd simple identifier => doesnt quote compound
identifiers, that contain double colons. This makes it nice for initializing hashes:

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,

);

or for initializing hash references to be used as records:

$rec ={
witch => 'Mable the Merciless',
cat => 'Fluffy the Ferocious',
date => '10/31/1776',

h

or for using call-by-named-parameter to complicated functions:
$field = $query—->radio_group(

name => 'group_name’,

values => [‘eenie','meenie','minie'],
default => 'meenie’,

linebreak => 'true’,

labels = \%labels

);
Note that just because a hash is initialized in that order daeeah that it comes out in that orde&ee
“sort” in perlfunc for examples of hoto arrange for an output ordering.

If a key gopears more than once in the initializer list of a hash, the last occurrence wins:

%circle = (
center => [5, 10],
center => [27, 9],
radius => 100,
color => [OxDF, OxFF, 0x00],
radius => 54,
);
same as
%circle = (

center => [27, 9],
color => [OxDF, OxFF, 0x00],
radius => 54,
);
This can be used to provideeapridable configuration defaults:

values in %args take priority over %config_defaults
%config = (%config_defaults, %args);

Subscripts
An array can be accessed one scalar at a time by specifying a dollad)sitirei the name of the array
(without the leading®, then the subscript inside square bedsk or example:

@myarray = (5, 50, 500, 5000);
print "The Third Element is", $myarray[2], "\n";

The array indices start with QA negdive subscript retriges its value from the end. In ouxample,
$myarray[-1] would have been 5000, animyarray[-2] would have been 500.

Hash subscripts are simiJanly instead of square brackets curly brackets are usadexample:

2014-01-06 perl v5.18.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

%scientists =

(
"Newton" => "[saac",
"Einstein" => "Albert",
"Darwin" => "Charles",
"Feynman" => "Richard",
);

print "Darwin's First Name is ", $scientists{"Darwin"}, "\n";
You can also subscript a list to get a single element from it:
$dir = (getpwnam("daemon"))[7];

Multi-dimensional array emulation
Multidimensional arrays may be emulated by subscripting a hash with a list. The elements of the list are
joined with the subscript separator (see “#’perlvar).

$foo{$a,$b,$c}
is equiaent to
$foo{join($;, $a, $b, $c)}
The default subscript separator is “\034”, the sam8@BSEPIn awk.

Slices
A slice accesses geral elements of a list, an arfay a lash simultaneously using a list of subscripts.
more corenient than writing out the individual elements as a list of separate scalar values.

($him, $her) = @olks[0,-1]; # array slice
@them = @folks[0 .. 3]; # array slice
($who, $home) = @&NV{"USER", "HOME"}; # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice
Since you can assign to a list of variables, you can also assign to an array or hash slice.
@daysJ[3..5] = gw/Wed Thu Fri/;

@colors{'red','blue’,'green'}

(0xff0000, 0x0000ff, 0x00ff00);
@folks[0, -1] @olks[-1, 0];

The previous assignments are exactly egent to
($days[3], $days[4], $days[5]) = gw/Wed Thu Fri/;
($colors{'red}, $colors{'blue'}, $colors{'green’})

= (0xff0O0O00, 0x0000ff, 0x00ff00);
($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);

Since changing a slice changes the original array or hash thdicitig, aforeach construct will alter
some — oeven dl — of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }

foreach (@hash{gw[key1 key2]}) {

s/M\s+//; # trim leading whitespace
s\s+$//; # trim trailing whitespace
s/(\w+)A\u\L$l/g; # "titlecase" words
}
A slice of an empty list is still an empty list. Thus:
@a = ()[1,0]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
But:
@a = (1)[1,0]; # @a has two elements
@b = (1,undef)[1,0,2]; # @b has three elements

More generallya dice yields the empty list if it indes only beyond the end of a list:

perl v5.18.2 2014-01-06 31

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

32

@a= () 1,2]; # @a has no elements
@b = (1)[0,1,2]; # @b has three elements

This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {
printf "%—-8s %s\n", $user, $home;
}

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the right-
hand side of the assignmerithe null list contains no elements, so when the password file is exhausted, the
result is 0, not 2.

Slices in scalar context return the last item of the slice.

@a = qwlfirst second third/;

%h = (first => 'A’, second => 'B");

$t = @a[o, 1J; # $t is n ow 'second'
$u = @h{first', 'second’}; # $u is n ow'B'

If you're confused about whyou use an '@’ there on a hash slice instead of a '%’, think ofatttils.

The type of bracket (square or curlyvgms whether i an aray or a hash being looked at. On the other
hand, the leading symbol ('$’ or '@’) on the array or hash indicates whether you are getting back a singular
value (a scalar) or a plural one (a list).

Typeglobs and Filehandles

Perl uses an internal type calledy@eglobto hold an entire symbol table entrfhe type prefix of a
typeglob is a*, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, butwmadhat we hae real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:
*this = *that;

makes$this an alias fosthat , @this an alias for@that , %this an alias fofsthat , &this an alias
for &that, etc. Much safer is to use a reference. This:

local *Here::blue =\$There::green;

temporarily maks$Here::blue an alias fol$There::green , but doesnt make @Here::blue an

alias for @There::green , or %Here::blue an alias for%There::;green , ec. See“ Symbol
Tables’ in perlmod for more examples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to creafdetandles. Ifyou need to
use a typeglob to ga avay a filehandle, do it this way:

$fth = *STDOUT;
or perhaps as a real referenceg likis:
$fth = *STDOUT;
See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also aay to create a local filehandle using theal() operator These last until their block
is exited, but may be passed baékr example:

sub newopen {
my $path = shift;

local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}

$fh = newopen(/etc/passwd’);

Now that we hse te *foo{THING} notation, typeglobs aren'used as much for filehandle
manipulations, although thee still needed to pass brandanéle and directory handles into or out of
functions. Thas because'HANDLE{IO} only works ifHANDLE has already been used as a hanttie.
other words, *FH must be used to createweymbol table entries*foo{THING} cannot. Whenn
doubt, useéFH.

2014-01-06 perl v5.18.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

All functions that are capable of creating filehandieget() opendir() pipe() sodketpair(), sysopen()
soket(), and accept() automatically create an angmous filehandle if the handle passed to them is an
uninitialized scalar ariable. This allows the constructs such aspen(my $fh, ...) and
open(local $fh,...) to be used to create filehandles that willhamiently be closed automatically
when the scope ends, provided there are no other references toTthisnfargely eliminates the need for
typeglobs when opening filehandles that must be passed around, as in the following example:

sub myopen {
open my $fh, "@_"
or die "Can't open '@ _": $!";

return $fh;
}
{
my $f = myopen('</etc/motd");
print <$f>;
$f i mplicitly closed here
}
Note that if an initialized scalar variable is used instead the result feyedif my $fh='zzz';
open($fh, ...) is equvalent toopen(*{'zzz', ...) . use strict 'refs' forbids such
practice.

Another way to create angmous filehandles is with the Symbol module or with the 10::Handle module
and its ilk. These modules V& the advantage of not hiding fiifent types of the same name during the
local(). See the bottom of “opehin perlfunc for an example.

SEE ALSO
See perlvar for a description of Psrtuilt-in variables and a discussion ofy¢ée variable names.See
perlref, perlsub, and “Symbol ables’ in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

perl v5.18.2 2014-01-06 33

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

NAME

perlop — Perl operators and precedence

DESCRIPTION

34

Operator Precedence and Associativity
Operator precedence and associativity work in Perl more or ledhdikdo in mathematics.

Opeiator precedenceneans some operators aveleated before others-or example, in2 + 4 * 5 | the
multiplication has higher precedence4d® 5 is evaluated first yielding2 + 20 == 22 and not6 *
5 == 30.

Opeiator associativitydefines what happens if a sequence of the same operators is used one after another:

whether the wduator will evaluate the left operations first or the righfor example, in8 - 4 - 2,
subtraction is left associat © Perl evaluates the expression left to rigl8. — 4 is evaluated first making
the expressiod — 2 == 2 andnot8 - 2 == 6.

Perl operators v te following associatity and precedence, listed from highest precedencewntesto
Operators borrowed from C keep the same precedence relationship with eacrevethevhere C§
precedence is slightly sevg. (This males learning Perl easier for C folksWith very fav exceptions,
these all operate on scalar values ondy array values.

left terms and list operators (leftward)
left ->

nonassoc ++ -

right **

right ! "\ a ndunary + and -

left = I~

left * !/ % X

left + -

left << >>

nonassoc named unary operators
nonassoc < ><=>=ltgtleg e

nonassoc == Il=<=>eqgnecmp™
left &

left | "

left &&

left I I

nonassoc .

right ?:

right = += —= *= etc. goto last next redo dump
left , =>

nonassoc list operators (rightward)
right not

left and

left or xor

In the following sections, these operators ane in precedence order.
Many operators can beverloaded for objects. See@load.

Terms and List Operators (Leftward)
A TERM has the highest precedence in Pdithey include variables, quote and quoteeligperators, ay
expression in parentheses, and/ donction whose guments are parenthesizedctually, there arert’

really functions in this sense, just list operators and unary operators behaving as functions because you put

parentheses around thgaments. Thesare all documented in perlfunc.

If any list operator grint(), etc.) or ary unary operatorgndir(), etc.) isfollowed by a left parenthesis as the
next token, the operator andgaiments within parentheses are taken to be of highest precedencegjast lik
normal function call.

In the absence of parentheses, the precedence of list operators ptioh assort , or chmod is either
very high or \ery lov depending on whether you are looking at the left side or the right side of the aperator
For example, in

2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324
the commas on the right of the sort avel@ated before the sort, but the commas on the left\ataated

after In other words, list operators tend to gobble up all arguments thawvf@hal then act lik a $mple
TERM with regard to the precedingxpression. Beareful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or t his.
print ($foo), exit; # Or even this.

Also note that
print ($foo & 255) + 1, "\n";

probably does’'do what you &pect at first glance. The parentheses enclose the argument psinfor
which is ealuated (printing the result dfoo & 255). Thenone is added to the return valuepoiint
(usually 1). The result is somethingdiknis:

1+ 1, " \n" # Obviously not what you meant.
To do what you meant propetlyou must write:

print(($foo & 255) + 1, "\n");
See “Named Unary Operatorsbr more discussion of this.

Also parsed as terms are @ {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructdits and{} .

See also “Quote and Quote-ilOperators’'towad the end of this section, as well as “I/O Operators”.

The Arrow Operator
"—>" s an infix dereference operatqust as it is in C and+€ If the right side is eitherfa.] ,{..} ,
ora(...) subscript, then the left side must be either a hard or symbolic reference to aa kashy or a
subroutine respeetily. (Or technically speaking, a location capable of holding a hard referencs,af it’
array or hash reference being used for assignment.) See perlreftut and perliref.

Otherwise, the right side is a method name or a simple s@alable containing either the method name or
a ubroutine reference, and the left side must be either an object (a blessed reference) or a class name (that
is, a package name). See perlobj.

Auto-increment and Auto-decrement

“++"and “—=""work as in C. That is, if placed before @riable, thg increment or decrement thariable
by one before returning the value, and if placed afterement or decrement after returning the value.
$i=0; $=0;
print $i++; # prints 0
print ++3j; # prints 1

Note that just as in C, Perl doesdefinewhen the variable is incremented or decremented. You justkno
it will be done sometime before or after threue is returned. This also means that modifying@atble
twice in the same statement will lead to undefined behaiaid statements like:

$i = $i ++;

print ++ $i + $i ++;
Perl will not guarantee what the result of thewahgatements is.

The auto-increment operator has a little extra builtin magic to it. If you incremeatiable that is
numeric, or that hasver been used in a numeric context, you get a normal increngrtiowever, the

variable has been used in only string contexts since it was set, and has a value that is not the empty string
and matches the pattefija—zA-Z]*[0-9]*\z/ , the increment is done as a string, preserving each
character within its range, with carry:

perl v5.18.2 2014-01-06 35

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

print ++($foo = "99"); # prints "100"
print ++($foo = "a0"); # prints "al"
print ++($foo = "Az"); # prints "Ba"
print ++($foo = "zz"); # prints "aaa"

undef is aways treated as numeric, and in particular is changé@dhtefore incrementing (so that a post-
increment of an undef value will retudrather tharundef).

The auto-decrement operator is not magical.

Exponentiation
Binary “**' ' is the exponentiation operatoit binds e/en more tightly than unary minus, so —-2**4 is
—(2**4), not (-2)**4. (This is implemented using £pow(3) function, which actually works on doubles
internally.)

Symbolic Unary Operators
Unary “I'* performs logical ngation, that is, “not’. Seealsonot for a lower precedence version of this.

Unary ‘="' performs arithmetic rggtion if the operand is numeric, includingyastring that looks lile a
number If the operand is an identifiea 4ring consisting of a minus sign concatenated with the identifier
is returned. Otherwise, if the string starts with a plus or minus, a string starting with the opposite sign is
returned. Oneffect of these rules is that —bauard is equalent to the string'“-barevord”. If, however,

the string begins with a non-alphabetic character (excludiihgor ‘‘='"), Perl will attempt to covert the

string to a numeric and the arithmetigat#on is performed. If the string cannot be cleanlyvented to a
numeric, Perl will gre the warningArgument “the string’ ' i sn’'t numeric in negation (=) at ...

Unary ' performs bitwise ngetion, that is, 1S complement. Br example,0666 & “027 is 0640.

(See also'‘Integer Arithmetic’ and “Bitwise String Operators) Note that the width of the result is
platform-dependent: "0 is 32 bits wide on a 32-bit platform, but 64 bits wide on a 64-bit platform, so if
you are expecting a certain bit width, remember to use thedigerator to mask 6fthe excess bits.

When complementing strings, if all charactersehadinal values under 256, then their complements will,
also. Butif they do mot, all characters will be in either 32— or 64-bit complements, depending on your
architecture. Sofor example, ™\x{3B1}" is "W{FFFF_FCA4E}" on 32-bit machines and
"“Y{FFFF_FFFF_FFFF_FCA4E}' on 64-hbit machines.

Unary ‘+'" has no effect whatswer, even on grings. Itis useful syntactically for separating a function
name from a parenthesized expression thatldvotherwise be interpreted as the complete list of function
arguments. (Seexamples abee inder Terms and List Operators (Leftward).)

Unary ‘'’ creates a reference to whade follows it. See perlreftut and perlref. Do not confuse this
behaior with the behaior of backslash within a string, although both forms dovegnhe notion of
protecting the next thing from interpolation.

Binding Operators
Binary “=""" binds a scalar expression to a pattern match. Certain operations search or modify the string
$_ by dehwult. Thisoperator makes that kind of operation work on some other string. The ggimemt
is a search pattern, substitution, or transliteration. The lgfinaent is what is supposed to be searched,
substituted, or transliterated instead of theadif$. When used in scalar context, the retuaiue
generally indicates the success of the operation. Xbep&ions are substitution (s///) and transliteration
(y/ll) with the/r (non-destructie) option, which cause thesturn value to be the result of the substitution.
Behavior in list context depends on the particular operaBee ‘Regexp Quote-Lile Operators'for details
and perlretut for examples using these operators.

If the right argument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time. Note that this means that its contents will be interpolated twice,

so
W ="\
is not ok, as the gex engine will end up trying to compile the pattarnwhich it will consider a syntax
error.
Binary “I”"is just like “=""" except the return value is gaed in the logical sense.

Binary “I” " with a non-destruote substitution (s///r) or transliteration (y//Ir) is a syntax error.

36 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Multiplicati ve Operators
Binary “*" ' multiplies two numbers.

Binary “/"’ divides two numbers.

Binary “%’’ is the modulo operatpwhich computes the dsion remainder of its first argument with
respect to its secondgument. Gien integer operand$a and$b: If $b is positve, then$a % $b is $a
minus the largest multiple &b less than or equal ®a. If $b is negaive, then$a % $b is $a minus the
smallest multiple ofb that is not less thata (that is, the result will be less than or equal to zelodhe
operandsba and$b are floating point alues and the absolute value$tif (that isabs($b)) is less than
(UV_MAX + 1) , only the integer portion dfa and$b will be used in the operation (Note: hé&fg_MAX
means the maximum of the unsigned integer tyffehe absolute value of the right operaath$($b))is
greater than or equal (WV_MAX + 1) , “%'’ computes the floating-point remaindir in the equation
($r = $a - $i*$b) where$i is a certain intger that ma&s $r have the same sign as the right
operand$b (not as the left operangla like C functionfmod()) and the absolute value less than that of
$b. Note that wheruse integer is in scope,'%’’ gives you direct access to the modulo operator as
implemented by your C compileThis operator is not as well defined forgative goerands, but it will
execute faster.

Binary ‘X'’ i s the repetition operatoiin scalar context or if the left operand is not enclosed in parentheses,

it returns a string consisting of the left operand repeated the number of times specified by the right operand.
In list context, if the left operand is enclosed in parentheses or is a list fornggd BYRING/ , it repeats

the list. If the right operand is zero orgatve, it returns an empty string or an empty list, depending on the

context.
print '-' x 80; # print row of dashes
print "\t" x ($tab/8), ' ' x ($tab%8); # t ab over
@ones = (1) x 80; # a listof801's
@ones = (5) x @ones; # setall elements to 5

Additi ve Operators
Binary + returns the sum of twnumbers.

Binary — returns the difference of tnnumbers.
Binary. concatenates tvdrings.

Shift Operators
Binary << returns the value of its left argument shifted left by the number of bits specified by the right
argument. Aguments should be irgers. (Sealso “Integer Arithmetic”.)

Binary >> returns the value of its left gmment shifted right by the number of bits specified by the right
argument. Aguments should be irgers. (Sealso “Integer Arithmetic”.)

Note that bothe< and>> in Perl are implemented directly usirg and>> in C. If use integer (see
“Integer Arithmetic”) is in force then signed C integers are used, else unsigned C integers akgthsed.
way, the implementation ishgoing to generate results larger than the size of the integer typed2etlilt/
with (32 bits or 64 bits).

The result of werflowing the range of the integers is undefined because it is undefined also in C. In other
words, using 32-bit ingers,1 << 32 is undefined. Shifting by a ngaive rumber of bits is also
undefined.

If you get tired of being subject to your platfosmative integers, theuse bigint pragma neatly
sidesteps the issue altogether:

print 20 << 20; # 20971520
print 20 << 40; # 5120 on 32-bit machines,
21990232555520 on 64-bit machines
use bigint;
print 20 << 100; # 25353012004564588029934064107520

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional parentheses.

If any list operator grint(), etc.) or ary unary operatordhdir(), etc.) isfollowed by a left parenthesis as the

perl v5.18.2 2014-01-06 37

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

next token, the operator andgaiments within parentheses are taken to be of highest precedencegjast lik
normal function call.For example, because named unary operators are higher precedenj¢e:than

chdir $foo || die; # (chdir $foo) || die

chdir($foo) || die; # (chdir $foo) || die

chdir ($foo) || die; # (chdir $foo) || die

chdir +($foo) || die; # (chdir $foo) || die
but, because * is higher precedence than named operators:

chdir $foo * 20; # chdir ($foo * 20)

chdir($foo) * 20; # (chdir $foo) * 20

chdir ($foo) * 20; # (chdir $foo) * 20

chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)

rand(10) * 20; # (rand 10) * 20

rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; # rand (10 * 20)
Regarding precedence, the filetest operatorss tik, —M etc. are treated li&k ramed unary operatorsut
they don't follow this functional parenthesis rule. That means, for example;-ft&file).".bak" is

equivaent to—f "$file.bak"
See also “Terms and List Operators (Leftward)”.

Relational Operators
Perl operators that return true or false generally return values that can be safely used as mambers.
example, the relational operators in this section and the equality operators in the next orie fattnune
and a special version of the defined empty sttfhg,which counts as a zero but isempt from warnings
about improper numeric ceersions, just as0 but true" is.

Binary “<’’ returns true if the left argument is numerically less than the right argument.

Binary “>' returns true if the left argument is numerically greater than the right argument.

Binary “<="'returns true if the left argument is numerically less than or equal to the right argument.
Binary “>="'returns true if the left argument is numerically greater than or equal to the right argument.
Binary “It'’ returns true if the left argument is stringwise less than the right argument.

Binary “gt” returns true if the left argument is stringwise greater than the right argument.

Binary “le”’ returns true if the left argument is stringwise less than or equal to the right argument.
Binary “ge” returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary “=="'returns true if the left argument is numerically equal to the right argument.

Binary “!1="" returns true if the left argument is numerically not equal to the right argument.

Binary “<=>""returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the rightgument. Ifyour platform supports NaNs (not-a-numbers) as numexiiges,

using them with‘<=>"" returns undef. NaN is nok"’, *'=="", ‘>, '<="" or *'’>="" anything (esen NaN),

so those 5 return false. NaN != NaN returns true, as does NaN/thiranelse. If your platform doesn’
support NaNs then NaN is just a string with numeric value 0.

$ perl —le '$a = "NaN"; print "No NaN support here" if $a == $a'
$ perl —le '$a = "NaN"; print "NaN support here" if $a != $a'

(Note that the bigint, bigrat, and bignum pragmas all support “NaN".)
Binary “eq” returns true if the left argument is stringwise equal to the right argument.
Binary “ne” returns true if the left argument is stringwise not equal to the right argument.

Binary “cmp” returns -1, 0, or 1 depending on whether the lgftiiment is stringwise less than, equal to,
or greater than the right argument.

Binary does a smartmatch between itguaments. Smarnatching is described in the next section.

38 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

“It', “le”, “‘ge”, “‘gt’”’ and “cmp” use the collation (sort) order specified by the current locale faye
use locale (but notuse locale ":not_characters') is in effect. See perllocale. Daot mix
these with Unicode, only with decy hinary encodings. The standard Unicode::Collate and
Unicode::Collate::Locale modules offer much more powerful solutions to collation issues.

Smartmatch Operator
First available in Perl 5.10.1 (the 5.10.0 version bekhdifferently), binary™ does a ‘smartmatch”
between its gluments. Thiss mostly used implicitly in thevhen construct described in perlsyn, although
not allwhen clauses call the smartmatch operatonique among all of Ped’gperators, the smartmatch
operator can recurse.

It is also unique in that all other Perl operators impose a context (usually string or numeric context) on their
operands, autocwearting those operands to those imposed cdstelncontrast, smartmatdhfers contexts

from the actual types of its operands and uses that type information to select a suitable comparison
mechanism.

The™ operator compares its operangstymorphically’, determining hav to compare them according
to their actual types (numeric, string, arragsh, etc.)Like the equality operators with which it shares the
same precedencg, returns 1 for true and for false. lItis often best read aloud &is", “inside of”, or

“is contained in, because the left operand is often lookedifmide the right operand. That makes the
order of the operands to the smartmatch operand often opposite that gfullhe meatch operatorn cther
words, the “smallef’thing is usually placed in the left operand and the larger one in the right.

The behavior of a smartmatch depends on what type of thinggyjitmments are, as determined by the
following table. The first no of the table whose types apply determines the smartmatckibehBecause

what actually happens is mostly determined by the type of the second operand, the table is sorted on the
right operand instead of on the left.

Left Right Description and pseudocode

Any undef check whether Any is undefined
like: !defined Any

Any Object invoke ™~ overloading on Object, or die
Right operand is an ARRAY:

Left Right Description and pseudocode

ARRAY1 ARRAY2 recurse on paired elements of ARRAY1 and ARRAY?2[2]
like: (ARRAY1[0] ~™ ARRAY2[0])
&& (ARRAY1[1] ™ ARRAY2[1]) && ...

HASH ARRAY any ARRAY elements exist as HASH keys
like: grep { exists HASH->{$_} } ARRAY

Regexp ARRAY any ARRAY elements pattern match Regexp
like: grep { /Regexp/ } ARRAY

undef ARRAY undef in ARRAY
like: grep { !defined } ARRAY

Any ARRAY smartmatch each ARRAY element[3]

like: grep { Any ™ $_ } ARRAY
Right operand is a HASH:

Left Right Description and pseudocode

HASH1 HASH2 all same keys in both HASHes
like: keys HASH1 ==
grep { exists HASH2->{$_} } keys HASH1

ARRAY HASH any ARRAY elements exist as HASH keys
like: grep { exists HASH->{$_} } ARRAY
Regexp HASH any HASH keys pattern match Regexp

like: grep { /Regexp/ } keys HASH

perl v5.18.2 2014-01-06 39

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

undef HASH always false (undef can't be a key)
like: 0 ==

Any HASH HASH key existence
like: exists HASH->{Any}

Right operand is CODE:

Left Right Description and pseudocode

ARRAY CODE sub returns true on all ARRAY elements[1]
like: !grep { \CODE->($) } ARRAY

HASH CODE sub returns true on all HASH keys[1]
like: !grep { \CODE—>($_) } keys HASH

Any CODE sub passed Any returns true

like: CODE->(Any)
Right operand is a Regexp:

Left Right Description and pseudocode
ARRAY Regexp any ARRAY elements match Regexp
like: grep { /Regexp/ } ARRAY
HASH Regexp any HASH keys match Regexp
like: grep { /Regexp/ } keys HASH
Any Regexp pattern match
like: Any =" /Regexp/
Other:
Left Right Description and pseudocode
Object Any invoke ™ overloading on Object,
or fall back to...
Any Num numeric equality
like: Any == Num
Num nummy[4] numeric equality
like: Num == nummy
undef Any check whether undefined
like: !defined(Any)
Any Any string equality
like: Any eq Any
Notes:

1. Empty hashes or arrays match.

2. That is, each element smartmatches the element of the samaitideother array.[3]
3. If a circular reference is found, fall back to referential equality.

4. Either an actual numhenr a dring that looks lile ane.

The smartmatch implicitly dereferences/an-blessed hash or array reference, sdHeH and ARRAY
entries apply in those caseBor blessed references, tiihj ect entries apply Smartmatches wolving
hashes only consider haskyg, never hash values.

The ‘like’’ code entry is not alays an exact renditionFor example, the smartmatch operator short-
circuits wheneer possible, it grep does not. Also, grep in scalar conte returns the number of
matches, but” returns only true or false.

Unlike most operators, the smartmatch operator knows tourestf specially:

2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

use v5.10.1;

@array = (1, 2, 3, undef, 4, 5);

say "some elements undefined" if undef ™ @array;
Each operand is considered in a modified scalar xpntiee modification being that array and hash
variables are passed by reference to the openatuch implicitly dereferences them. Both elements of
each pair are the same:

use v5.10.1;

my %hash = (red =>1,blue =>2,green =>3,
orange => 4, yellow => 5, purple => 6,
black => 7,grey =>8,white =>09);

my @array = gw(red blue green);

say "some array elements in hash keys" if @array ™ %hash;
say "some array elements in hash keys" if \@array ~ \%hash;

say "red in array" if "red" ™ @array;
say "red in array" if "red" " \@array;

say "some keys end in e" if /le$/ ™ %hash;
say "some keys end in e" if /e$/ 7 \%hash;

Two arrays smartmatch if each element in the first array smartmatches (thains) ithé corresponding
element in the second arragcursvely.

use v5.10.1;
my @little = qw(red blue green);
my @bigger = ("red", "blue", ["orange", "green"]);
if (@little ™ @bigger) { # true!
say "little is contained in bigger";
}

Because the smartmatch operator recurses on nested arrays, this will still report thigtifrélde array.
use v5.10.1;
my @array = gw(red blue green);

my $nested_array = [[[[[[[@array]]I]II];
say "red in array" if "red" ™ $nested_array;

If two arays smartmatch each othéinen thg are deep copies of each others’ values, as tkasnple

reports:
use v5.12.0;
my @a = (0, 1, 2, [3, [4, 5], 6], 7);
my @b = (0, 1, 2, [3, [4, 5], 6], 7);

if (@a™ @b && @b ™ @a) {
say "a and b are deep copies of each other";
}

elsif (@a ™ @b) {
say "a smartmatches in b";
}

elsif (@b ™ @a) {
say "b smartmatches in a";
}

else {
say "a and b don't smartmatch each other at all";
}

If you were to se$b[3] =4 , then instead of reporting that “a and b are deep copies of each other”, it
now reports that “b smartmatches ir.aThat because the corresponding positior@acontains an array

perl v5.18.2 2014-01-06 41

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

that (eventually) has a 4 in it.

Smartmatching one hashaigst another reports whether both contain the say® ko more and no less.
This could be used to see whetheo twcords hee the same field names, without caring what values those
fields might hae. For example:

use v5.10.1;
sub make_dogtag {
state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1};

my ($class, $init_fields) = @_;

die "Must supply (only) name, rank, and serial number"
unless $init_fields ™ $REQUIRED_FIELDS;

}

or, if other non-required fields are allowed, WFRAY ™ HASH:

use v5.10.1;
sub make_dogtag {
state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1},

my ($class, $init_fields) = @_;

die "Must supply (at least) name, rank, and serial number"
unless [keys %{$init_fields}] ~ $REQUIRED_FIELDS;

}

The smartmatch operator is most often used as the implicit operatevheaclause. Seéhe section on
“ Switch Statementsin perlsyn.

Smartmatching of Objects

To avoid relying on an object’ underlying representation, if the smartmascight operand is an object that
doesnt overload ™ , it raises the exceptionStartmatching a non-overloaded object

breaks encapsulation “. That's because one has no business digging around to see whether
something is "in" an object. These are allgiéeon objects without & overload:

%hash ™ $object
42 ™ $object
"fred" ™ $object

However, you can change the way an object is smartmatchedvéyoading the™ operator This is
allowed to extend the usual smartmatch semankosobjects that do hee an™ overload, see werload.

Using an object as the left operand is allowed, although ent useful. Smartmatching rules &k
precedencewar overloading, so een if the object in the left operand has smartmatanloading, this will

be ignored.A left operand that is a norv@loaded object falls back on a string or numeric comparison of
whatever theref operator returns. That means that

$object ™ X

doesnotinvoke the averload method wittX as an agument. Insteathe abwee table is consulted as normal,
and based on the type ¥f overloading may or may not bevioked. For simple strings or numbers, in
becomes equélent to this:

$object ™ $number ref($object) == $number
$object ™ $string ref($object) eq $string

For example, this reports that the handle smells 10ish (but pleaserdalty do this!):

42 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

use |0::Handle;
my $fh = 10::Handle->new();
if (3fh ™ AblO\b/) {
say "handle smells I10ish";
}

That's because it treat$fh as a string lik "10::Handle=GLOB(0x8039¢e0)" , then pattern matches
against that.

Bitwise And
Binary “&’ ' returns its operands ANDed together bit by bit. (See diseger Arithmetic’ and “Bitwise
String Operators”.)

Note that‘&’ ' has lower priority than relational operators, so for example the parentheses are essential in a
test like

print "Even\n" if ($x & 1) == 0;

Bitwise Or and Exclusive Or
Binary “|"" returns its operands ORed together bit by bit. (See digeder Arithmetic’ and “Bitwise
String Operators”.)

Binary “’ returns its operands XORed together bit by KBee also‘Integer Arithmetic’ and “Bitwise
String Operators”.)

Note that 4" and “’ have lower priority than relational operators, so for example the letackre
essential in a test like

print "false\n" if (8 | 2) != 10;

C-style Logical And
Binary “&&'’ ' performs a short-circuit logicédND operation. Thais, if the left operand isafse, the right
operand is notwen evaluated. Scalaor list context propagates down to the right operand if akiated.

C-style Logical Or
Binary “||” performs a short-circuit logicabR operation. Thais, if the left operand is true, the right
operand is notwen evaluated. Scalaor list context propagates down to the right operand if akiated.

Logical Defined-Or
Although it has no direct equalent in C, Perk// operator is related to its C—style dn fact, it's exactly
the same afj , except that it tests the left hand silekfinedness instead of its trutfihus, EXPR1 //
EXPR2returns the value dEXPRLif it's defined, otherwise, the value BXPR2is returned. EXPRL1is
evduated in scalar conte EXPR2in the contgt of // itself). Usually this is the same result as
defined(EXPR1) ? EXPR1 : EXPR2 (except that the ternary-operator form can be used aauwelv
while EXPR1 // EXPR2 cannot). This is very useful for providing default values farables. Ifyou
actually want to test if at least one$zf and$b is defined, usdefined($a // $b)

The|| ,// and&&operators return the last valuealeiated (unlile Cs || and&&, which return 0 or 1).
Thus, a reasonably portable way to find out the home directory might be:

$home = $ENV{HOME}
/I SENV{LOGDIR}
I (getpwuid($<))[7]
/I die "You're homeless\n";

In particular this means that you shouldnise this for selecting betweendwsggregaes for assignment:

@a= @b || @c; # t his is wrong
@a = scalar(@b) || @c; # r eally meant this
@a=@b? @b: @c; # t his works fine, though

As alternaties to && and|| when used for control fla Perl provides theand and or operators (see
belov). The short-circuit behavior is identical. The precedence ‘afid” and “or’’ is much lower,
however, s0 that you can safely use them after a list operator without the need for parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C-style operators that would/adeen written like this:

perl v5.18.2 2014-01-06 43

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

44

unlink("alpha", "beta", "gamma")
[| (gripe(), next LINE);

It would be &en more readable to write that this way:

unless(unlink("alpha", "beta", "gamma")) {

gripe();
next LINE;

}

Using “or” for assignment is unlikely to do what you want; seevielo

Range Operators

Binary “.."” i s the range operatowhich is really tvo different operators depending on the critdn list
contet, it returns a list of values counting (up by ones) from the left value to the dgld. vifthe left

value is greater than the righalue then it returns the empty list. The range operator is useful for writing
foreach (1..10) loops and for doing slice operations on arrays. In the current implementation, no
temporary array is created when the range operator is used apthgs®n irforeach loops, but older
versions of Perl might burn a lot of memory when you write somethiegHik:

for (1..1_000_000) {
code
}

The range operator also works on strings, using the magical auto-increment, see belo

In scalar contet, “..” returns a booleanalue. Theoperator is bistable, l&ka fip-flop, and emulates the
line-range (comma) operator gbd awk, and various editors. Each..” operator maintains itsvn
boolean state,ven across calls to a subroutine that contains it. It is false as long as its left operasd.is f
Once the left operand is true, the range operator stays true until the right operandaisTE®®yhich the
range operator becomes falseaiag It doesnt become false till the & time the range operator is
evduated. lItcan test the right operand and becoaisef on the samev@uation it became true (as awk),

but it still returns true once. If you dotwant it to test the right operand until the nexdleation, as irsed

“ n

just use three dots (*“..) instead of tw. Inall other rgards, “..." b ehaves just like “..” d oes.

The right operand is nowvauated while the operator is in théalse” state, and the left operand is not
evduated while the operator is in thé&rue” state. Theprecedence is a little lower than || and &&he
value returned is either the empty string for false, or a sequence number (beginning with 1) fdhérue.
sequence number is reset for each range encounfénedfinal sequence number in a range has the string
“ EQ” appended to it, which doedreffect its numeric value, but\gis you something to search for if you
want to exclude the endpoinlYou can exclude the beginning point by waiting for the sequence number to
be greater than 1.

If either operand of scalat.” i s a @nstant expression, that operand is considered true if it is eg)atio(
the current input line number (tBe variable).

To be pedantic, the comparison is actuatf(EXPR) == int(EXPR) , but that is only an issue if you
use a floating pointx@ression; when implicitly using. as described in the previous paragraph, the
comparison isnt(EXPR) == int($.) which is only an issue wheh is set to a floating pointalue
and you are not reading from a filEurthermore;'span” .. "spat" or2.18..3.14 will not do
what you want in scalar context because each of the operandsvauatesl using their intger
representation.

Examples:
As a scalar operator:
if (101 .. 200) { print; } # print 2nd hundred lines, short for
if ($.==101.. $.==200){ print; }

next LINE if (1 .. /"$/); # skip header lines, short for
nextLINEIf($.==1..7"%/));
(typically in a loop labeled LINE)

si/> [if ('$/ .. eof()); # quote body

2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

parse mail messages

while (<>) {
$in_header = 1 ..1717%,
$in_body = ['$/ .. eof;

if ($in_header) {
do s omething
} else {#in body
do s omething else

}
} ¢ ontinue {
close ARGV if eof; # reset $. each file
}
Heres a smple example to illustrate the difference between tleramge operators:
@lines = (" - Foo",
"01 - Bar",
"l - Baz",
- Quux");

foreach (@lines) {
if (/0/ .. 11/){
print "$_\n";
}

}

This program will print only the line containingar”. If the range operator is changed.to , it will also
print the “Baz’ line.

And nov some examples as a list operator:

for (101 .. 200) { print } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an expensive no—op
@foo = @foo[$#foo—-4 .. $#foo]; # slice last 5 items

The range operator (in list corty makes use of the magical auto-increment algorithm if the operands are
strings. You can say

@alphabet = ("A" .. "Z");

to get all normal letters of the English alphabet, or
$hexdigit= (0 .. 9, "a" .. "f")[$num & 15];

to get a hexadecimal digit, or

@z2 = ("01".."31");
print $z2[$mday];

to get dates with leading zeros.

If the final \alue specified is not in the sequence that the magical increment would produce, the sequence
goes until the next value would be longer than the final value specified.

If the initial value specified ishpart of a magical increment sequence (that is, a non-empty string matching
["Ta—zA-Z]*[0-9]*\z/), only the initial value will be returnedso the following will only return an
alpha:

use charnames "greek";
my @greek _small = ("\N{alpha}" .. "\N{omega}");
To get the 25 traditional lowercase Greek letters, including both sigmas, you could use this instead:
use charnames "greek";
my @greek _small = map { chr } (ord("\N{alpha}")

ord("‘.\N{omega}")
);

perl v5.18.2 2014-01-06 45

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

However, because there amaany other lowercase Greek characters than just those, to matehckse
Greek characters in a regular expression, you would use the pattern
1(?:(?=\p{Greek})\p{Lower})+/

Because each operand igleated in integer form2.18 .. 3.14 will return two dements in list
context.

@list = (2.18 .. 3.14); # same as @list= (2 .. 3);

Conditional Operator
Ternary “?:"” is the conditional operatpjust as in C. It works much kkan f-then-else. Ifthe agument
before the ? is true, the argument before the : is returned, otherwise the argument after the : isFeturned.
example:

printf "I have %d dog%s.\n", $n,
($n==1)2":"s"

Scalar or list context propagates downward into the 2nd or 3rd argument, wehisteelected.

$a = $ok ? $b : $c; # geta scalar
@a =%0k ? @b : @c; # getan array
$a =%0k ? @b : @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd argumenigablhealaes (meaning that you can
assign to them):

($a_or_b ? $a : $b) = $c;

Because this operator produces an assignable result, using assignments without parentheses will get you in
trouble. For example, this:

$a%2?%a+=10:%a+=2
Really means this:
($a % 2) ? ($a +=10) : $a) +=2
Rather than this:
($a% 2) ? ($a +=10) : ($a +=2)
That should probably be written more simply as:
$a+=($a % 2)?10: 2;

Assignment Operators
“ =" is the ordinary assighment operator.

Assignment operators work as in C. That s,
$a +=2;

is equiaent to
$a=%a+ 2,

although without duplicating grside effects that dereferencing the Ivalue might triggsrh as frontie().
Other assignment operators work similarihe following are recognized:
k= += *= &= <<= &&=
—-= /= |: >>= ||:
= 0= "= /=
X=
Although these are grouped by familyey al have the precedence of assignment.

Unlike in C, he scalar assignment operator produces a vallddv Modifyingan assignment is egalent
to doing the assignment and then modifying the variable that was assigned to. This is useful for modifying
a wopy of something, lile this:

($tmp = $global) =" tr/13579/24680/;
Although as of 5.14, that can be also be accomplished this way:

46 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

use v5.14,

$tmp = ($global =~ tr/13579/24680/r);
Likewise,

(Pa +=2) *=3;
is equiaent to

$a +=2;

$a*=3;

Similarly, a list assignment in list context produces the list afues assigned to, and a list assignment in
scalar contet returns the number of elements produced by the expression on the right hand side of the
assignment.

Comma Operator

Binary “,” i s the comma operatoin scalar context it waluates its left argument, throws that valweag,
then @aluates its right argument and returns thetie. Thiss just like Cs comma operator.

In list context, it5 just the list argument separatend inserts both its guments into the list.These
arguments are alsoa@uated from left to right.

The => operator is a syngm for the comma except that it causes a word on its left to be interpreted as a
string if it begins with a letter or underscore and is composed only of letters, digits and under&ugres.
includes operands that might otherwise be interpreted as operators, constants, single number v-strings or
function calls. If in doubt about this behavithre left operand can be quoted explicitly.

Otherwise, the=> operator behaes exactly as the comma operator or lisj@ment separatoaccording to
context.

For example:
use constant FOO => "something";

my %h = (FOO => 23);
is equvaent to:
my %h = ("FOQ", 23);
It is NOT:
my %h = ("something", 23);

The => operator is helpful in documenting the correspondence betwsysnakd values in hashes, and
other paired elements in lists.

%hash = ($key => $value);
login($username => $password);

The special quoting behavior ignores precedence, and hence may ggpiyoticthe left operand:
print time.shift => "bbb";

That example prints something kk“1314363215shiftbbly’ because the> implicitly quotes theshift
immediately on its left, ignoring the fact thahe.shift is the entire left operand.

List Operators (Rightward)
On the right side of a list operatthe comma hasery low precedence, such that it controls all comma-
separated expressions found there. The only operators wihr lorecedence are the logical operators
“and’, “‘or’, and ‘not”, which may be used tovaluate calls to list operators without the need for
parentheses:

open HANDLE, "< :utfg8", "filename" or die "Can't open: $\n";

However, some people find that code harder to read than writing it with parentheses:
open(HANDLE, "< :utf8", "filename") or die "Can't open: $\n";

in which case you might as well just use the more customargpgrator:
open(HANDLE, "< :utf8", "filename") || die "Can't open: $\n";

See also discussion of list operators in Terms and List Operators (Leftward).

perl v5.18.2 2014-01-06 47

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Logical Not
Unary ‘not” returns the logical mgtion of the expression to its rightt’s the equialent of “I'* except for
the very lav precedence.

Logical And
Binary “and” returns the logical conjunction of the dveurrounding &pressions. I8 equivalent to &&
except for the very v precedence. Thimeans that it short-circuits: the right expressiorvauated only
if the left expression is true.

Logical or and Exclusive Or
Binary “or’’ returns the logical disjunction of thedvaurrounding &pressions. I8 equivalent to|| except
for the very lov precedence. Thimakes it useful for control flow:

print FH $data or die "Can't write to FH: $!";

This means that it short-circuits: the right expressionakiated only if the left gpression isdlse. Dudo
its precedence, you must be careful woié using it as replacement for tfje operator It usually works
out better for flav control than in assignments:

$a = $b or $c; # bug: this is wrong
($a = $b) or $c; # r eally means this
$a =$b || $c; # better written this way

However, when it's a Ist-context assignment and yaw trying to usg| for control flov, you probably
need “or’ so that the assignment takes higher precedence.

@info = stat($file) || die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you couldwabys use parentheses.

Binary xor returns the xclusve-OR of the tvo surrounding &pressions. Itcannot short-circuit (of
course).

There is no lar precedence operator for defined-OR.

C Operators Missing From Perl
Here is what C has that Perl doesn't:

unary & Address-of operatofBut see the “Voperator for taking a reference.)
unary * Dereference-address operafBerl's prefix dereferencing operators are typed: $, @, %, and &.)
(TYPE) Type-casting operator.

Quote and Quote-like Operators
While we usually think of quotes as literal values, in Pery thumction as operators, providingnous
kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaiors, but also provides aay for you to choose your quote character for @frthem. Inthe following
table, &} represents gnpair of delimiters you choose.

Customary Generic Meaning Interpolates
" af} Literal no
qq{} Literal yes
= ax{} Command yes*
agw{} Word list no
/1 m{} Pattern match yes*
ar{} Pattern yes*
s{{} Substitution yes*
tr{}{} Transliteration no (but see below)
v{{} Transliteration no (but see below)
<<EOF here-doc yes*

* u nless the delimiter is ".

Non-bracleting delimiters use the same character fore and aft, but the four sagslobraclets (round,
angle, square, curly) all nest, which means that

48 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

g{foo{bar}baz}

is the same as
‘foo{bar}baz'

Note, howeer, that this does notwabys work for quoting Perl code:
$s={ if(aeq"}") ... }; # WRONG

is a syntax errofThe Text::Balanced module (standard as of v5.8, and fr@PAN before then) is able
to do this properly.

There can be whitespace between the operator and the quoting characégtsywber¥ is being used as
the quoting characteig#foo# is parsed as the stridigo , while g #foo# is the operatoq followed by
a omment. Itsargument will be taken from the next line. This allows you to write:

s {foo} # Replace foo
{bar} # with bar.

The following escape sequences ar@lable in constructs that interpolate, and in transliterations:

Sequence Note Description

\t tab (HT, TAB)

\n newline (NL)

\r return (CR)

\f form feed (FF)

\b backspace (BS)

\a alarm (bell) (BEL)

\e escape (ESC)

\x{263A} [1,8] hex char (example: SMILEY)

\x1b [2,8] restricted range hex char (example: ESC)
\N{name} [3] named Unicode character or character sequence
\N{U+263D} [4,8] Unicode character (example: FIRST QUARTER MOON)
\c[[5] control char (example: chr(27))
\0{23072} [6,8] octal char (example: SMILEY)

\033 [7,8] restricted range octal char (example: ESC)

[1] The result is the character specified by the hexadecimal number between the Seacty. ' below
for details on which character.

Only hexadecimal digits are valid between the braces. Ifhatidrcharacter is encountered, anving
will be issued and the valid character and all subsequent characteasid\or invalid) within the
braces will be discarded.

If there are no valid digits between the braces, the generated character NsLihecharacter
(\x{00}). However, an explicit empty brace\k{}) will not cause a warning (currently).

[2] The result is the character specified by theadecimal number in the range 0x00 to OxEee ‘[8]"
belaw for details on which character.

Only hexadecimal digits areald following \x . When\x is followed by fewer than tavalid digits,

ary valid digits will be zero-padded. This means thét will be interpreted a&07 , and a lone
<\x> will be interpreted ax00 . Except at the end of a string, having fewer thao walid digits will
result in a varning. Notethat although the arning says the ilgd character is ignored, it is only
ignored as part of the escape and will still be used as the subsequent character in thE&aostring.

example:
Original Result Warns?
"\X7" "“\x07" no
"\x" "\x00" no
"\x7q" "\x07q" yes
"\xq" "\x00q" yes

[3] The result is the Unicode character or character sequergehyiname See charnames.

[4] \N{U+ hexadeci mal nunber} means the Unicode character whose Unicode code point is
hexadecimal number

perl v5.18.2 2014-01-06 49

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

[5] The character followindc is mapped to some other character as shown in the table:

Sequence Value

\c@ chr(0)

\cA chr(1)

\ca chr(1)

\cB chr(2)

\cb chr(2)

\cz chr(26)

\cz chr(26)

\c[chr(27)

\c] chr(29)

\c chr(30)

\c? chr(127)
In other words, i8 the character whose code point has had 64dxeith its uppercaselc? is
DELETE becauseord("?") ~ 64 is 127, andc@ is NULL because the ord of@" is 64, so

xor'ing 64 itself produces 0.

Also,\c\ Xyields chr(28) ." X" for ary X, but cannot come at the end of a string, because the
backslash would be parsed as escaping the end quote.

On ASCII platforms, the resulting characters from the listvabme the complete set @fSClil controls.
This isnt the case orEBCDIC platforms; see‘OPERATOR DIFFERENCES" in perlebcdic for the
complete list of what these sequences mean onAsiii andEBCDIC platforms.

Use of ag other character following théc'’ besides those listed almis dscouraged, and some are
deprecated with the intention of removing those in a later Besion. Whahappens for anof these
other characters currently though, is that the value isaiebly xor'ing with the sgenth bit, which is
64.

To get platform independent controls, you can\Ie..}

[6] The result is the character specified by the octal number between the brace§g]' Seéelow for
details on which character.

If a character that ishan cctal digit is encountered, aanning is raised, and the value is based on the
octal digits before it, discarding it and all falling characters up to the closing brace. It isalf
error if there are no octal digits at all.

[71 The result is the character specified by the three-digit octal number in the range 000 to 777 (but best to
not use abee 077, see next paragraph). See “[&)elow for details on which character.

Some contexts allw 2 or even 1 dgit, but ary usage without exactly three digits, the first being a zero,
may giwve uwnintended results.(For example, in a regularxpression it may be confused with a
backreference; see “Octal escapés’perlrebackslash.) Starting Perl 5.14, you may use{}

instead, which wids all these problems. Otherwise, it is best to use this construct only for ordinals
\077 and belav, remembering to pad to the left with zeros to méitee digits. For larger ordinals,
either usao{} , or corvert to something else, such as txlaad uséx{} instead.

Having fewer than 3 digits may lead to a misleading warning message that says that what follows is
ignored. Br example,"\128" in the ASCII character set is equaent to the tw characters\n8"

but the warninglllegal octal digit '8' ignored will be throwvn. If "\n8" is what you

want, you can @oid this warning by padding your octal number witk: "\0128"

[8] Several constructs ah@ gecify a character by a numberhat number gies the charactes' position
in the character set encoding (imd@ from 0). This is called synonymously its ordinal, code position,
or code point.Perl works on platforms that Y& a rative excoding currently of either ASCII/Latin1 or
EBCDIC, each of which allw specification of 256 charactersn general, if the number is 255 (0xFF
0377) or belw, Perl interprets this in the platforsvmative encoding. Ifthe number is 256 (0x100,
0400) or abwe, Perl interprets it as a Unicode code point and the result is the corresponding Unicode
character For example\x{50} and\o{120} both are the number 80 in decimal, which is less than
256, so the number is interpreted in theveatharacter set encodingn ASCII the character in the
80th position (indeed from 0) is the letter'P”, and in EBCDIC it is the ampersand symbo&.”.

50 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

\x{100} and\o{400} are both 256 in decimal, so the number is interpreted as a Unicode code
point no matter what the ned encoding is. The name of the character in the 256th position Kedle
by 0) in Unicode i$ ATIN CAPITAL LETTER A WITH MACRON .

There are a couple okeeptions to the albve le. \N{U+ hex nunber} is alays interpreted as a
Unicode code point, so thatN{U+0050} is “P"” even on EBCDIC platforms. And if

use encoding is in effect, the number is considered to be in that encoding, and is translated from
that into the platforns rmative encoding if there is a corresponding maticharacter; otherwise to
Unicode.

NOTE: Unlike C and other languages, Perl has\noescape sequence for the vertical ¥b (vhich is 11
in bothASCIl andEBCDIC), but you may uskk or\x0b . (\v does hae meaning in regulangression
patterns in Perl, see perlre.)

The following escape sequences aw@lable in constructs that interpolate, but not in transliterations.

\l lowercase next character only

\u tittecase (not uppercase!) next character only

\L lowercase all characters till \E or end of string

\U uppercase all characters till \E or end of string

\F foldcase all characters till \E or end of string

\Q quote (disable) pattern metacharacters till \E or
end of string

\E end either case modification or quoted section

(whichever was last seen)
See “quotemetain perlfunc for the exact definition of characters that are quota@ by
\L ,\U,\F, and\Q can stack, in which case you need tador each. For example:

say"This \Qquoting \ubusiness \Uhere isn't quite\E done yet,\E is it?";
This quoting\ Business\ HERE\ ISN\'T\ QUITE\ done\ yet), is it?

If use locale s in effect (but notise locale ":not_characters'), the case map used Wy,
\L ,\u, and\U is taken from the current locale. See perllocafdJnicode (for éample,\N{} or code
points of 0x100 or beyond) is being used, the case map uséd,By , \u, and \U is as defined by
Unicode. Thatmeans that case-mapping a single character can sometimes prodweé cderacters.
Underuse locale ,\F produces the same results\las

All systems use the virtudin" to represent a line terminat@alled a ‘newline”. Thereis no such thing
as an uwarying, physical newline charactelt is only an illusion that the operating system, deviceesi,
C libraries, and Perl all conspire to pregenNotall systems reathr" asASCII CRand"\n" asASCII
LF. For example, on the ancient Macs (pre-MacOS X) of yesterythase used to bewased, and on
systems without line terminatgrinting "\n" might emit no actual data. In general, tis¢ when you
mean a ‘hewline” for your system, but use the liter@SCIl when you need an exact charactéor
example, most networking protocolgpect and prefer @R+LF ("\015\012" or "\cM\cJ") for line
terminators, and although theften accept just\012" , they seldom tolerate just015" . If you getin
the habit of using\n" for networking, you may be burned some day.

For constructs that do interpolate, variables beginning with r " @ are interpolated. Subscripted
variables such a$a[3] or $href->{key}{0] are also interpolated, as are array and hash sligafs.
method calls such &obj—>meth are not.

Interpolating an array or slice interpolates the elements in,oselearated by thealue of$", so &

equivalent to interpolatingjoin $", @array . “Punctuation” arrays such as@* are usually
interpolated only if the name is enclosed in bra@ds} , but the arrays® , @+ and @-are interpolated
even without braces.

For double-quoted strings, the quoting fra@ is applied after interpolation and escapes are processed.
"abc\Qfoo\tbar$s\Exyz"

is equiaent to
"abc" . quotemeta(“foo\tbar$s") . "xyz"

For the pattern of mgex operators qr// , m// and s///), the quoting from\Q is applied after
interpolation is processed, but before escapes are processed. T thBopattern to match literally

perl v5.18.2 2014-01-06 51

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

52

(except for$ and@. For example, the following matches:
\s\t' =7 \Q\s\t/

Becauseb or @trigger interpolation, you'll need to use something NQuser\E\@\Qhost/ to match
them literally.

Paterns are subject to an additionaldeof interpretation as a regulaxgression. Thiss done as a second
pass, after variables are interpolated, so thlatlae expressions may be incorporated into the pattern from
the\ariables. Ifthis is not what you want, u$® to interpolate a variable literally.

Apart from the behavior described &bp Perl does not expand multiplevids of interpolation. In
particular contrary to the xpectations of shell programmers, back-quotesi@ddinterpolate within double
guotes, nor do single quotes impesdwation of variables when used within double quotes.

Regexp Quote-Like Operators

Here are the quote-kkagperators that apply to pattern matching and related activities.

gr/STRING/msixpodual
This operator quotes (and possibly compiles)SITRINGas a regular x@ression. STRINGis
interpolated the same way BATTERN in m/PATTERN/. If *“” is wsed as the delimiteno
interpolation is done.Returns a Perl value which may be used instead of the corresponding
ISTRING/msixpodual expression. The returned value is a normalized version of the original
pattern. It magically differs from a string containing the same charac(e:/x/) returns
“Regexp’; however, dereferencing it is not well defined (you currently get the normalized
version of the original pattern, but this may change).

For example,

$rex = qr/imy.STRING/is;
print $rex; # prints (?si-xm:my.STRING)
s/$rex/fool;

is equvalent to
s/my.STRING/foolis;
The result may be used as a subpattern in a match:

$re = qr/$pattern/;

$string =" /foo${re}bar/; # can be interpolated in other
patterns

$string =" $re; # or u sed standalone

$string =" /$re/; # or t his way

Since Perl may compile the pattern at the momenkefution of theqr() operator using qr()
may hae peed advantages in some situations, notably if the resgif)aé used standalone:

sub match {
my $patterns = shift;
my @compiled = map qgr/$_/i, @$patterns;
grep {
my $success = 0;
foreach my $pat (@compiled) {
$success = 1, last if /$pat/;
}

$success;
} @
}

Precompilation of the pattern into an internal representation at the mongn(t afads a need
to recompile the patterrvery time a matcli$pat/ is attempted. (Perl has maather internal
optimizations, but none would be triggered in thevabemample if we did not usegr() operator.)

Options (specified by the following modifiers) are:

2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Treat string as multiple lines.

Treat string as single line. (Make . match a newline)

D o case-insensitive pattern matching.

Use extended regular expressions.

When matching preserve a copy of the matched string so

that ${"PREMATCH]}, ${"MATCH}, ${"POSTMATCH} will be

defined.

Compile pattern only once.

a ASCll-restrict: Use ASCII for \d, \s, \w; specifying two
a's further restricts /i matching so that no ASCII
character will match a non—-ASCII one.

I U se the locale.

u Use Unicode rules.

d Use Unicode or native charset, as in 5.12 and earlier.

m
s
[
X
p

o

If a precompiled pattern is embedded in a larger pattern thenftéot ef ‘msixpluad’ will be
propagted appropriatelyThe effect the'¢’” modifier has is not propaged, being restricted to
those patterns explicitly using it.

The last four modifiers listed ab® added in Perl 5.14, control the character set semantits, b
/a is the only one you are likely toamt to specify explicitly; the other three are selected
automatically by various pragmas.

See perlre for additional information on valid syntax $3RING, and for a detailed look at the
semantics of regulaxpressions. Imarticular al modifiers except the largely obsolete are
further explained in “Modifiers’in perlre. /o is described in the next section.

m/PAT TERN/msixpodualgc

/PAT TERN/msixpodualgc
Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if it
fails. If no string is specified via th€" or I” operatorthe $_ string is searched. (The string
specified with=" need not be an &lue —itmay be the result of an expressiomeation, hut
remember the™ binds rather tightly Seealso perlre.

Options are as describedqn// aborve; in addition, the following match process modifiers are
awailable:

g Match globally, i.e., find all occurrences.
¢ Do notreset search position on a failed match when /g is
in effect.

If ““/'" is the delimiter then the initiainis optional. With the myou can use anpair of non-
whitespace ASCII) characters as delimiters. This is particularly useful for matching path names
that contain‘/"’, to avoid LTS (leaning toothpick syndrome). If?*’ is the delimiter then a
match-only-once rule applies, describedm®PATTERN%elow. If ‘“”" is the delimitey no
interpolation is performed on theATTERN. When using a character valid in an identjfier
whitespace is required after thre

PATTERN may contain @riables, which will be interpolatedsegy time the pattern search is
evduated, except for when the delimiter is a single quote. (Notetha) , and $| are not
interpolated because thiook like end-of-string tests.)Perl will not recompile the pattern unless
an interpolated variable that it contains changésu can force Perl to skip the test andvere
recompile by adding & (which stands for‘once’) after the trailing delimiter Once upon a
time, Perl would recompile regular expressions unnecessanilythis modifier was useful to tell
it not to do so, in the interests of speed. But,rthe only reasons to use are either:

1. The variables are thousands of characters long and you k&b they don't change, and
you need to wring out the last little bit of speed byimg Perl skip testing for that(There
is a maintenance penalty for doing this, as mentiofingconstitutes a promise that you
won'’t change the variables in the pattern. If you do change them, Petlevem’notice.)

2. you want the pattern to use the initial values of the variablggdiess of whether tlye
change or not. (But there are saner ways of accomplishing this tharaisjng

perl v5.18.2 2014-01-06 53

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

3. If the pattern contains embedded code, such as

use re 'eval’;
$code = 'foo(?{ $x })';
/$code/

then perl will recompile each timeyeam though the pattern string hasohanged, to ensure
that the current value &k is seen each time. Uge if you want to &oid this.

The bottom line is that using is almost neer a good idea.

The empty pattern //
If the PATTERN evduates to the empty string, the lasiccessfullymatched regularx@ression is
used instead. In this case, only thandc flags on the empty pattern are honored; the other flags
are talen from the original pattern. If no match has previously succeeded, this will (silently) act
instead as a genuine empty pattern (which wiliags match).

Note that it5 possible to confuse Perl into thinking (the empty rgex) is really// (the
defined-or operator). Perl is usually pretty good about thissbme pathological cases might
trigger this, such a$a/ll (is that($a) / (//) or$a /| ?) andprint $th //

(print $th(// or print($fh // ?). Inall of these examples, Perl will assume you meant
defined-or If you meant the empty gex, just use parentheses or spaces to disambiguatesor e
prefix the empty regewith anm(so// becomesn//).

Matching in list context
If the /g option is not usedn// in list context returns a list consisting of the syiressions
matched by the parentheses in the pattern, thdtlis$@, $3...) (Notethat herebl etc. are also
set). Whenthere are no parentheses in the pattern, the retlue Vs the lis{1) for success.
With or without parentheses, an empty list is returned upon failure.

Examples:

open(TTY, "+</dev/tty")
|| die "can't access /devi/tty: $!";

<TTY> ="/"yli && foo(); # do f oo if desired
if (/Version: *([0-9.1*)/) { $version = $1; }
next if m# /usr/spool/uucp#;

poor man's grep
$arg = shift;
while (<>) {
print if /$arg/o; # compile only once (no longer needed!)
}

if ($F1, $F2, $Etc) = ($foo =" "(\S+)\s+(\S+)\s*(.*)/))

This last example splitsfoo into the first tvo words and the remainder of the line, and assigns
those three fields #®F1, $F2, and $Etc . The conditional is true if anvariables were assigned;
that is, if the pattern matched.

The/g modifier specifies global pattern matchinghat is, matching as maitimes as possible

within the string. Hw it behaves depends on the conte In list context, it returns a list of the
substrings matched by yarcapturing parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In scalar context, eackxeeution ofm//g finds the next match, returning true if it matches, and
false if there is no further match. The position after the last match can be read or set using the
pos() function; see‘pos” in perlfunc. A failed match normally resets the search position to the
beginning of the string, but you canad that by adding théc modifier (for ekample,m//gc).
Modifying the target string also resets the search position.

54 2014-01-06 perl v5.18.2

PERLOP(1)

\G assertion

PerProgrammers Reference Guide PERLOP(2)

You can intermixm//g matches withmAG.../g , where\G is a zero-width assertion that
matches the exact position where thevignesm//g , if any, left off. Without the/g modifier, the

\G assertion still anchors pbs() as it was at the start of the operation (§s&s” in perlfunc),

but the match is of course only attempted once. Uthgvithout/g on a target string that has
not previously had & match applied to it is the same as using\theassertion to match the
beginning of the string.Note also that, currentyG is only properly supported when anchored at
the very beginning of the pattern.

Examples:

| ist context
($one, $five, $fifteen) = (Cuptime™ =" /(\d+\.\d+)/g);

scalar context
local $/ =",
while ($paragraph = <>) {
while ($paragraph =" Ap{LI}[")]*[.!?]+[")]*\s/g) {
$sentences++;
}

}

say $sentences;

Heres another way to check for sentences in a paragraph:

my $sentence_rx = gr{

(?:(?<=") | (?<=\s)) # after start—of-string or
whitespace
\p{Lu} # capital letter
*? # a bunch of anything
(?<=\S) # t hat ends in non-
whitespace
(?<!'\b [DMS]r) # butisn't a common abbr.
(?<!'\b Mrs)
(?<!'\b Sra)
?<!'\b St)
[.?1] # followed by a sentence
ender
?=$%]|\s) # in f ront of end—of-string
or w hitespace
¥sx;
local $/ =",

while (my $paragraph = <>) {

}

say "NEW PARAGRAPH";
my $count = 0;
while ($paragraph =" /($sentence_rx)/g) {
printf "\tgot sentence %d: <%s>\n", ++$count, $1;
}

Here's how to usem//gc with\G:

perl v5.18.2

2014-01-06 55

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

$_ ="ppoogppqq";
while ($i++ < 2) {

print "1: ™,
print $1 while /(0)/gc; print ™, pos=", pos, "\n";
print "2: ™,
print $1 if AG(qg)/gc; print ™, pos=", pos, "\n";
print "3: ";

print $1 while /(p)/gc; print ™, pos=", pos, "\n";

}
print "Final: '$1', pos=",pos,"\n" if AG(.)/;

The last example should print:

=

:'00', pos=4
2:'q, pos=5
3:'pp’, pos=7
1.", pos=7
2:'q', pos=8

3. ", pos=8
Final: 'q', pos=8

Notice that the final match matchgdnstead ofp, which a match without thes anchor veuld
have dne. Also note that the final match did not updats . pos is only updated on &
match. If the final match did indeed matohit's a god bet that you're running a very old
(pre-5.6.0) version of Perl.

A useful idiom forlex -like sanners ig\G.../gc . You can combine seral regexps like
this to process a string part-by-part, doing different actions depending on wiixh neatched.
Each regexp tries to match where the previous owedeif.

$ =<<EOL,
$url = URI::URL->new("http://example.com/");
die if $url eqg "xXx";

EOL

LOOP: {
print(" digits"), redo LOOP if A\G\d+\b],.;]?\s*/gc;
print(" lowercase"), redo LOOP

if A\G\p{LI}+\b][,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP
if AG\p{Lu}+\b][,.;]?\s*/gc;
print(" Capitalized"), redo LOOP
if A\G\p{LuN\p{LI}+"\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if A\G\pL+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP
if A\G[\p{Alpha}\pN]+\b],.;]?\s*/gc;
print(" line—-noise"), redo LOOP if \G\W+/gc;
print ". That's alll\n";
}

Here is the output (split intoeeral lines):

line—noise lowercase line—noise UPPERCASE line—noise UPPERCASE
line—noise lowercase line—noise lowercase line—noise lowercase
lowercase line—noise lowercase lowercase line—noise lowercase
lowercase line—noise MiXeD line—noise. That's all!

m?RATTERN?msixpodualgc

?RATTERN?msixpodualgc
This is just lile the m/PATTERN/ search, except that it matches only once between calls to the
reset()operator This is a useful optimization when yowamt to see only the first occurrence of
something in each file of a set of files, for instan@mly m?? patterns local to the current
package are reset.

56 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

while (<>) {
if (m?°$?) {
blank line between header and body
}
} ¢ ontinue {
reset if eof; # clear m?? status for next file
}

Another example switched the first “latingncoding it finds to “utf8’in a pod file:
s//utf8/ if m? = =encoding \h+ \K latinl ?x;

The match-once behavior is controlled by the match delimiter l&imgth ary other delimiter
this is the normain// operator.

For historical reasons, the leadingin m?PATTERN?s optional, but the resultingPATTERN?
syntax is deprecated, will warn on usage and might bevehfoom a future stable release of
Perl (without further notice!).

s/ITTERN/REPLACEMENT/msixpodualgcer
Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions madatherwise it returns false (specificaliype empty
string).

If the /r (non-destructie) option is used then it runs the substitution on ayafjthe string and
instead of returning the number of substitutions, it returns the whpther or not a substitution
occurred. Theriginal string is neer changed whetr is used. The cgpwill always be a plain
string, &en if the input is an object or a tied variable.

If no string is specified via the™ or !I” operatoyr the $_ variable is searched and modified.
Unless ther option is used, the string specified must be a scalar variable, an array element, a
hash element, or an assignment to one of those; that is, some sort of scalar Ivalue.

If the delimiter chosen is a single quote, no interpolation is done on eitheATthERN or the
REPLACEMENT. Otherwise, if thePATTERN contains a $ that looks Bka \ariable rather than an
end-of-string test, the variable will be interpolated into the pattern at run-tfngeu want the
pattern compiled only once the first time thaiable is interpolated, use the option. If the
pattern galuates to the empty string, the last successfulsc@ted regular expression is used
instead. Seperlre for further explanation on these.

Options are as with m// with the addition of the following replacement specific options:

e Evaluate the right side as an expression.

ee Evaluate the right side as a string then eval the
result.

r R eturn substitution and leave the original string
untouched.

Any non-whitespace delimiter may replace the slash®dd space after the when using a
character allowed in identifiers. If single quotes are used, no interpretation is done on the
replacement string (thee modifier overrides this, havever). Notethat Perl treats backticks as
normal delimiters; the replacement text is netleated as a command. If tHATTERN is
delimited by bracketing quotes, tlIREPLACEMENT has its @n pair of quotes, which may or

may not be braaiting quotes, for>ample, s(foo)(bar) or s<foo>/bar/ . A /e will

cause the replacement portion to be treated as a full-fledgedxperssion andwaluated right

then and there. It is, n@ver, syntax checked at compile-time. A secamdanodifier will cause

the replacement portion to bgal ed before being run as a Perl expression.

Examples:

s/\bgreen\b/mauve/q; # don't change wintergreen
$path =" s|/usr/bin|/usr/local/bin|;

s/Login: $foo/Login: $bar/; # run—time pattern

perl v5.18.2 2014-01-06 57

PERLOP(1)

58

PerProgrammers Reference Guide

($foo = $bar) =" s/this/that/;

($foo = "$bar") =" s/this/that/;

$foo = $bar =" s/this/that/r;
$foo = $bar =" s/this/that/r
=" s/that/the other/r;

@foo = map { s/this/that/r } @bar

$count = ($paragraph =" s/Mister\b/Mr./g);

$_ ='abcl23xyz’
sh\d+/$&*2/e;

#

sN\d+/sprintf("%5d",$&)/e; #

s/\w/$& x 2/egq;

s/%(.)/$percent{$1}/q;

#

s/%(.)/$percent{$1} || $&/ge;

s/"=(\w+)/pod($1)/ge;

$_ ='abcl23xyz’
$a = s/abc/defr;

#

copy first, then
change

convert to string,
copy, then change

HHHH R

Chained substitutes
using /r

HHHHF

maps

yields ‘abc246xyz'
yields ‘abc 246xyz'

yields 'aabbcc 224466xxyyzz'

change percent escapes; no /e

expr now, so /e
use function call

$a is ' defl23xyz' and
$_ r emains 'abcl123xyz'.

expand variables in $_, but dynamics only, using
symbolic dereferencing

sN$(\w+)/${$1}/g;

Add one to the value of any numbers in the string

s/(\d+)/1 + $1/egq;

Titlecase words in the last 30 characters only
substr($str, —30) =" sAb(\p{Alpha}+)\b/Au\L$1/g;

This will expand any embedded scalar variable
(including lexicals) in $_ : First $1 is interpolated
to t he variable name, and then evaluated

s/(\$\w+)/$1/eeq;

Delete (most) C comments.

$program ="'s {

N* # Match the opening delimiter.
x? # Match a minimal number of characters.
*/ # Match the closing delimiter.
}Ilgsx;
sINs*(*?)\s*$/$1/; # trim whitespace in $_,
expensively
for ($variable) { # t rim whitespace in $variable,
cheap
siM\s+/1;
si\s+$//;
}
sICTY *(C 19/$2 $1/; # r everse 1st two fields
2014-01-06

PERLOP(1)

Same as above using /r

Ir is v ery useful in

get change-cnt

perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Note the use of $ instead of \ in the lasaraple. Unlile sed we wse the \digit> form in only
the left hand side. Anywhere elsesif<digit>.

Occasionallyyou cant use just ag to get all the changes to occur that you mighhtv Here
are two common cases:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?"\d)/$1,$2/g;

expand tabs to 8—column spacing
1 while sAt+/' ' x (length($&)*8 — length($7)%8)/e;

Quote-Like Operators
g/STRING/
"STRING
A single-quoted, literal stringA backslash represents a backslash unlessifetidoy the delimiter or
another backslash, in which case the delimiter or backslash is interpolated.

$foo = g!l said, "You said, 'She said it.""!;
$bar = g('This is it.");

$baz ="\n"; # a t wo—character string
gq/STRING/
“ STRING”

A double-quoted, interpolated string.
$.=qq
(*** The previous line contains the naughty word "$1".\n)
if \b(tcl|java|python)\bf/i; #:-)

$baz = "\n"; # a one—character string
gx/STRING/
‘STRING'

A string which is (possibly) interpolated and theteauted as a system command witim/shor its

equiaent. Shellwildcards, pipes, and redirections will be honored. The collected standard output of

the command is returned; standard error is fentdd. Inscalar contet, it comes back as a single
(potentially multi-line) string, or undef if the commaraliéd. Inlist context, returns a list of lines
(however you've dcefined lines with $/ o6INPUT_RECORD_SEPARATQRr an empty list if the
command failed.

Because backticks do not affect standard euse shell file descriptor syntax (assuming the shell
supports this) if you care to address this.capture a commandSTDERRandSTDOUT together:

$output = ‘cmd 2>&17;

To capture a commandSTDOUT but discard itsSSTDERR:
$output = “‘cmd 2>/dev/null’;

To capture a commandSTDERRbut discard itsSTDOUT (ordering is important here):
$output = ‘cmd 2>&1 1>/dev/null’;

To exchange a commarsl'STDOUT and STDERR in order to capture th€TDERR but leave its
STDOUTto come out the ol8TDERR:

$output = ‘cmd 3>&1 1>&2 2>&3 3>&—;

To read both a commarsl5TDOUT and itsSTDERRseparatelyit's easiest to redirect them separately
to files, and then read from those files when the program is done:

system("program args 1>program.stdout 2>program.stderr");

The STDIN filehandle used by the command is inherited from P8TIBIN. For example:

perl v5.18.2 2014-01-06 59

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

open(SPLAT, "stuff") || die "can't open stuff: $!";
open(STDIN, "<&SPLAT") || die "can't dupe SPLAT: $!";
print STDOUT “sort’;

will print the sorted contents of the file nanfexduf”.

Using single-quote as a delimiter protects the command froms Rilible-quote interpolation,
passing it on to the shell instead:

$perl_info = gx(ps $%); # t hat's Perl's $$
$shell_info = gx'ps $$'; # t hat's the new shell's $$

How that string getswaluated is entirely subject to the command interpreter on your system. On most
platforms, you will hge o protect shell metacharacters if you want them treated literalys is in
practice difficult to do, as #'unclear hav to escape which characters. See perlsec for a clean and safe
example of a manudbrk() andexec()to emulate backticks safely.

On some platforms (notably DOS+ilones), the shell may not be capable of dealing with multiline
commands, so putting newlines in the string may not get you what goti Wou may be able to
evduate multiple commands in a single line by separating them with the command separator character
if your shell supports that (for exampjepn mary Unix shells and& on the WindowaNT cmd shell).

Perl will attempt to flush all files opened for output before starting the child process, but this may not
be supported on some platforms (see perlpdm)be safe, you may need to st (SAUTOFLUSH
in English) or call thewtoflush() method oflO::Handle on ary open handles.

Beware that some command shells may place restrictions on the length of the commandbuine.
must ensure your strings domekceed this limit after annecessary interpolations. See the platform-
specific release notes for more details about your particular environment.

Using this operator can lead to programs that afiewif to port, because the shell commands called

vary between systems, and may in fact not be present at all. Asxanple, thetype command

under thePOSIX shell is very different from thigype command undebOS. That doesrn’mean you

should go out of your way tosa@id backticks when theére the right way to get something dorfeerl

was made to be a glue language, and one of the things it glues together is commands. Just understand
what you're getting yourself into.

See “I/O Operatorsfor more discussion.

gW/STRING/
Evaluates to a list of the words extracted outSORING, using embedded whitespace as trardv
delimiters. ltcan be understood as being roughly eglait to:

split(" ", g/STRING/);

the diferences being that it generates a real list at compile time, and in scalar context it returns the last
element in the list. So this expression:

gw(foo bar baz)

is semantically equélent to the list:

"foo", "bar", "baz"
Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistak is to ty to separate the words with comma or to put comments into a multi-line
gw-string. For this reason, theise warnings pragma and the-w switch (that is, thes™W

variable) produces warnings if tlBTRING contains the “, or the “#” character.

tr/SEARCHLIST/REPLACEMENTLIST/cdsr

y/SEARCHLIST/REPLACEMENTLIST/cdsr
Transliterates all occurrences of the characters found in the search list with the corresponding
character in the replacement ligt.returns the number of characters replaced or deleted. If no string
is specified via the™ or!™ operatorthe$_ string is transliterated.

60 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

If the /r (non-destructie) option is present, a mecopy of the string is made and its characters
transliterated, and this cgjis returned no matter whether ia& modified or not: the original string is
always left unchanged. The wecopy is dways a plain string,\en if the input string is an object or a
tied variable.

Unless ther option is used, the string specified with must be a scalar variable, an array element,
a hash element, or an assignment to one of those; in other words, an Ivalue.

A character range may be specified withyahen, sar/A-J3/0-9/ does the same replacement as
tr/ACEGIBDFHJ/0246813579/ . For seddevotees,y is provided as a synonym fdr . If the
SEARCHLISTIis delimited by bracketing quotes, tREPLACEMENTLIST has its own pair of quotes,
which may or may not be bracketing quotes; fotameple, tr[aeiouy][yuoiea] or
tr(+\=*/)/ABCD/

Note thattr doesnot do regular expression character classes sudd agr \pL . Thetr operator is

not equvalent to thetr (1) utility. If you want to map strings betweenvkr/upper cases, se&™ in
perlfunc and ‘tuc” in perlfunc, and in general consider using theoperator if you need gelar
expressions. Th&U,\u, \L , and\l string-interpolation escapes on the right side of a substitution
operator will perform correct case-mappingat tija-z][A-Z] will not (except sometimes on
legacy 7-bit data).

Note also that the whole range idea is rather unportable between charactearstaren within
character sets thianay cause results you probably didexpect. Asound principle is to use only
ranges that begin from and end at either alphabets of equal case (a—e, A-E), or digitAriQting
else is unsafe. If in doubt, spell out the character sets in full.

Options:
¢ Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.
r R eturn the modified string and leave the original string

untouched.

If the /c modifier is specified, thBEARCHLIST character set is complemented. If tHe modifier is
specified, ay characters specified bB$EARCHLIST not found inREPLACEMENTLIST are deleted.
(Note that this is slightly more ftéble than the behavior of sontie programs, which delete wthing

they find in theSEARCHLIST, period.) If the/s maodifier is specified, sequences of characters that
were transliterated to the same character are squashed down to a single instance of the character.

If the /d modifier is used, th(REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the(REPLACEMENTLISTis shorter than th6EARCHLIST,the final character is replicated
till it is long enough. If the REPLACEMENTLISTis empty the SEARCHLISTIs replicated. This latter
is useful for counting characters in a class or for squashing character sequences in a class.

Examples:

$ARGV[1] =" tr/A-Z/a-z/, # canonicalize to lower case ASCII
$cnt = tr/*/*/; # countthe starsin$_
$cnt = $sky =" tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_
trla—zA-2Ils; # bookkeeper —> bokeper
($HOST = $host) =" tr/la-z/A-ZJ;

$HOST = $host =" trla—z/A-ZIr; # same thing
$HOST = $host =" trla-z/A-ZIr # chained with s///r

="sl:l —plr;

trla-zA-2/ Ics; # change non-alphas to single space

perl v5.18.2 2014-01-06 61

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

@stripped = map tr/a-zA-Z/ /csr, @original,

Ir w ith map
tr \200-\377]
[\000-\177]; # wickedly delete 8th bit
If multiple transliterations are \ggn for a characteonly the first one is used:

tr/AAA/XYZ/
will transliterate ap A to X.

Because the transliteration table isilb at compile time, neither theéSEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolatidinat means that if you want to use
variables, you must use awval():

eval "tr/$oldlist/$newlist/";
die $@ if $@;

eval "tr/$oldlist/$Snewlist/, 1" or die $@;

<<EOF
A line-oriented form of quoting is based on the shiedire-document’'syntax. Fllowing a<< you
specify a string to terminate the quoted material, and all linesviolipthe current line down to the
terminating string are the value of the item.

The terminating string may be either an identifier @d), or some quoted & An unquoted
identifier works lilke double quotes. There may not be a space betweer<thend the identifier
unless the identifier is explicitly quoted. (If you put a space it will be treated as a null identifadr

is valid, and matches the first empty lindhe terminating string must appear by itself (unquoted and
with no surrounding whitespace) on the terminating line.

If the terminating string is quoted, the type of quotes used determine the treatment of the text.

Double Quotes
Double quotes indicate that the text will be interpolated ustagtly the same rules as normal
double quoted strings.

print <<EOF,;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

Single Quotes
Single quotes indicate the text is to be treated literally with no interpolation of its content. This is
similar to single quoted strings except that backslashes fmaspecial meaning, with\ being
treated as tavbackslashes and not one asythwuld in every other quoting construct.

Just as in the shell, a backslashed Wwaré following the<< means the same thing as a single-
quoted string does:

$cost = <<'VISTA"; # hastala...
That'll be $10 please, ma'am.
VISTA

$cost = <<\VISTA; # Same thing!
That'll be $10 please, ma'am.
VISTA

This is the only form of quoting in perl where there is no need to worry about escaping content,
something that code generators can and dergatd use of.

62 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Backticks
The content of the here doc is treated just as it would be if the string were embedded in backticks.
Thus the content is interpolated as though it were double quoted andéhetee via the shell,
with the results of thexecution returned.

print << "EOC’; # execute command and get results
echo hi there
EOC

It is possible to stack multiple here-docs in a row:

print <<"foo", <<"bar"; # you can stack them
| s aid foo.
foo
| s aid bar.
bar

myfunc(<< "THIS", 23, <<'THAT");
Here's a line
or two.
THIS
and here's another.
THAT

Just dort forget that you hae t put a semicolon on the end to finish the statement, as Perl doesn
know you're not going to try to do this:

print <<ABC
179231
ABC

+ 20;

If you want to remwee the line terminator from your here-docs, asemp() .

chomp($string = <<'END");
This is a string.
END

If you want your here-docs to be indented with the rest of the code, you'll need teerd@ading
whitespace from each line manually:

($Squote = <<'FINIS") =" s/"\s+//gm;
The Road goes ever on and on,
down from the door where it began.
FINIS

If you use a here-doc within a delimited construct, such a8/eg , the quoted material must still
come on the line following the<FOOmarker which means it may be inside the delimited construct:

s/this/<<E . 'that'
the other
E

more '/eg;
It works this way as of Perl 5.18. Historicallywas inconsistent, and you wouldvieao write

s/this/<<E . 'that'
' more 'leg;

the other

E

outside of string\als.

Additionally, quoting rules for the end-of-string identifier are unrelated to $qubting rules.q() ,
qq() , and the like ae not supported in place df and™ , and the only interpolation is for
backslashing the quoting character:

perl v5.18.2 2014-01-06 63

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

64

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must be a
string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs

When presented with something that mighvehaveal different interpretations, Perl uses the&/IM
(that's “Do What | Mean”) principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect thealambe of what thgwrite. Butfrom time

to time, Perk rotions differ substantially from what the author honestly meant.

This section hopes to clarify WwoPerl handles quoted constructdlthough the most common reason to
learn this is to unsal labyrinthine regular expressions, because the initial steps of parsing are the same for
all quoting operators, tlyeare all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted construct,
Perl first finds the end of that construct, then interprets its contents. If you understand this rule, you may
skip the rest of this section on the first reading. The other rules ailg tik contradict the user’
expectations much less frequently than this first one.

Some passes discussed helare performed concurrenthput because their results are the same, we
consider them indidually. For different quoting constructs, Perl performsfatint numbers of passes,
from one to fourbut these passes arevays performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct, where the information about the delimiters is
used in parsing. During this searchsttbetween the starting and ending delimiters is copied to a safe
location. The text copied gets delimiter-independent.

If the construct is a here-doc, the ending delimiter is a line that has a terminating string as the content.
Therefore<<EOFis terminated byeOFimmediately followed by\n" and starting from the first
column of the terminating lineWhen searching for the terminating line of a here-doc, nothing is
skipped. In other words, lines after the here-doc syntax are compared with the terminating string line
by line.

For the constructs except here-docs, single characters are used as starting and ending delimiters. If the
starting delimiter is an opening punctuation (that(js[, {, or <), the ending delimiter is the
corresponding closing punctuation (that)is], }, or >). If the starting delimiter is an unpaired
character lik / or a closing punctuation, the ending delimiter is same as the starting delimiter
Therefore d terminates &q// construct, while & terminatesyq[] andqq]] constructs.

When searching for single-character delimiters, escaped delimiteks aane skipped.For example,

while searching for terminating, combinations o\ andV are skipped. If the delimiters are
bracleting, nested pairs are also skipp&ar example, while searching for closifgpaired with the
opening[, combinations of\ ,\] , and\[are all skipped, and nestgédand] are skipped as well.
However, when backslashes are used as the delimiters dtif andt\\\), nothing is skipped.
During the search for the end, backslashes that escape delimiters or other backslasheveate remo
(exactly speaking, tlyeare not copied to the safe location).

For constructs with three-part delimiters/{ , y/// , and tr///), the search is repeated once
more. Ifthe first delimiter is not an opening punctuation, three delimiters must be same slith as
andtr))) , in which case the second delimiter terminates the left part and starts the right part at once.
If the left part is delimited by bracketing punctuation (tha) is[] , {} , or <>), the right part needs
another pair of delimiters suchs§{} andtr[]/ . In these cases, whitespace and comments are
allowed between both parts, though the comment mustwicdib least one whitespace character;
otherwise a character expected as the start of the comment maghedeas the starting delimiter of

the right part.

During this search no attention is paid to the semantics of the construct. Thus:
"$hash{"$foo/$bar"}"

or:

2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

m/
bar # NOT a comment, this slash / terminated m//!
I

do not form |lgd quoted epressions. Theguoted part ends on the fifstand/ , and the rest happens
to be a syntax errorBecause the slash that terminatetd was followed by aSPACE the exkample
above is ot m//x , but ratherm// with no/x modifier So the embedded is interpreted as a literal
#.

Also no attention is paid t@\ (multichar control char syntax) during this search. Thus the séacond
in qg/\cV is interpreted as a part &f , and the follaving / is not recognized as a delimiter
Instead, us&034 or\x1c atthe end of quoted constructs.

Interpolation
The next step is interpolation in the text obtained, which 8 delimiterindependent. Therare
multiple cases.

<<'EOF'
No interpolation is performed. Note that the combination is left intact, since escaped
delimiters are notvailable for here-docs.

m" , the pattern o§
No interpolation is performed at this staginy backslashed sequences includihgare treated

at the stage to “parsing regular expressions”.

R I/ (o Y , the replacement "
The only interpolation is remval of \ from pairs of\\ . Therefore- in tr andy
treated literally as ayiphen and no character rangevsilable. \1 in the replacement "
does not work a$1.

telll Lyl
No variable interpolation occurs. String modifying combinations for case and quoting such as
\Q, \U, and \E are not recognized. The other escape sequences si2hltasand\t and
backslashed characters such\asand\- are comerted to appropriate literalsThe character
is treated specially and therefare is treated as a literal.

e, qall L, gxdl o <file*glob> , <<"EOF”
\Q, \U, \u, \L, \I ,\F (possibly paired with\E) are cowerted to corresponding Perl
constructs. Thus,$foo\Qbaz$bar" is corverted to $foo . (quotemeta("baz" .
$bar)) internally The other escape sequences such\280 and \t and backslashed
characters such & and\- are replaced with appropriate expansions.

is

Let it be stressed thathaterer falls between Q and \ E is interpolated in the usual ay.
Something lile \QW\E" has no\E inside. Insteadit has\Q, \\ , and E, so he result is the

same as for\\\E" . As a eneral rule, backslashes betweéh and \E may lead to
counterintuitve results. So,"\Q\t\E" is corverted to quotemeta("\t") , Which is the
same as\\t" (sinceTAB is not alphanumeric). Note also that:

$str =\t

return "\Q$str";
may be closer to the conjectunadentionof the writer of \Q\t\\E"

Interpolated scalars and arrays areveted internally to thgoin and. catenation operations.
Thus,"$foo XXX '‘@arr" becomes:

$foo . " XXX ™. (join $", @arr) . ",
All operations abee ae performed simultaneouslgft to right.

Because the result 8Q STRING \E" has all metacharacters quoted, there is no way to insert
a literal $ or @inside a\Q\E pair. If protected by, $ will be quoted to becam@&\$" ; if
not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs toerakbcision on where the interpolated scalar
ends. Br instance, whethéa $b —> {c}" really means:

perl v5.18.2 2014-01-06 65

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

"a".$b." —>{c}"
or:
"a".$b—>{c}

Most of the time, the longest possible text that does not include spaces between components and
which contains matching braces or breisk becausthe outcome may be determined lnting

based on heuristic estimators, the result is not strictly predictBbtunately it's usually correct

for ambiguous cases.

the replacement aff//
Processing ofQ,\U,\u ,\L ,\I ,\F and interpolation happens as wifty/ constructs.

Itis at this step thall is begrudgingly coverted to$1 in the replacement text ef// , in order
to correct the incorrigibleedhaclers who heen’t picked up the saner idiom yef warning is
emitted if theuse warnings pragma or the-w command-line flag (that is, tf#&W variable)
was =t.

REin ?RE?, /RE/ , m/RE/, s/[RE/foo/
Processing ofQ, \U, \u,\L ,\I ,\F,\E, and interpolation happens (almost) as wddy/
constructs.

Processing ofN{...} is also done here, and compiled into an intermediate form for gles re
compiler (This is because, as mentioned bglthe regex compilation may be done axeeution
time, andN{...} is a compile-time construct.)

However any ather combinations of followed by a character are not substituted but only
skipped, in order to parse them as regular expressions at the followingAstep. is skipped at
this step@of \c@ in RE is possibly treated as an array symbol (fareple@foo), even though

the same text ing// gives interpolation ofic@.

Code blocks such g8{BLOCK}) are handled by temporarily passing control back to the perl
parsey in a dgmilar way that an interpolated array subscript expression such as
"foo$array[1+f("[xyz")]bar" would be.

Moreover, inside (?{BLOCK}) , (?# comment) , and a#-comment in a//x -regular
expression, no processing is performed whataoeThis is the first step at which the presence of
the//x maodifier is relgant.

Interpolation in patterns hasveeal quirks:$| , $(, $) , @+and @-are not interpolated, and
constructsbvar[SOMETHING] are voted (by seral different estimators) to be either an array
element or$var followed by anRE alternatve. This is where the notatio®{arr[$bar]}

comes handyf${arr[0-9]}/ is interpreted as array elemerfi, not as a regularngression
from the \ariable $arr followed by a digit, which wuld be the interpretation of
/$arr[0-9]/ . Since voting among diérent estimators may occuthe result is not
predictable.

The lack of processing ok creates specific restrictions on the post-processdd té the
delimiter is/ , one cannot get the combinatidéh into the result of this step. will finish the
regular pressionV/ will be stripped to/ on the previous step, and will be left as is.
Because/ is equvaent toV/ inside a regular expression, this does not matter unless the
delimiter happens to be character special toRla@ngine, such as istfoo*bar* , m[foo] ,

or ?foo? ; or an dphanumeric chaas h:

m m " a \s*b mmx;

In the RE abore, which is intentionally obfuscated for illustration, the delimitemishe modifier

is mx, and after delimiteremoval the RE is the same as fan/ ™ a \s* b /mx . There's
more than one reason yoel'encouraged to restrict your delimiters to non-alphanumeric, non-
whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

parsing regular expressions
Previous steps were performed during the compilation of Perl code, but this one happens at run time,
although it may be optimized to be calculated at compile time if appropudter preprocessing

66 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

described abg@, and possibly after w@luation if concatenation, joining, casing translation, or
metaquoting are uolved, the resultingtring is passed to thRE engine for compilation.

Whatever happens in th&®E engine might be better discussed in perlre, but for the siéontinuity,
we shall do so here.

This is another step where the presence ofifthe modifier is relgant. TheRE engine scans the
string from left to right and ceerts it to a finite automaton.

Backslashed characters are either replaced with corresponding literal strings {&s)wathelse thg
generate special nodes in the finite automaton (as\with Characterspecial to the&RE engine (such
as|) generate corresponding nodes or groups of no(#®s..) comments are ignored. All the
rest is either corerted to literal strings to match, or else is ignored (as is whitespacé-atyle
comments if/x is present).

Pasing of the bracketed character class constfugt, , is rather different than the rule used for the

rest of the pattern. The terminator of this construct is found using the same rules as for finding the
terminator of &} —delimited construct, the only exception being thammediately follaving [is

treated as though preceded by a backslash.

The terminator of runtimé?{...}) is found by temporarily switching control to the perl parser
which should stop at the point where the logically balancing terminatisdgound.

It is possible to inspect both the stringagi to RE engine and the resulting finite automaton. See the
argumentslebug /debugcolor in theuse re pragma, as well as Pext-Dr command-line switch
documented in “Command Switchéisi perlrun.

Optimization of regular expressions
This step is listed for completeness on§ince it does not change semantics, details of this step are
not documented and are subject to change without nofibés step is performedver the finite
automaton that was generated during the previous pass.

It is at this stage thafplit() silently optimized™/ to mean/m .

I/O Operators
There are s@ral I/0O operators you should kwabout.

A string enclosed by backticks (g& acents) first undergoes double-quote interpolation. It is then
interpreted as an external command, and the output of that commandatuthefithe backtick string, kk

in a shell. In scalar context, a single string consisting of all output is retutndist context, a list of
values is returned, one per line of outp(i¥ou can se$/ to use a different line terminatprThecommand

is executed each time the pseudo-literal Vsleated. Thestatus alue of the command is returned$f

(see perlvar for the interpretation &?). Unlike in csh no translation is done on the return
data— na/lines remain ne@lines. Unlike in any of the shells, single quotes do not hide variable names in
the command from interpretatiofo pass a literal dollar-sign through to the shell you need to hide it with
a backslash. Thegeneralized form of backticks igx// . (Because backticks wys undergo shell
expansion as well, see perlsec for security concerns.)

In scalar context,valuating a filehandle in angle brackets yields thet tine from that file (the newline, if
ary, included), oundef at end-of-file or on errorwWhen$/ is set toundef (sometimes known as file-
slurp mode) and the file is empilyreturns” the first time, followed byndef subsequently.

Ordinarily you must assign the returned value t@dable, but there is one situation where an automatic
assignment happens. If and only if the input symbol is the only thing inside the conditionahidé a
statement een if disguised as #or(;;) loop), the alue is automatically assigned to the glotmiable

$_, destrgying whateer was there prgously. (This may seem li& an ald thing to you, but you'll use the
construct in almostvery Perl script you write.)The$_ variable is not implicitly localized.You'll have ©

put alocal $_; before the loop if you want that to happen.

The following lines are equélent:

perl v5.18.2 2014-01-06 67

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

68

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }

while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);

print while <STDIN>;

This also behaes smilarly, but assigns to a lexical variable instead dbto
while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automadilicivy is then tested to
see whether it is defined. The defined testds problems where the line has a strimdue that would be
treated as false by Perl; for example ‘aof‘a "0" with no trailing nevline. If you really mean for such
values to terminate the loop, thehould be tested for explicitly:

while (($_=<STDIN>) ne '0) { ... }
while (<STDIN>) {lastunless $_; ... }

In other boolean comntés, <FILEHANDLE> without an eplicit defined test or comparison elicits a
warning if theuse warnings pragma or thew command-line switch (th& W variable) is in effect.

The filehandlesSTDIN, STDOUT and STDERR are predefined. (The filehandle&din , stdout , and
stderr will also work except in packages, whereytheould be interpreted as local identifiers rather than
global.) Additionalfilehandles may be created with theen()function, amongst others. See perlopentut
and “open’ in perlfunc for details on this.

If a <FILEHANDLE> is used in a contd that is looking for a list, a list comprising all input lines is
returned, one line per list element.sléasy to grav to a rather large data space this way se with care.

<FILEHANDLE> may also be spellegtadline(*FILEHANDLE) . See “readline’in perlfunc.

The null filehandle <> is special: it can be used to emulate the behageuaridawk, and ary other Unix
filter program that tads a list of filenames, doing the same to each line of input from all of thgat
from <> comes either from standard input, or from each file listed on the commandiéres how it
works: the first time <> isw@luated, the@ARG¥rray is cheokd, and if it is empty$ARGV[0] is set to
“=""which when opened gés you standard input.The @ARG\rray is then processed as a list of
filenames. Théoop

while (<>) {

}

is equiaent to the following Perl-lik pseudo code:

unshift@ARGV, '-") unless @ARGV;
while (ARGV = shift) {

open(ARGV, $ARGV);

while (<ARGV>) {

}

code for each line

code for each line

}

except that it isrt so axmbersome to sagnd will actually work. It really does shift th@ARG¥rray and
put the current filename into tiBARGVvariable. It also uses filehandlaRGVinternally <> is just a
synorym for <ARGV>, which is magical. (The pseudo code abdobesnt work because it treatsARGV>

as non-magical.)

Since the null filehandle uses theotergument form of “open” in perlfunc it interprets special characters,
so if you hae a sript like this:

while (<>) {
print;
}
and call it withperl dangerous.pl 'rm —rfv *|' , it actually opens a pipexecutes therm

command and reads’s output from that pipe. If you want all items @ARGY6 be interpreted as file

2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

names, you can use the modaRGV::readonly = from CPAN.

You can modify@ARGYefore the first <> as long as the array ends up containing the list of filenames you
really want. Linenumbers$.) continue as though the input were one big djlp. Seethe example in
“ eof” in perlfunc for hav to reset line numbers on each file.

If you want to se@ ARGY6 your own list of files, go right ahead. This s@#&RGY0 all plain text files if
no @ARGWas gven:

@ARGYV = grep { —f && —T } glob(*") unless @ARGYV;,

You can even st them to pipe commands$:or example, this automatically filters compresseguanents
throughgzip:

@ARGV =map {\.(9z|2)$/ ? "gzip -dc < $_|": $_} @ARGV;
If you want to pass switches into your script, you can use one of the Getopts modules or put a loop on the

front like this:
while ($_ = $ARGVI0], I"-/) {
shift;
last if '——$/;
if ("-D(.*)/) { $debug =$1}
if (/"=Vv/) { $ verbose++ }
.. # other switches
}
while (<>) {
.. # code for each line
}

The <> symbol will returrundef for end-of-file only once. If you call it again after this, it will assume
you are processing anoth@ARGYst, and if you haen’t set @ ARGWvill read input fromSTDIN.

If what the angle bra@ts contain is a simple scalar variable (for example, <$foo>), then ahable
contains the name of the filehandle to input from, or its typeglob, or a reference to thé-eaerample:

$fh = *STDIN;
$line = <$th>;

If what's within the angle brackets is neither a filehandle nor a simple scalar variable containing a
filehandle name, typeglob, or tygieb reference, it is interpreted as a filename pattern to be globbed, and
either a list of filenames or the next filename in the list is returned, depending oxt.cdihie distinction

is determined on syntactic grounds aloidat means$x> is aways areadline()from an indirect handle,

but <$hash{key}> is always aglob(). That's because$x is a simple scalar variableuthash{key}

is not—it's a hash element.Even <$x > (note the extra space) is treated ghsb("$x ") , hot
readline($x)

One level of double-quote interpretation is done first, but you tsay <$foo> because that'an ndirect
filehandle as explained in the previous paragraph. (In olelsions of Perl, programmers would insert
curly brackets to force interpretation as a filename gi6ffoo}> . These days, & cnsidered cleaner to
call the internal function directly agob($foo) , which is probably the right way to V& cbne it in the
first place.) For example:

while (<*.c>) {
chmod 0644, $_;
}

is roughly equialent to:
open(FOO, "echo *.c | tr —s "\t\r\f' \012\\012\\012\\012'|");
while (<FOO0>) {
chomp;
chmod 0644, $_;

}

except that the globbing is actually done internally using the stailardslob extension. Ofcourse,
the shortest way to do the afeas:

perl v5.18.2 2014-01-06 69

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is startingvdise All values must be read
before it will start @er. In list context, this ist'important because you automatically get them athay.
However, in scalar contgt the operator returns the next value each tirsecdtled, orundef when the list

has run out. As with filehandle reads, an autorrdgfmed is generated when the glob occurs in the test
part of awhile , because Igd glob returns (for example, a file call® would otherwise terminate the
loop. Again,undef is returned only once. So if you're expecting a single value from a glob, it is much
better to say

($file) = <blurch*>;
than
$file = <blurch*>;
because the latter will alternate between returning a filename and returning false.

If you're trying to do variable interpolation, st'definitely better to use thglob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);
Constant Folding
Like C, Ferl does a certain amount of expressieauation at compile time whewer it determines that all
arguments to an operator are static aneeh@ sde efects. Inparticular string concatenation happens at

compile time between literals that dodo variable substitution. Backslash interpolation also happens at
compile time. You can say

'Now is the time for all'
. n \nll
' good men to come to.'
and this all reduces to one string internallyjkewise, if you say

foreach $file (@filenames) {
if (—s $file >5 + 100 * 2**16) { }
}

the compiler precomputes the number which that expression represents so that the interptdtaveton’
No-ops
Perl doesnt’officially have a -op operatqrbut the bare constanfsandl are special-cased not to produce
awarning in void context, so you can for example safely do
1 while foo();

Bitwise String Operators
Bitstrings of ag size may be manipulated by the bitwise operators & ~).

If the operands to a binary bitwise op are strings of different Jizes]” ops act as though the shorter
operand had additional zero bits on the right, while &hep acts as though the longer operand were
truncated to the length of the short&he granularity for such extension or truncation is one or more bytes.

ASCIll-based examples

print"jp\n"~"ah"; # prints "JAPH\n"
print "JA" | " ph\n"; # prints "japh\n"
print "japh\nJunk" & ' _ N # prints "JAPH\n";
print 'p N$' ™ " E<H\n"; # prints "Perl\n®;

If you are intending to manipulate bitstrings, be certain thatrg@upplying bitstrings: If an operand is a
number that will imply anumeric bitwise operation.You may explicitly shev which type of operation
you intend by usin§' or 0+, as in he examples bela

$foo = 150 | 105; # yields 255 (0x96 | 0x69 is OxFF)
$foo = '150" | 105; # yields 255

$foo = 150 | '105% # yields 255

$foo = '150' | '105"; # yields string '155' (under ASCII)

70 2014-01-06 perl v5.18.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

$baz = 0+$foo & O+$bar; # both ops explicitly numeric
$biz = "$foo" " "$bar"; # both ops explicitly stringy

See “vec’ in perlfunc for information on he to manipulate individual bits in a bit vector.

Integer Arithmetic
By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying

use integer;

you may tell the compiler to use integer operations (see integer for a detailed explanation) from here to the
end of the enclosinBLOCK. An innerBLOCK may countermand this by saying

no integer;

which lasts until the end of thBLOCK. Note that this doeshimean eerything is an intger, merely that
Perl will use integer operations for arithmetic, comparison, and bitwise operatorexample, &en under
use integer ,ifyou tale thesqrt(2) , you'll still get 1.4142135623731 or so.

Used on numbers, the bitwise operatoi&'’ (; *‘|"’, *"’, *7’, *'<<”’, and “>>"") always produce intgral
results. (Butsee also “Bitwise String Operatory’ However, use integer still has meaning for them.
By default, their results are interpreted as unsignedense but ifuse integer is in effect, their results
are interpreted as signed igégs. Br example,”0 usually eauates to a large integrable. Havever,
use integer; "0 is —1 on two’s-complement machines.

Floating-point Arithmetic
While use integer provides intgeronly arithmetic, there is no analogous mechanism twigeo
automatic rounding or truncation to a certain number of decimal pl&oesounding to a certain number
of digits, sprintf() or printf() is usually the easiest route. See perlfag4.

Floating-point numbers are only approximations to what a mathematioiald wall real numbersThere
are infinitely more reals than floats, so some corners must bE@wgxample:

printf "%.20g\n", 123456789123456789;
produces 123456789123456784

Testing for exact floating-point equality or inequality is not a good idéeres a felatively expensve)
work-around to compare whetherdviloating-point numbers are equal to a particular number of decimal
places. Se&nuth, volumell, for a more robust treatment of this topic.

sub fp_equal {
my ($X, $Y, $SPOINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

ThePoOsSIXmodule (part of the standard perl distition) implementgeil(), floor(), and other mathematical
and trigonometric functions. The Math::Complmodule (part of the standard perl distribution) defines
mathematical functions thatosk on both the reals and the imaginary numbédath::Compl& not as
efficient asPOSIX, but POSIX cant work with comple& numbers.

Rounding in financial applications canvlagerious implications, and the rounding method used should be
specified preciselyln these cases, it probably pays not to trust wivehs/stem rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers
The standardMath::Bigint , Math::BigRat , and Math::BigFloat modules, along with the
bignum , bigint , andbigrat pragmas, provide variable-precision arithmetic avatloaded operators,
although thg're currently pretty slo. At the cost of some space and considerable spegdatbig the
normal pitfalls associated with limited-precision representations.

perl v5.18.2 2014-01-06 71

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

use 5.010;

use bigint; # easy interface to Math::Bigint
$x =123456789123456789;

say $x * $x;

+15241578780673678515622620750190521
Or with rationals:

use 5.010;

use bigrat;

$a = 3/22;

$b = 4/6;

say "a/bis ", $a/$b;

say "a*bis ", $a*$b;
a/bis 9/44
a*bis 1/11

Several modules let you calculate with (bound only by memory@ridtime) unlimited or fixed precision.
There are also some non-standard modules that provide faster implementations via external C libraries.

Here is a short, but incomplete summary:

Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations

Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::Cephes uses the external Cephes C library (no

big numbers)
Math::Cephes::Fraction fractions via the Cephes library

Math::GMP another one using an external C library
Math::GMPz an alternative interface to libgmp's big ints
Math::GMPq an interface to libgmp's fraction numbers
Math::GMPf an interface to libgmp's floating point numbers

Choose wisely.

72 2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

NAME

perlsub — Perl subroutines
SYNOPSIS

To declare subroutines:

A "forward" declaration.
ditto, but with prototypes
with attributes
with attributes and prototypes

sub NAME;

sub NAME(PROTO);

sub NAME : ATTRS;

sub NAME(PROTO) : ATTRS;

HHHHF

A declaration and a definition.
sub NAME(PROTO) BLOCK ditto, but with prototypes
sub NAME : ATTRS BLOCK with attributes

sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

To define an anonymous subroutine at runtime:

sub NAME BLOCK

H H

$subref = sub BLOCK; # no proto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub : ATTRS BLOCK; # with attributes

$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);
To call subroutines:

NAME(LIST); # & is o ptional with parentheses.

NAME LIST; # Parentheses optional if predeclared/imported.

&NAME(LIST); # Circumvent prototypes.

&NAME; # Makes current @_ visible to called subroutine.
DESCRIPTION

Like mary languages, Perl provides for usiefined subroutines. These may be located anywhere in the
main program, loaded in from other files via thee require , or use keywords, or generated on the fly
usingeval or anonymous subroutine¥ou can e&en call a function indirectly using a variable containing
its name or &£ODE reference.

The Perl model for function call and returalues is simple: all functions are passed as parameters one
single flat list of scalars, and all functionselitise return to their caller one single flat list of scalakay
arrays or hashes in these call and return lists will collapse, losing their identhigs/ou may alays use
pass-by-reference instead teoi this. Both call and return lists may contain as ynanas ew <alar
elements as yod'like. (Oftena function without an explicit return statement is called a subroutirte, b
theres really no difference from Peslperspectie.)

Any arguments passed in sliaip in the array@ . Therefore, if you called a function with énarguments,

those would be stored # [0] and$_[1] . The array@_is a local arraybut its elements are aliases for

the actual scalar parameters. In particufaan dement$_[0] is updated, the corresponding argument is
updated (or an error occurs if it is not updatable). If an argument is an array or hash element which did not
exist when the function was called, that element is created only when (and if) it is modified or a reference
to it is talen. (Someearlier versions of Perl created the element whether or not the element was assigned
to.) Assigningo the whole arraf@®_removes that aliasing, and does not updatg amguments.

A return statement may be used to exit a subroutine, optionally specifying the returned value, which will
be evaluated in the appropriate context (list, scateinvoid) depending on the context of the subroutine call.

If you specify no returnalue, the subroutine returns an empty list in list context, the undefined value in
scalar context, or nothing in void coxite If you return one or more aggetes (arrays and hashes), these
will be flattened together into one large indistinguishable list.

If noreturn is found and if the last statement is apression, its value is returned. If the last statement
is a loop control structure kkaforeach or awhile , the returned value is unspecified. The empty sub
returns the empty list.

Perl does not h&@ ramed formal parameters. In practice all you do is assignny(a list of these.
Variables that areth’declared to be prate are global &riables. Br gory details on creating pete

perl v5.18.2 2014-01-06 73

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

variables, see‘Private Variables viamy()' and “Temporary Values vidocal()”. To create protected
ervironments for a set of functions in a separate package (and probably a separate fiRgclsages'in
perimod.

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {
$max = $foo if $max < $foo;
}

return $max;

}
$bestday = max($mon,$tue, $wed,$thu, $fri);

Example:

get aline, combining continuation lines
t hat start with whitespace

sub get_line {
$thisline = $lookahead,; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {
if ($lookahead =" /" \t}/) {
$thisline .= $lookahead,;

}
else {
last LINE;
}
return $thisline;

}
$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {
}

Assigning to a list of pviate variables to name your arguments:

sub maybeset {

my($key, $value) = @_;

$Foo{$key} = $value unless $Foo{$key};
}

Because the assignment copies the values, this also hagethe&furning call-by-reference into call-by-
vaue. Otherwise function is free to do in-place modifications@f and change its caller\alues.

upcase_in($vl, $v2); # t his changes $v1 and $v2
sub upcase_in {

for (@) {tr/la—z/A-2/}
}

You aren't allowed to modify constants in thisay of course. Ifan argument were actually literal and you
tried to change it, yod'take a presumably fatal)»@eption. ©r example, this wohwork:

upcase_in("frederick");

It would be much safer if thepcase in() function were written to return a cppf its parameters
instead of changing them in place:

74 2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

($v3, $v4) = upcase($vl, $v2); # t his doesn't change $v1 and $v2
sub upcase {
return unless defined wantarray; # void context, do nothing
my @parms = @_;

for (@parms) { tr/la-z/A-2Z/ }
return wantarray ? @parms : $parms|0];

}

Notice hav this (unprototyped) function doesicare whether it was passed real scalars or arrays. Perl sees
all arguments as one big, long, flat parameter lig®in This is one area where PerBmple agument-
passing style shinesThe upcase() function would work perfectly well without changing the
upcase() definition even if we fed it things lile this:

upcase(@listl, @list2);
upcase(split /:/, $var);

@newlist
@newlist

Do not, howeer, be ttmpted to do this:
(@a, @b) = upcase(@listl, @list2);

Like the flattened incoming parameter list, the return list is also flattened on r&arall you hee
managed to do here is storedergthing in @aand made@bempty See ‘Pass by Referencefor
alternatves.

A subroutine may be called using axp#cit & prefix. The& is optional in modern Perl, as are parentheses
if the subroutine has been predeclarddhe & is not optional when just naming the subroutine, such as
when it's uised as an argument defined()or undef() Nor is it optional when you want to do an indirect
subroutine call with a subroutine name or reference using&ssubref() or &{$subref}()
constructs, although ti#subref->() notation solves that problem. See perlref for more about all that.

Subroutines may be called recughy. If a subroutine is called using th& form, the argument list is
optional, and if omitted, n@ _array is set up for the subroutine: tiae array at the time of the call is
visible to subroutine instead. This is an efficienechanism that meusers may wish tovaid.

&foo(1,2,3); # pass three arguments

foo(1,2,3); # the same

foo(); # pass a null list

&foo(); # the same

&foo; # foo() get current args, like foo(@_) !

foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the& form male the argument list optional, it also disabley gmototype checking on
arguments you do prade. Thisis partly for historical reasons, and partly for having aveoient way to
cheat if you kner what you're doing. See “Prototypégelow.

Since Perl 5.16.0, the_ SUB__ token is &ailable underuse feature 'current_sub' anduse
5.16.0 . It will evaluate to a reference to the currently-running sub, which allows for reeumsis
without knowing your subroutine’name.

use 5.16.0;
my $factorial = sub {
my ($x) = @_;
return 1 if $x == 1;
return($x * _ _SUB_—>($x-1));
h
The behaviour of _SUB__ within a reg& code block (such a$?{...})/) is subject to change.

Subroutines whose names are in all upper case are reserved to the Perl core, as are modules whose name:
are in all lower caseA subroutine in all capitals is a loosely-held gemion meaning it will be called

indirectly by the run-time system itself, usually due to a triggevedte Subroutineshat do special, pre-

defined things includeAUTOLOAD CLONE DESTROYplus all functions mentioned in perltie and
PerllO::via.

The BEGIN, UNITCHECK CHECKINIT and ENDsubroutines are not so much subroutines as named

perl v5.18.2 2014-01-06 75

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

special code blocks, of which you carv@arore than one in a package, and which you mancall
explicitly. See “BEGIN, UNITCHECK, CHECK, INITandEND” in perimod

Private Variables viamy()

Synopsis:
my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp"”; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
my $x : Foo = $y; # similar, with an attribute applied

WARNING: The use of attribute lists omy declarations is still wlving. The current semantics and
interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(iflunlessl/elsif/else), loop for/foreach/while/until/continue), subroutinegval ,

or do/require/use 'd file. If more than one value is listed, the list must be placed in parenthses.
listed elements must beg@ Ivalues. Onlyalphanumeric identifiers may be lexically scopedhagical
built-ins like $/ must currently béocal ized withlocal instead.

Unlike dynamic variables created by thecal operatoy lexical variables declared wittmy are totally
hidden from the outside world, includingyaaalled subroutines. This is true ifdtthe same subroutine
called from itself or elsghere — gery call gets its own cgp

This doesrt’ mean that any variable declared in a statically enclosing lexical scope would \isilite.
Only dynamic scopes are cuf.ofFor example, thbumpx() function belev has access to thexieal $x
variable because both tiney and thesub occurred at the same scope, presumably file scope.

my $x = 10;

sub bumpx { $x++ }

An eval() , howeva, can see lexical variables of the scope it is bewaduated in, so long as the names
arent hidden by declarations within trewval() itself. Seeperlref.

The parameter list toy() may be assigned to if desired, which allows you to initialize yatiables. (If
no initializer is gven for a particular variable, it is created with the undefingides) Commonlthis is
used to name input parameters to a subroutine. Examples:

$arg = "fred"”; # " global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn't matter
$arg **=1/3;
return $arg;

}

The myis simply a modifier on something you might assign$o. when you do assign to variables in its
argument listmy doesnt change whether those variables are viewed as a scalar or anSarray

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while
my $foo = <STDIN>;
supplies a scalar conte Butthe following declares only one variable:
my $foo, $bar = 1; # WRONG
That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,

76 2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

my $x = $x;

can be used to initialize a néx with the value of the oléx, and the expression
my $x = 123 and $x == 123

is false unless the olsk happened to hva te valuel23.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

while (my $line = <>) {
$line = Ic $line;

} ¢ ontinue {
print $line;

}

the scope offline extends from its declaration throughout the rest of the loop construct (including the
continue clause), but not beyond it. Similariy the conditional

if ((my $answer = <STDIN>) =" /"yes$/i) {
user_agrees();

} e Isif (Janswer =" /"no$/i) {
user_disagrees();

} else{
chomp $answer;
die ""$answer is neither 'yes' nor 'no";

}

the scope offanswer extends from its declaration through the rest of that conditional, includipg an
elsif andelse clauses, but not beyond it. See “Simple Statemeimtgerlsyn for information on the
scope of variables in statements with modifiers.

Theforeach loop defaults to scoping its inkl@ariable dynamically in the mannerlotal . Howeva,
if the index variable is prefixed with theeword my, or if there is already a lexical by that name in scope,
then a ne lexical is created instead. Thus in the loop

for my $i (1, 2, 3) {
some_function();
}

the scope offi extends to the end of the loop, but not beyond it, rendering the valbie ifaccessible
within some_function()

Some users may wish to encourage the use of lexically scapiedbles. Asan aid to catching implicit
uses to package variables, which aveagé global, if you say

use strict 'vars";

then ay variable mentioned from there to the end of the enclosing block must either referxtoaa le
variable, be predeclared vaur oruse vars , or dse must be fully qualified with the package name.
compilation error results otherwise. An inner block may countermand thiswwikrict 'vars'

A myhas both a compile-time and a run-timteef. Atcompile time, the compiler tek notice of it. The
principal usefulness of this is to quigse strict 'vars' , but it is also essential for generation of
closures as detailed in perlrefictual initialization is delayed until run time, though, so it getceted at
the appropriate time, such as each time through a loop, for example.

Variables declared witlmy are not part of anpackage and are thereforevaefully qualified with the
package name. In particulgou’re not allowed to try to maka @ckage variable (or other global) lexical:

my $pack::var; # ERROR! lllegal syntax

In fact, a dynamic ariable (also known as package or global variables) are still accessible using the fully
qualified:: notation @en while a lexical of the same name is also visible:

perl v5.18.2 2014-01-06 77

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

78

package main;

local $x = 10;

my $x = 20;
print "$x and $::x\n";

That will print out20 and10.

You may declaremy variables at the outermost scope of a file to hide smich identifiers from the arld
outside that file. This is similar in spirit to £&atic variables when tlyeare used at the file Vel. To do

this with a subroutine requires the use of a closure (anyarmus function that accesses enclosing
lexicals). If you want to create a prite subroutine that cannot be called from outside that block, it can
declare a lexical variable containing an anonymous sub reference:

my $secret_version = '1.001-beta’;
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference isveereturned by aypfunction within the module, no outside module can see the
subroutine, because its name is not ip packages ymbol table. Remember that & not REALLY called
$some_pack::secret_version or anything; it5 just $secret_version , unqualified and
unqualifiable.

This does not work with object methodswiawer; all object methods la © be n the symbol table of
some package to be found. See “Function Templateperiref for something of a work-around to this.

Persistent Private Variables

There are tw ways to build persistent pate variables in Perl 5.10. First, you can simply usestiate
feature. Oryou can use closures, if you want to stay compatible with releases older than 5.10.

Persistent variables via state()

Beginning with Perl 5.10.0, you can declare variables withstate keyword in place oimy. For that to

work, though, you must ka enabled that feature beforehand, either by usindahire pragma, or by
using—E on one-liners (see featurepeginning with Perl 5.16, th€ORE::state form does not require
thefeature pragma.

Thestate keyword creates a lexicakviable (following the same scoping rulesnag that persists from

one subroutine call to the xte If a gate variable resides inside an anonymous subroutine, then each cop
of the subroutine has its own gopf the state ariable. Havever, the value of the state variable will still
persist between calls to the sameycopthe anonymous subroutindDon't forget thatsub { ... }

creates a e subroutine each time it isxecuted.)

For example, the following code maintains avate counterincremented each time tiggmme_another()
function is called:

use feature 'state’;
sub gimme_another { state $x; return ++3$x }

And this example uses anonymous subroutines to create separate counters:

use feature 'state’;
sub create_counter {

return sub { state $x; return ++$x }
}

Also, since$x is lexical, it cant be reached or modified by wrrerl code outside.

When combined with variable declaration, simple scalar assignmstatéo variables (as irstate $x
= 42) is executed only the first time. When such statements astuaed subsequent times, the
assignment is ignored. The behavior of this sort of assignment to non-scalar variables is undefined.

Persistent variables with closures

Just because axieal variable is lexically (also called statically) scoped to its enclosing dwek, , or do
FILE, this doesrt mean that within a function it works kka C datic. It normally works more ligk a C
auto, but with implicit garbage collection.

Unlike local variables in C or# Perl's lexical variables dor’necessarily get recycled just because their
scope hasxted. If something more permanent is stiNae of the lexical, it will stick around. So long as

2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

something else references aital, that lexical wn't be freed — whichis as it should beYou wouldn't
want memory being free until you were done using it, or kept around once you were Algoeatic
garbage collection takes care of this for you.

This means that you can pass back oe saay references to Xécal variables, whereas to return a pointer
to a C auto is a gva aror. It also gives us a vay to simulate & function statics.Here's a nechanism for
giving a function pwate variables with both lexical scoping and a static lifetime. If you do want to create
something lile Cs datic variables, just enclose the whole function in atnaeblock, and put the static
variable outside the function but in the block.

{
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}
}

$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate filaetmire or use, then this is probably just fine.
If it's dl in the main program, you'll need to arrange for thgto be &ecuted earlyeither by putting the
whole block abwe your main program, or more b&ky, placing merely a(BEGIN code block around it to
malke are it gets recuted before your program starts to run:

BEGIN {
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}

}

See “BEGIN, UNITCHECK, CHECK, INITandEND"” in perimod about the special triggered code blocks,
BEGIN, UNITCHECKCHECKINIT andEND

If declared at the outermost scope (the file scope), thx@ale work somewhat lik Cs file statics. They
are aailable to all functions in that same file declared hetbem, but are inaccessible from outside that
file. Thisstrategy is sometimes used in modules to createt@nvariables that the whole module can see.

Temporary Values vialocal()
WARNING: In general, you should be usingyinstead ofocal , because it faster and safeiExceptions
to this include the global punctuation variables, global filehandles and formats, and direct manipulation of
the Perl symbol table itselfocal is mostly used when the currerglve of a variable must be visible to
called subroutines.

Synopsis:
| ocalization of values

local $foo; # make $foo dynamically local
local (@wid, %get); # make list of variables local
local $foo = "flurp"; # make $foo dynamic, and init it
local @oof = @bar; # make @oof dynamic, and init it
local $hash{key} = "val"; # sets a local value for this hash entry
delete local $hash{key}; # delete this entry for the current block
local ($cond ? $v1 : $v2); # several types of Ivalues support
| ocalization
| ocalization of symbols
local *FH; # | ocalize $FH, @FH, %FH, &FH
local *merlyn = *randal; # now $merlyn is really $randal, plus
@nerlyn is really @randal, etc
local *merlyn = 'randal’; # SAME THING: promote 'randal’ to *randal
perl v5.18.2 2014-01-06 79

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

80

local *merlyn = \$randal, # | ust alias $merlyn, not @merlyn etc

A local modifies its listed ariables to be'lbcal” to the enclosing blockeval , or do FILE ——-and to
any subroutine called from within that blocA local just gives temporary values to global (meaning
package) ariables. ltdoesnotcreate a localariable. Thids known as dynamic scopind.exical scoping
is done withmy, which works more lik Cs auto declarations.

Some types of Ivalues can be localized as well: hash and array elements and slices, conditioidald (pro
that their result is alays localizable), and symbolic references. As for simple variables, this creates ne
dynamically scoped values.

If more than one ariable or expression iswgh to local , they must be placed in parentheseBhis
operator works by saving the curremties of those variables in its argument list on a hidden stack and
restoring them upon exiting the block, subroutine, v@. eThis means that called subroutines can also
reference the local variable, but not the global one. The argument list may be assigned to if desired, which
allows you to initialize your localariables. (Ifno initializer is gven for a particular variable, it is created

with an undefined value.)

Becausdocal is a run-time operatpit gets executed each time through a looonsequentlyit's nore
efficient to localize your variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an Ivaluegression. Whelyou assign to docal ized variable, the
local doesnt change whether its list is viewed as a scalar or an.aSay

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while
local $foo = <STDIN>;

supplies a scalar context.

Localization of special variables

If you localize a special variable, you'll be giving amealue to it, but its magic @n't go avay. That
means that all side-effects related to this magic still work with the localized value.

This feature allows code kktis to work :

Read the whole contents of FILE in $slurp
{ | ocal $/ = undef; $slurp = <FILE>; }

Note, havever, that this restricts localization of some values ; fample, the following statement dies, as
of perl 5.10.0, with an erroModification of a read-only value attemptdubcause thebl variable is
magical and read-only :

local $1 = 2;

One exception is the default scalar variable: starting with perllé¢cad$) will always strip all magic
from$_, to make it possible to safely reusk in a subroutine.

WARNING: Localization of tied arrays and hashes does not currently work as described. This witibe fix
in a future release of Perl; in the meantimaidcode that relies on gparticular behaviour of localising
tied arrays or hashes (localising widual elements is still okay). See “Localising Tied Arrays and Hashes
Is Broken' in perl58delta for more details.

Localization of globs
The construct
local *name;

creates a whole mesymbol table entry for the glohame in the current packageThat means that all
variables in its glob slot ($nam@name%name &name, and thaame filehandle) are dynamically reset.

This implies, among other things, thatyanagic e/entually carried by thoseaviables is locally lostin
other words, sayintpcal */ will not have any &ect on the internal value of the input record separator.

Localization of elements of composite types
It's dso worth taking a moment to explain what happens whenlgoal ize a member of a composite

2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

type (i.e. an array or hash elemerit).this case, the elementltxcal izedby nameThis means that when
the scope of thibcal() ends, the sad value will be restored to the hash element whesewas named
in thelocal() , or the array element whose indeas named in théocal() . If that element as
deleted while théocal() was in dfect (e.g. by alelete() from a hash or ahift() of an array), it
will spring back into existence, possiblxtending an array and filling in the skipped elements with
undef . For instance, if you say
%hash = ('This' =>'is', 'a' => 'test');
@ary = (0.5);
{
local($ary[5]) = 6;
local($hash{'a’}) = 'drill’;
while (my $e = pop(@ary)) {
print "$e . . .\n";
last unless $e > 3;
}
if (@ary) {
$hash{'only a'} = 'test’;
delete $hash{'a’};
}
}
print join(" ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
print "The array has ",scalar(@ary)," elements: ",
join(', ', map { defined $_ ? $_: 'undef' } @ary),"\n";

Perl will print

6 ...

4 ...

3...

This is a test only a test.

The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior ofocal() on non-existent members of composite types is subject to change in future.
Localized deletion of elements of composite types

You can use thelelete local $array[$idx] anddelete local $hash{key} constructs to
delete a composite type entry for the current block and restore it when it engsefline the array/hash
value before the localization, which means thay tre respectiely equivalent to

do {
my $val = $array[$idx];
local Sarray[$idx];

delete $array[$idx];
$val

}

and

do {
my $val = $hash{key};
local $hash{key};
delete $hash{key};
$val

}

except that for those tHecal is scoped to thdo block. Slices are also accepted.

my %hash = (
a=>1[7,8 9] ,
b => 1,

)

{

perl v5.18.2 2014-01-06 81

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

my $a = delete local $hash{a};
#$ais[7 8 9]
%hashis (b=>1)

{
my @nums = delete local @$a[0, 2]
@umsis (7, 9)
$a is [u ndef, 8]

$a[0] = 999; # will be erased when the scope ends

}
$a is b ackto[7,8,9]

}

%hash is back to its original state

Lvalue subroutines
WARNING: Lvalue subroutines are still experimental and the implementation may change in future
versions of Perl.

It is possible to return a modifiablalue from a subroutineTo do this, you hae o declare the subroutine
to return an Ivalue.

my $val;
sub canmod : Ivalue {
$val; # or: return $val;

sub nomod {
$val;
}

canmod() = 5; # assigns to $val
nomod() = 5, # ERROR

The scalar/list conte for the subroutine and for the right-hand side of assignment is determined as if the
subroutine call is replaced by a scakar example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:
(data(2,3)) = get_data(3,4);

and in:
(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines aeXPERIMENTAL
They appear to be camnient, but there is at least one reason to be circumspect.

They violate encapsulationA normal mutator can check the supplieguanent before setting the
attribute it is protecting, an Ivalue subroutineereyets that chance. Consider;

my $some_array_ref = []; # protected by mutators ??
sub set_arr { # normal mutator
my $val = shift;

die("expected array, you supplied ", ref $val)
unless ref $val eq 'ARRAY";
$some_array_ref = $val;

}

sub set_arr_Iv : Ivalue { # | value mutator
$some_array_ref;

}

82 2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

set_arr_lv cannot stop this !
set arr Iv()={a=>1};

Lexical Subroutines
WARNING: Lexical subroutines are stilikperimental. Thdeature may be modified or reral in future
versions of Perl.

Lexical subroutines are onlyailable under theuse feature 'lexical_subs' pragma, which
produces a warning unless the “experimental::lexical_sukmnings category is disabled.

Beginning with Perl 5.18, you can declare avghie subroutine withmy or state . As with state ariables,

thestate keyword is only &ailable undewuse feature 'state’ oruse 5.010 or higher.
These subroutines are only visible within the block in whicty the declared, and only after that
declaration:

no warnings "experimental::lexical_subs";
use feature 'lexical_subs';

foo(); # calls the package/global subroutine
state sub foo {
foo(); # also calls the package subroutine
}
foo(); # calls "state" sub
my $ref = \&foo; # t ake a reference to "state" sub

my sub bar{ ... }
bar(); # calls "my" sub

To use a lexical subroutine from inside the subroutine itself, you must predeclareetsub foo
{...} subroutine definition syntax respecty aneviousmy sub; or state sub; declaration.

my sub baz; # predeclaration

sub baz { # define the "my" sub
baz(); # recursive call

}

state subvsny sub

What is the dfierence betweerstate’ subs and‘my’’ subs? Eachime that &ecution enters a block when
“my” subs are declared, aweopy of each sub is created.State’ subroutines persist from onaeeution
of the containing block to the next.

So, in general, “stateSubroutines are fasteBut “my’’ subs are necessary if you want to create closures:

no warnings "experimental::lexical_subs";
use feature 'lexical_subs';

sub whatever {
my $x = shift;
my sub inner {
... do something with $x ...
}

inner();
}

In this example, a me$x is created whewhatever is called, and also awanner , which can see the
new$x. A “state’ sub will only see thé&x from the first call tavhatever .

our subroutines
Like our $variable ,our sub creates a lexical alias to the package subroutine of the same name.
The two main uses for this are to switch back to using the package sub inside an inner scope:

perl v5.18.2 2014-01-06 83

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

84

no warnings "experimental::lexical_subs";
use feature 'lexical_subs';

sub foo{... }

sub bar {
my sub foo { ... }

{

need to use the outer foo here
our sub foo;
foo();

}

and to mak a sibroutine visible to other packages in the same scope:

package MySneakyModule;

no warnings "experimental::lexical_subs";
use feature 'lexical_subs';

our sub do_something { ... }

sub do_something_with_caller {

package DB;
() = caller 1; # sets @DB::args
do_something(@args); # uses MySneakyModule::do_something

}

Passing Symbol Table Entries (typeglobs)

WARNING: The mechanism described in this sectioasveriginally the only way to simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, theraference
mechanism is generally easier to work with. Seeviaelo

Sometimes you dohivant to pass thealue of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global gopf it rather than wrking with a local cop In perl you can refer to

all objects of a particular name by prefixing the name with a %@o: . This is often known as a
“typeglob’, because the star on the front can be thought of as a wildcard match for all theriefisn
characters on variables and subroutines and such.

When &aluated, the typeglob produces a scalar value that represents all the objects of that name, including
ary filehandle, format, or subroutin®/hen assigned to, it causes the name mentioned to refer tovevhate
* value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
$elem *= 2;
}

}

doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without using this mechanism
by referring explicitly to$_[0] etc. You can modify all the elements of an array by passing all the
elements as scalars, but yowdap use the* mechanism (or the eqent reference mechanism) to

push , pop, or change the size of an arral will certainly be faster to pass the typeglob (or reference).

Even if you dont want to modify an arrayhis mechanism is useful for passing multiple arrays in a single
LIST, because normally thaST mechanism will merge all the array values so that you eatract out the
individual arrays.For more on typeglobs, see “Typeglobs and Filehantiegerldata.

2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

When to Still Uselocal()
Despite the existence afy, there are still three places where theal operator still shines. In fact, in
these three places, yowstuselocal instead oimy.

1. You need to gie a dobal variable a temporary value, especiglly

The global ariables, lile @ARGYr the punctuation variables, mustlbeal ized withlocal()
This block reads iletc/motd and splits it up into chunks separated by lines of equal signs, which are
placed in@Fields .

{
local @ARGYV = ("/etc/motd");
local $/ = undef;
local $_ =<>;
@Fields = split /"\s*=+\s*$/,
}

It particular it's important tolocal ize $_ in ary routine that assigns to it. Look out for implicit
assignments iwhile conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own mustlosal() on a complete tyggob. This can be
used to create mesymbol table entries:

sub ioqueue {
local (*READER, *WRITER); # notmy!
pipe (READER, WRITER) or die "pipe: $!";
return *READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to agtgpecreates an alias, this can be used to create what is
effectively a local function, or at least, a local alias.

{

local *grow = \&shrink; # only until this block exits

grow(); # really calls shrink()

move(); # if move() grow()s, it shrink()s too
}
grow(); # get the real grow() again

See “Function Templateésh perlref for more about manipulating functions by name in this way.
3. You want to temporarily change just one element of an array or hash.

You canlocal ize just one element of an aggae. Usuallythis is done on dynamics:

{
local $SIG{INT} = 'IGNORE";

funct(); # uninterruptible

}

i nterruptibility automatically restored here
But it also works on lexically declared aggaes.

Pass by Reference
If you want to pass more than one array or hash into a funretionreturn them from i—and have them
maintain their intgrity, then you're going to he o use an explicit pass-by-reference. Before you do that,
you need to understand references as detailed in peflni$. section may not makmuch sense to you
otherwise.

Here are a f& simple examples. Firstlet's pass in seeral arrays to a function and Vit pop all of then,
returning a ne list of all their former last elements:

perl v5.18.2 2014-01-06 85

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
push @retlist, pop @$aref;
}

return @retlist;

}

Here's how you might write a function that returns a list @k cccurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {
my ($k, $href, %seen); # locals
foreach $href (@_) {
while ($k = each %S$href) {
$seen{Sk}++;
}

}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we're using just the normal list return mechanism. What happens if you want to pass or return a
hash? WIl, if you're using only one of them, or you domind them concatenating, then the normal
calling covention is ok, although a little expensi

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or
(%a, %b) = func(%c, %d);

That syntax simply wn't work. It sets just@aor %aand clears thé@bor %h Pus the function didr’get
passed into tevseparate arrays or hashes: it got one long lig€dinas dways.

If you can arrange forveryone to deal with this through references déaner code, although not so nice
to look at. Here's a unction that takes twaray references asguments, returning the twarray elements
in order of hav mary elements thg havein them:

($aref, $bref) = func(\@c, \@d);
print "@%$aref has more than @$bref\n";
sub func {
my ($cref, $dref) = @_;
if (@$cref > @$dref) {
return ($cref, $dref);
} else{
return ($dref, $cref);
}

}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";
sub func {
local (*c, *d) = @_;
if (@c > @d) {
return \@c, \@d);
} else{
return \@d, \@c);
}

86 2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

Here we're using the typeglobs to do symbol table aliadihg.a ad subtle, though, and als@mt work if
you're usingmy variables, because only globalyée in disguise asocal s) are in the symbol table.

If you're passing around filehandles, you could usually just use the bargotypéke *STDOUT, but
typeglobs references work, toBor example:

splutter(*STDOUT);
sub splutter {
my $fh = shift;
print $th "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {
my $fh = shift;
return scalar <$fh>;

}

If you're planning on generating weilehandles, you could do this. Notice to pass back just the bare *FH,
not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;
}
Prototypes
Perl supports a very limited kind of compile-timgumnent checking using function prototyping. If you
declare

sub mypush (+@)

thenmypush() takes arguments exactly #push() does. Theunction declaration must be visible at
compile time. The prototype affects only interpretation of new-style calls to the function, whestyte

is defined as not using ti@echaracter In other words, if you call it lik a huilt-in function, then it behaes
like a huilt-in function. If you call it like an dd-fashioned subroutine, then it bebsilike an dd-fashioned
subroutine. Itaturally &lls out from this rule that prototypesviearo influence on subroutine references
like \&foo or on indirect subroutine calls lik{$subref} or $subref->()

Method calls are not influenced by prototypes ejtbecause the function to be called is indeterminate at
compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutinesathalike kuilt-in functions,
here are prototypes for some other functions that parse almost exactheltorresponding built-in.

Declared as Called as

sub mylink ($$) mylink $old, $new

sub myvec ($$$) myvec $var, $offset, 1

sub myindex ($$;9$) myindex &getstring, "substr"

sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) — $off, $off
sub myreverse (@) myreverse $a, $b, $c

sub myjoin ($@) myjoin ":", $a, $b, $c

sub mypop (+) mypop @array

sub mysplice (+$$@) mysplice @array, 0, 2, @pushme

sub mykeys (+) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a, $b, $c

sub myrand (;$) myrand 42

sub mytime () mytime

Any backslashed prototype character represents an actual argument that must start with that character
(optionally preceded bgny, our orlocal), with the exception 0§, which will accept ap scalar halue

perl v5.18.2 2014-01-06 87

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

88

expression, such &foo = 7 or my_function()—>[0] . The value passed as part@f will be a
reference to the actual argumentagiin the subroutine call, obtained by applyingo that argument.

You can use thé[] backslash group notation to specify more than one allowguihent type. &r
example:

sub myref \[$@%&*])
will allow calling myref()as

myref $var
myref @array
myref %hash
myref &sub
myref *glob

and the first argument afyref()will be a reference to a scalan aray, a hash, a code, or a glob.

Unbackslashed prototype charactergehgoecial meaningsAny unbackslashedor %eats all remaining
arguments, and forces list corte An argument represented I$/forces scalar conte An & requires an
anorymous subroutine, which, if passed as the first argument, does not requingbtheyword or a
subsequent comma.

A * allows the subroutine to accept a lveoed, constant, scalar expression, typeglob, or a reference to a
typeglob in that slot. The value will bevalable to the subroutine either as a simple scalafin the latter

two cases) as a reference to the pipb. If you wish to avays cowvert such arguments to a tygleb
reference, us8ymbol::qualify_to_ref(as follows:

use Symbol 'qualify_to_ref’;

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);

}

The + prototype is a special alternagio $ that will act like \|@%] when gien a literal array or hash
variable, but will otherwise force scalar context on thguarent. Thigs useful for functions which should
accept either a literal array or an array reference as the argument:

sub mypush (+@) {
my $aref = shift;
die "Not an array or arrayref" unless ref $aref eq 'ARRAY";
push @$aref, @_;

}

When using the- prototype, your function must check that the argument is of an acceptable type.

A semicolon () separates mandatorygaments from optional guments. Itis redundant befor@or %
which gobble uperything else.

As the last character of a prototype, or just before a semicol@or @ % you can use in place of$: if
this argument is not providefi, will be used instead.

Note hav the last three examples in the tableabae treated specially by the parsenygrep() is
parsed as a true list operataryrand() is parsed as a true unary operator with unary precedence the same
asrand() , andmytime() is truly without arguments, just likeme() . That s, if you say

mytime +2;

you'll get mytime() + 2, not mytime(2) , which is hav it would be parsed without a prototypH.
you want to force a unary function tovete same precedence as a list operattn; to the end of the
prototype:

sub mygetprotobynumber($;);
mygetprotobynumber $a > $b; # parsed as mygetprotobynumber($a > $b)

The interesting thing abow is that you can generatewmesyntax with it, provided is in the initial
position:

2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };

if (@) {
local $_=$@;
&$catch;
}
}
sub catch (&) {$_[0] }
try {
die "phooey";
} catch{
/phooey/ and print "unphooey\n";
%

That prints"unphooey” . (Yes, there are still unresolved issuesihg to do with visibility of @ . I'm
ignoring that question for the momer(But note that if we mak@_lexically scoped, those angmous
subroutines can act Bkdosures... (Gee, is this sounding a little Lispish? véXenind.))))

And heres$ a eimplementation of the Pegtep operator:

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {
push(@result, $_) if &$code;
}

@result;
}

Some folks would prefer full alphanumeric prototypédphanumerics hae keen intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechaniss main goal is to let module writers provide better diagnostics for module usamy. feels the

notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor mad it harder to read. The line noise is visually encapsulated into a small pifl éaay to

swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional wathegg- *
character in prototyp€... Unfortunately earlier versions of Perl allowed the prototype to be used as long as
its prefix was a valid prototype. The warning may be upgradeddtabefror in a future version of Perl
once the majority of offending code is fixed.

It's probably best to prototype wefunctions, not retrofit prototyping into older on€ghat's because you
must be especially careful about silent impositions of differing éssws scalar contts. For example, if
you decide that a function should ¢glast one parametdike this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:
func(@foo);
func(split /:/);

Then youve just supplied an automatscalar in front of their argument, which can be more than a bit
surprising. Theold @foo which used to hold one thing doeisgét passed inlnsteadfunc() now gets
passed in 4; that is, the number of elements@foo. And thesplit gets called in scalar context so it
starts scribbling on you®@_ parameter list. Ouch!

This is all very pwerful, of course, and should be used only in moderation tce rinekworld a better
place.

perl v5.18.2 2014-01-06 89

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

90

Constant Functions

Functions with a prototype ¢ are potential candidates for inlining. If the result after optimization and
constant folding is either a constant or a lexically-scoped scalar which has no other references, then it will
be used in place of function calls made with@utCalls made using are nger inlined. (Seeonstant.pm

for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3.14159} # Not exact, but close.

sub PI () {4 *atan21,1} # As good as it gets,
and it's inlined, too!

sub ST _DEV () {0}

sub ST_INO () {1}

sub FLAG_FOO () {1<<8}
sub FLAG_BAR () {1<<9}
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR}

sub OPT_BAZ () { n ot (0x1B58 & FLAG_MASK) }
sub N () { int(OPT_BAZ) /3 }

sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }

Be awvare that these will not be inlined; as yheontain inner scopes, the constant folding daesduce
them to a single constant:

sub foo_set () { if (FLAG_MASK & FLAG_FOO){1}}

sub baz_val () {
if (OPT_BAZ) {

return 23;
}
else {

return 42;
}

}

If you redefine a subroutine that was eligible for inlining, l@eét a warning by defult. (You can use this
warning to tell whether or not a particular subroutine is considered constant.) The warning is considered
severe enough not to be affected by the switch (or its absence) becausevipasly compiled imocations

of the function will still be using the old value of the functidifi.you need to be able to redefine the
subroutine, you need to ensure that ittisnlined, either by dropping th§ prototype (which changes
calling semantics, so tvare) or by thwarting the inlining mechanism in some other, wah as

sub not_inlined () {
23if §];
}

Overriding Built-in Functions

Many built-in functions may be werridden, though this should be tried only occasionally and for good
reason. Ypically this might be done by a package attempting to emulate missing built-in functionality on a
non-Unix system.

Overriding may be done only by importing the name from a module at compile—tiondinary
predeclaration ish'good enough.However, theuse subs pragma lets you, in effect, predeclare subs via
the import syntax, and these names may tlverride built-in ones:

use subs ‘chdir, ‘chroot’, ‘chmod', ‘chown’;
chdir $somewhere;
sub chdir{ ... }

To unambiguously refer to the built-in form, precede thétiin name with the special package qualifier
CORE::. For example, sayin@ORE:.open() always refers to theudlt-in open() , even if the current
package has imported some other subroutine c&lbpan() from elsevhere. Een though it looks lig a

2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

regular function call, it isn't: theCORE:: prefix in that case is part of Perly/ntax, and works for an
keyword, reggardless of what is in th€ORE package. @king a reference to it, that &CORE::open ,
only works for some éywords. SeeCORE

Library modules should not in general export built-in namesdjken or chdir as part of their defult
@EXPORTist, because these may sheak into someonesels@espace and change the semantics
unexpectedly Instead, if the module adds that name@&XPORT_QHKhen it's possible for a user to
import the name explicitjybut not implicitly. That is, thg could say

use Module 'open’;

and it would import thepen overide. Butif they said
use Module;

they would get the default imports withowerides.

The foregoing mechanism forvariding built-in is restricted, quite deliberatelio the package that
requests the import. There is a second method that is sometimes applicable when you weisti¢oao
built-in everywhere, without rgard to namespace boundaries. This is asuidy importing a sub into the
special namespacEORE::GLOBAL:: . Here is an example that quite brazenly replacesgtbb
operator with something that understands regular expressions.

package REGIob;
require Exporter;

@ISA = "Exporter’;
@EXPORT_OK ='glob;

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =" s/"GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
$pkg->export($where, $sym, @_);

}
sub glob {
my $pat = shift;
my @got,
if (opendir my $d, ") {
@got = grep /$pat/, readdir $d;
closedir $d;
}
return @got;
}
1
And heres$ how it could be (ab)used:
#use REGIlob 'GLOBAL_glob'; # override glob() in ALL nhamespaces
package Foo;
use REGIob 'glob’; # override glob() in Foo:: only
print for <"[a-z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a conid, even dangerousyeample. Byoveriding glob globally, you would
be forcing the n& (and subersive) behavior for the glob operator forevery namespace, without the
complete cognizance or cooperation of the modules thattbose namespaceblaturally; this should be
done with extreme cauties-if it must be done at all.

The REGIlob example abwe dbes not implement all the support needed to cleavdyride perls glob
operator The huilt-in glob has different behaviors depending on whether it appears in a scalar or list
contt, but ourREGIob doesnt. Indeed,mary perl built-in have such context sensite kehaviors, and
these must be adequately supported by a properly writtemide. For a fully functional example of
overriding glob , sudy the implementation dfile::DosGlob in the standard library.

When you eerride a huilt-in, your replacement should be consistent (if possible) with the built-imenati

perl v5.18.2 2014-01-06 91

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

syntax. You can achiee tis by using a suitable prototyp&o get the prototype of anverridable huilt-in,
use theprototype function with an argument ofCORE::builtin_name" (see “prototype’ in
perlfunc).

Note havever that some built-ins cahhavetheir syntax expressed by a prototype (suclsyatem or
chomp). If you override them you wort’be ale to fully mimic their original syntax.

The huilt-ins do, require andglob can also be w@rridden, lut due to special magic, their original
syntax is preserved, and you dohdveto define a prototype for their replacementgou cant override
thedo BLOCK syntax, though).

require has special additional dark magic: if yowadke your require replacement asequire
Foo::Bar , it will actually receve the argumentFoo/Bar.pm" in @. See “require’in perlfunc.

And, as youl have roticed from the previous example, if youerride glob , the <*> glob operator is
overidden as well.

In a similar fashion, werriding the readline function also werrides the equialent 1/O operator
<FILEHANDLE>. Also, overriding readpipe also werrides the operators andgx// .

Finally, some built-ins (e.gexists orgrep) can't be overridden.

Autoloading
If you call a subroutine that is undefined, yoautd ordinarily get an immediate, fatal error complaining
that the subroutine doesrexist. (Likewise for subroutines being used as methods, when the method
doesnt exist in ary base class of the clasgackage.) Hwever, if an AUTOLOABuUbroutine is defined in
the package or packages used to locate the original subroutine, th&tJTr@LOABubroutine is called
with the arguments that would\eabeen passed to the original subroutine. The fully qualified name of the
original subroutine magically appears in the gloBAUTOLOADvariable of the same package as the
AUTOLOADoutine. Thename is not passed as an ordinary argument because]lejust because, that’
why. (As an exception, a method call to a nastentimport or unimport method is just skipped
instead. Alsojf the AUTOLOAD subroutine is arXSUB, there are other ways to retreethe subroutine
name. SeéAutoloading with XSUBSs'in perlguts for details.)

Many AUTOLOADoutines load in a definition for the requested subroutine «sad(), then eecute that
subroutine using a special form géto() that erases the stack frame of thdTOLOADoutine without a
trace. (Seethe source to the standard module documented in AutolLoéalerexample.) Butan
AUTOLOADoutine can also just emulate the routine angendefine it. For example, lets pretend that a
function that wasn'defined should just iroke system with those aguments. Allyou'd do is:

sub AUTOLOAD {
my $program = $SAUTOLOAD;
$program =" s/.*:://,
system($program, @_);
}
date();
who('am’, 'i");
Is(=1);
In fact, if you predeclare functions you want to call that,way dont even need parentheses:

use subs gqw(date who Is);

date;

who "am", "i";

Is "I
A more complete example of this is the Shell module&BAN, which can treat undefined subroutine calls
as calls to external programs.

Mechanisms arevailable to help modules writers split their modules into autoloadable fe® the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules
in SelfLoaderand the document on adding C functions to Perl code in perlxs.

Subroutine Attributes
A subroutine declaration or definition mayvieaa Ist of attributes associated with itf such an attribte
list is present, it is broken up at space or colon boundaries and treated as thsegltabutes had
been seen. See attributes for details about what attributes are currently suppalieel.the limitation

92 2014-01-06 perl v5.18.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

with the obsolescentse attrs , thesub : ATTRLIST syntax works to associate the attributes with a
pre-declaration, and not just with a subroutine definition.

The attributes must be valid as simple identifier names (withoptpanctuation other than the '’
character). Themay hare a @rameter list appended, which is only chextior whether its parentheses

() nest properly.
Examples of valid syntax ¥en though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) . e xpensive;
sub plugh () : Ugly('\(") :Bad;
sub xyzzy : 5x5{...}

Examples of imalid syntax:
sub fnord : switch(10,foo(); # ()-string not balanced

sub snoid : Ugly('("; # ()-string not balanced

sub xyzzy : 5x5; # " 5x5" not a valid identifier

sub plugh : Y2::north; # " Y2::north" not a simple identifier
sub snurt : foo + bar; # " +" not a colon or space

The attrilute list is passed as a list of constant strings to the code which associates them with the
subroutine. Inparticular the second example of valid syntax @baurrently looks lile this in terms of
how it's parsed and woked:

use attributes _ _PACKAGE__, \&plugh, q[Ugly(\('"], 'Bad’;
For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.

SEE ALSO
See “Function Emplates’in perlref for more about references and closures. See perlxs il fika'to
learn about calling C subroutines from Perl. See perlembed itiyiikeé to learn about calling Perl
subroutines from C.See perlmod to learn about bundling up your functions in separate 8kss.
perlimodlib to learn what library modules come standard on your syssem.perlootut to learn fwoto
malke dbject method calls.

perl v5.18.2 2014-01-06 93

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

NAME

perlfunc — Perl builtin functions

DESCRIPTION

94

The functions in this section can sers érms in an epression. Thgfall into two major categories: list
operators and named unary operatoffiese differ in their precedence relationship with a ¥atg
comma. (Seg¢he precedence table in perlop.) List operatorg takre than one argument, while unary
operators can ner take nore than one gument. Thusa comma terminates the argument of a unary
operatoy but merely separates the arguments of a list operdtamary operator generally provides scalar
contet to its argument, while a list operator may provide either scalar or list contexts fauitsests. |If

it does both, scalar arguments come first and list argumenwfahal there can onlyver be e such list
argument. Br instancesplice()has three scalar arguments followed by a list, whegehsstbyname(has
four scalar arguments.

In the syntax descriptions that folplist operators that expect a list (and provide list context for elements
of the list) are shown withiST as an ggument. Sucta list may consist of gncombination of scalar
arguments or list values; the list values will be included in the list as if eachidndi element were
interpolated at that point in the list, forming a longer single-dimensional disev Commasshould
separate literal elements of thsT.

Any function in the list bel may be used either with or without parentheses aroundgitsremts. (The
syntax descriptions omit the parenthesd§you use parentheses, the simple but occasionally surprising
rule is this: Itlookslike a function, therefore iis a function, and precedence dodsnatter Otherwise its

a list operator or unary operat@nd precedence does mattét/hitespace between the function and left
parenthesis doedrtount, so sometimes you need to be careful:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with the-w switch it can warn you about thig:or example, the third line alve produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at — line 1.

A few functions tak no aguments at all, and therefore work as neither unary nor list operatbese
include such functions dsne andendpwent . For exampletime+86 400 always meangime() +
86_400.

For functions that can be used in either a scalar or list context, nonalfaitiire is generally indicated in
scalar context by returning the undefined value, and in list context by returning the empty list.

Remember the following important rule: Therenss rule that relates the behiar of an expression in list

contt to its behavior in scalar context, or vicersa. Itmight do tw totally different things. Each
operator and function decides which sort of value would be most appropriate to return in scakhr conte
Some operators return the length of the list that wowe leen returned in list conte Someoperators

return the first value in the list. Some operators return the last value in the list. Some operators return a
count of successful operations. In generaly thewhat you want, unless you want consistenc

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar contet. You cant get a list like (1,2,3) into being in scalar conte because the compiler ks

the context at compile time. Itomld generate the scalar comma operator there, not the list construction
version of the comma. That means it wagena list to start with.

In general, functions in Perl that seras wappers for system callsgyscalls’) of the same name (lk
chown(2), fork(2), closedir(2), etc.) return true when theucceed andindef otherwise, as is usually
mentioned in the descriptions belo This is different from the C interfaces, which retuth on failure.
Exceptions to this rule includeait , waitpid , and syscall . System calls also set the spec#l
variable on &ilure. Otherfunctions do not, except accidentally.

Extension modules can also hook into the Perl parser to definkimds of leyword-headed xpression.
These may look li& functions, lat may also look completely @érent. Thesyntax following the &yword
is defined entirely by thexegension. Ifyou are an implementosee ‘PL_keyword_plugin’ in perlapi for
the mechanismlf you are using such a module, see the modwdatumentation for details of the syntax

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

that it defines.

Pel Functions by Category
Here are Pew functions (including things that look #kfunctions, lile ssme leywords and named
operators) arranged by categoS8ome functions appear in more than one place.

Functions for SCALARS or strings
chomp, chop, chr, crypt , fc , hex, index , Ic , Icfirst , length , oct , ord , pack, g// ,
qq// ,reverse ,rindex ,sprintf ,substr ,tr/// ,uc,ucfirst ,ylll

fc is avalable only if the"fc" feature is enabled or if it is prefixed wi@ORE::. The "fc"
feature is enabled automatically witluse v5.16 (or higher) declaration in the current scope.

Regular expressions and pattern matching
m// ,pos, qr// ,quotemeta ,s/// ,split ,study

Numeric functions
abs, atan2 , cos, exp, hex, int ,log ,oct ,rand ,sin ,sqrt ,srand

Functions for rea@ARRAYs
each, keys , pop, push, shift ,splice ,unshift ,values

Functions for list data
grep ,join , map, qw// ,reverse ,sort ,unpack

Functions for rea%oHASHes
delete ,each,exists ,keys,values

Input and output functions
binmode , close , closedir , dbmclose , dbmopen, die , eof , fileno , flock , format ,

getc , print , printf , read , readdir , readline rewinddir , say, seek, seekdir |,
select , syscall , sysread , sysseek , syswrite , tell , telldir , truncate , warn,
write

say is available only if the"say" feature is enabled or if it is prefixed witORE::. The"say"
feature is enabled automatically witluse v5.10 (or higher) declaration in the current scope.

Functions for fixed-length data or records
pack ,read , syscall ,sysread ,sysseek ,syswrite ,unpack ,vec

Functions for filehandles, files, or directories
=X, chdir , chmod, chown, chroot , fcntl , glob , ioctl , link , Istat , mkdir , open,
opendir ,readlink ,rename, rmdir ,stat ,symlink ,sysopen ,umask, unlink , utime

Keywords related to the control floof your Perl program
break , caller , continue , die , do, dump, eval , evalbytesexit , __FILE__ , goto ,
last , LINE__ ,next , PACKAGE_ ,redo ,return ,sub, SUB__,wantarray

break is available only if you enable thexperimental'switch" feature or use thEORE:: prefix.
The "switch" feature also enables th#efault , given and when statements, which are
documented in “Switch Statemenitisi perlsyn. The'switch” feature is enabled automatically with
a use v5.10 (or higher) declaration in the current scope. In Perl v5.14 and eadiginue
required the'switch" feature, lile the other kywords.

evalbytes is only aailable with the"evalbytes" feature (see feature) or if prefixed with
CORE::. __SUB__ is only aailable with the"current_sub" feature or if prefixed with
CORE::. Both the"evalbytes" and"current_sub" features are enabled automatically with a

use v5.16 (or higher) declaration in the current scope.

Keywords related to scoping
caller ,import ,local ,my,our,package ,state ,use

state is available only if the"state" feature is enabled or if it is prefixed wi@ORE::. The
"state" feature is enabled automatically withuge v5.10 (or higher) declaration in the current
scope.

Miscellaneous functions
defined ,formline ,lock , prototype ,reset ,scalar ,undef

perl v5.18.2 2014-01-06 95

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Functions for processes and process groups
alarm , exec, fork , getpgrp , getppid , getpriority , kil pipe , gx// , readpipe |,
setpgrp , setpriority , Sleep , system , times , wait , waitpid

Keywords related to Perl modules
do, import , no, package , require , use

Keywords related to classes and object-orientation
bless , dbmclose , dbmopen, package , ref ,tie ,tied ,untie ,use

Low-level socket functions
accept , bind , connect , getpeername , getsockname , getsockopt |, listen , recv ,
send, setsockopt , shutdown , socket , socketpair

System V interprocess communication functions
msgctl , msgget , msgrev , msgsnd, semctl , semget , semop, shmctl , shmget , shmread ,
shmwrite

Fetching user and group info
endgrent , endhostent , endnetent , endpwent , getgrent , getgrgid , getgrnam ,
getlogin , getpwent , getpwnam, getpwuid , setgrent , setpwent

Fetching network info

endprotoent , endservent , gethostbyaddr , gethostbyname , gethostent
getnetbyaddr , getnetbyname , getnetent , getprotobyname , getprotobynumber
getprotoent , getservbyname , getservbyport , getservent , sethostent

setnetent , setprotoent , setservent

Time-related functions
gmtime , localtime , time , times

Non-function leywords
and, AUTOLOAD BEGIN, CHECK cmp, CORE __DATA , default , DESTROY else ,
elseif ,elsif ,END__END_,eq, for ,foreach , ge, given ,gt,if ,INIT ,le, It ,ne,
not , or , UNITCHECKunless , until ,when, while , x, xor

Portability
Perl was born in Unix and can therefore access all common Unix systemlcaltsn-Unix enironments,
the functionality of some Unix system calls may not balable or details of thevailable functionality
may differ slightly The Perl functions affected by this are:

=X, binmode , chmod, chown, chroot , crypt , dbmclose , dbmopen, dump, endgrent |,
endhostent , endnetent , endprotoent , endpwent , endservent , exec, fcntl , flock
fork , getgrent , getgrgid , gethostbyname , gethostent , getlogin , getnetbyaddr
getnetbyname , getnetent , getppid , getpgrp , getpriority , getprotobynumber
getprotoent , getpwent , getpwnam, getpwuid , getservbyport , getservent
getsockopt , glob , ioctl , kil , link , Istat , msgctl , msgget, msgrcv , msgsnd, open,
pipe , readlink , rename, select , semctl , semget, semop, setgrent , sethostent
setnetent , setpgrp , setpriority , setprotoent , setpwent , setservent , setsockopt
shmctl , shmget, shmread , shmwrite , socket , socketpair , stat , symlink , syscall
sysopen , system , times , truncate ,umask, unlink , utime , wait , waitpid

For more information about the portability of these functions, see perlport and etilable platform-
specific documentation.

Alphabetical Listing of Perl Functions

—X FILEHANDLE

-X EXPR

—X DIRHANDLE

-X Afile test, where X is one of the letters listed beld@his unary operator takes one argument, either a
filename, a filehandle, or a dirhandle, and tests the associated file to see if something is true about it.
If the argument is omitted, tesks , except for-t , which testsSTDIN. Unless otherwise documented,
it returnsl for true and' for false, or the undefined value if the file doésrist. Despitethe funry
names, precedence is the same gotrer named unary operatorhe operator may be piof;

96 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-0 File is owned by effective uid.

-R File isreadable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.

-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

—f File is a plain file.
-d File s adirectory.
-l File is a symbolic link.

-p File is a named pipe (FIFO), or Filehandle is a pipe.
-S File isasocket.

-b File s a block special file.

—c File is a character special file.

-t Filehandle is opened to a tty.

-u File has setuid bit set.
—-g File has setgid bit set.
-k File has sticky bit set.

-T File isan ASCII text file (heuristic guess).
-B File s a"binary" file (opposite of —T).

—-M Script start time minus file modification time, in days.
—-A Same for access time.
—-C Same for inode change time (Unix, may differ for other

platforms)
Example:
while (<>) {
chomp;
next unless —f $_; # i gnore specials
#...
}

Note that-s/a/b/ does not do a meted substitution. Saying —exp($foo) still works as
expected, howeer: only single letters following a minus are interpreted as file tests.

These operators argempt from the “looks like a unction rule” described abee. That is, an opening
parenthesis after the operator does ndécafhav much of the following code constitutes the
argument. Puthe opening parentheses before the operator to separate it from code that follows (this
applies only to operators with higher precedence than unary operators, of course):

—s($file) + 1024 # probably wrong; same as —s($file + 1024)
(s $file) + 1024 # correct

The interpretation of the file permission operaters —R, -w, -W —x, and =X is by default based
solely on the mode of the file and the uids and gids of the Uikere may be other reasons you tan’
actually read, write, orxecute the file: for gample network filesystem access controls, ACLs (access
control lists), read-only filesystems, and unrecognizedigable formats. Note that the use of these
six specific operators to verify if some operation is possible is usually a ejistakause it may be
open to race conditions.

Also note that, for the superuser on the local filesystems;rtheR, —w, and —Wtests alvays return 1,

perl v5.18.2 2014-01-06 97

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

98

and-x and-X return 1 if ay execute bit is set in the mode. Scripts run by the superuser may thus
need to do atat() to determine the actual mode of the file, or temporarily set tHeictee ud to
something else.

If you are using ACLs, there is a pragma calfiztest that may produce more accurate results
than the barestat() mode bits. When undeuse filetest 'access' the ab@e-mentioned
filetests test whether the permission can(not) be granted usimgdbsg2) family of system calls.
Also note that the-x and —X may under this pragma return trueem if there are no »ecute
permission bits set (nor wnextra execute permission BLs). This strangeness is due to the
underlying system calls’ definitions. Note also that, due to the implementatigse dfletest

'‘access' , the special filehandle an't cache the results of the file tests when this pragma is in
effect. Readhe documentation for tHdetest pragma for more information.

The —-T and -B switches work as follws. Thefirst block or so of the file isxamined for odd
characters such as strange control codes or characters with the high Bitteet.mary strange
characters (>30%) are foundsi&—B file; otherwise its a-T file. Also, ary file containing a zero
byte in the first block is considered a binary file~T or —B is used on a filehandle, the currébt
buffer is examined rather than the first blo&oth -T and-B return true on an empty file, or a file at
EOF when testing a filehandle. Because youeh® read a file to do theT test, on most occasions
you want to use af against the file first, as imext unless —f $file && -T $file

If any of the file tests (or either tretat orlistat operator) is gien the special filehandle consisting
of a solitary underline, then the stat structure of theipus file test (or stat operator) is used, saving a
system call.(This doesrt’' work with -t , and you need to remember thstat() and-I leave values in

the stat structure for the symbolic link, not the real file.) (Also, if the stfierbwas filled by an
Istat call,-T and—B will reset it with the results aftat). Example:

print "Can do\n"if -r$a || -w _ || -x _;

stat($filename);

print "Readable\n" if —r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n” if —u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;

print "Text\n" if =T _;

print "Binary\n" if -B _;

As of Perl 5.10.0, as a form of purely syntacticaugou can stack file test operators, in a way that
—f -w —x $file is equivaent to—x $file && -w _ && —f _ . (This is only &ing/ fang: if

you use the return value ef $file as an agjument to another filetest operatono ecial magic
will happen.)

Portability issues: “~X'in perlport.

To avoid confusing would-be users of your code with mysterious syntax errors, put somethihggslik
at the top of your script:

use 5.010; # so f iletest ops can stack

absVALUE
abs Returns the absolute value of itpuanent. IfVALUE is omitted, use$_.

acceptNEWSOCKET,GENERICSOCKET

Accepts an incoming socket connect, justa@sepi2) does. Returns the packed address if it
succeeded, false otherwise. See the example in “Sockets: Client/Server Commuhiogtintipc.

On systems that support a close-areeflag on files, the flag will be set for the newly opened file
descriptoras determined by the value of $"Bee “$°F” in perlvar.

alarmSECONDS
alarm

Arranges to hae aSIGALRM delivered to this process after the specified number of wallclock seconds
has elapsedIf SECONDSis not specified, thealue stored in$_ is used. (On some machines,

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

unfortunately the elapsed time may be up to one second less or more than you specified because of
how seconds are counted, and process scheduling may delay treeydedithe signal een further.)

Only one timer may be counting at once. Each call disables the previousatichan argument dj
may be supplied to cancel the previous timer without startingvaone. Thereturned alue is the
amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module @raN, and starting
from Perl 5.8 part of the standard distribution)vides ualarm(). You may also use Peslfour-
argument version o$elect()leaving the first three guments undefined, or you might be able to use
thesyscall interface to accessetitimen(2) if your system supports it. See perlfag8 for details.

It is usually a mistak to intermix alarm and sleep calls, becausesleep may be internally
implemented on your system wigdlharm .

If you want to usalarm to time out a system call you need to usewal /die pair. You cant rely

on the alarm causing the system call to fail iithset toEINTR because Perl sets up signal handlers
to restart system calls on some systelidsingeval /die always works, modulo the gaats gien in

“ Signals’ in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;
g
if (3@) {
die unless $@ eq "alarm\n"; # propagate unexpected errors
t imed out
}
else {
didn't
}

For more information see perlipc.
Portability issues: “alarmin perlport.

atan2 Y, X
Returns the arctangent of Y/X in the range —Frito

For the tangent operation, you may use tath::Trig::tan function, or use theafmiliar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

The return value foatan2(0,0) is implementation-defined; consult yoatan2(3) manpage for
more information.

Portability issues: “atan2in perlport.

bind SOCKET,NAME
Binds a network address to a socket, justbaml(2) does. Returns true if it succeededlsé
otherwise.NAME should be a packed address of the appropriate type for thet s@aethe examples
in “Sockets: Client/Server Communicatiomi perlipc.

binmodeFILEHANDLE, LAYER

binmodeFILEHANDLE
Arranges forFILEHANDLE to be read or written irfbinary” or ‘‘text” mode on systems where the
run-time libraries distinguish between binary and text filésFILEHANDLE is an expression, the
value is taken as the name of the filehand®eturns true on success, otherwise it retundef and
sets$! (errno).

On some systems (in gene@S-and Wndows-based systembjnmode()is necessary when yaog’
not working with a text file.For the sak of portability it is a good idea walkys to use it when
appropriate, and wer to use it when it isrt’ appropriate. Alsopeople can set their 1/0 to be by

perl v5.18.2 2014-01-06 99

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

100

default UTF8-encoded Unicode, not bytes.
In other words: rgardless of platform, useinmode()on binary data, li& images, for example.

If LAYER is present it is a single stringutomay contain multiple directés. Thedirectives dter the
behaviour of the filehandle. Whe&AYER is present, using binmode on a text file makes sense.

If LAYER is omitted or specified asaw the filehandle is made suitable for passing binary dBés
includes turning df possible CRLF translation and marking it as bytes (as opposed to Unicode
characters). Notthat, despite what may be implied“ifProgramming Rrl” (the Camel, 3rd edition)

or elsevhere,:raw is not simply the iwverse of:crlf . Other layers that would f&ct the binary
nature of the stream amdso disabled. SedéerllO, perlrun, and the discussion about BE&ERLIO
environment variable.

The:bytes ,:crlf ,:utf8 , and ary other directves of the form:... , are called I/Olayers The
open pragma can be used to establish default I/0 layers. See open.

TheLAYERparameter of the binmode() function is described BESCIPLINE” in “Programming Frl,
3rd Edition”. However, since the publishing of this book, by many known ‘@amel I, the
consensus of the naming of this functionality has moved fidistipline” to “‘layer”. All
documentation of this version of Perl tefne refers to ‘layers” rather than to‘tisciplines’. Now
bad to the reqularly scheduled documentation...

To mark FILEHANDLE asUTF-8,use:utf8 or:encoding(UTF-8) . :utf8 just marks the data
asUTF-8 without further checking, whileencoding(UTF-8) checks the data for actually being
valid UTF-8. More details can be found in PerllO::encoding.

In general,binmode()should be called afteopen() but before ay I/O is done on the filehandle.
Calling binmode()normally flushes anpending luffered output data (and perhaps pending input data)
on the handle. An exception to this is tlecoding layer that changes the default character
encoding of the handle; séegen’. The :encoding layer sometimes needs to be called in mid-
stream, and it doedrflush the streamThe :encoding also implicitly pushes on top of itself the
:utf8 layer because internally Perl operates on UTF8-encoded Unicode characters.

The operating system, device wdris, C libraries, and Perl run-time system all conspire to let the
programmer treat a single character) as he line terminatqgrirrespectie o external representation.
On maly operating systems, the natitext file representation matches the internal representation, b
on some platforms the external representatidn as made up of more than one character.

All variants of Unix, MacOS(old and new), and Stream_LF files\¥MS use a single character to end
each line in the external representation of texer{ethough that single character GARRIAGE
RETURN on old, pre-Darwin fhaors of MacOS, and isLINE FEED on Unix and mosVMS files). In
other systems lik0S/2, DOS,and the various flars of MS-Wndows, your program sees\a as a
simple\cJ , but whats gored in text files are the twcharacteracM\cJ . That means that if you
don't usebinmode()on these system&M\cJ sequences on disk will be a@nted to\n on input,
and ag \n in your program will be corerted back tdcM\cJ on output. This is what you want for
text files, but it can be disastrous for binary files.

Another consequence of usibgnmode()(on some systems) is that special end-of-file exarkvill be
seen as part of the data streadfor systems from the Microsoft family this means that, if your binary
data containcZ , the 1/0 subsystem will gard it as the end of the file, unless you bsenode()

binmode()is important not only foreadline() and print() operations, but also when usingad(),
seek() sysread() syswrite()andtell() (see perlport for more details). See $ieand$\ variables in
perlvar for hev to manually set your input and output line-termination sequences.

Portability issues: “binmodein perlport.

blessREF,CLASSNAME
blessREF

This function tells the thingy referenced RgFthat it is nev an dject in theCLASSNAME package.

If CLASSNAME is omitted, the current package is used. Becaudess is often the last thing in a
constructor it returns the reference for ommience. AWays use the te-agument version if a
derived dass might inherit the function doing the blessitf®ee perlobj for more about the blessing
(and blessings) of objects.

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Consider alays blessing objects in CLASSNAMEs that are mixed case. Namespaces with all
lowercase names are considered reserved for Perl pragmata. Builtin typedi bppercase names.

To prevent confusion, you may wish toveid such package names as weMake sure that
CLASSNAME is a true value.

See “Perl Modules$in perimod.

break
Break out of ayiven() block.

This keyword is enabled by th&switch" feature; see feature for more information"switch"
You can also access it by prefixing it WiBORE::. Alternatvely, include ause v5.10 or later to
the current scope.

callerEXPR

caller
Returns the context of the current subroutine call. In scalar context, returns the patleage name
if thereis a aller (that is, if we're in a subroutine eval or require) and the undefinedalue
otherwise. Irlist context, returns

0 1 2
($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the wigdper uses to print a stack trace. Th&tug
of EXPRindicates har mary call frames to go back before the current one.

0 1 2 3 4
($package, $filename, $line, $subroutine, $hasargs,

5 6 7 8 9 10
$wantarray, $evaltext, $is_require, $hints, $hitmask, $hinthash)
= caller($i);
Here$subroutine may be(eval) if the frame is not a subroutine call, buteral . In such a
case additional elemenfevaltext and $is_require are set:$is_require is true if the
frame is created byrmequire oruse statement$evaltext contains the text of theval EXPR
statement. Inparticular for an eval BLOCK statement, $subroutine is (eval) , but

$evaltext is undefined. (Note also that easbe statement createsraquire frame inside an
eval EXPR frame.) $subroutine may also bgunknown) if this particular subroutine happens
to have been deleted from the symbol tabBhasargs is true if a nev instance of@_was st up for
the frame. $hints and $bitmask contain pragmatic hints that the calleasvcompiled with.
$hints corresponds t&H , and $bitmask corresponds t8{"WARNING_BITS} . The $hints
and$bitmask values are subject to change between versions of Perl, and are not meatarfal e
use.

$hinthash is a reference to a hash containing the valug&df when the caller was compiled, or
undef if %"Hwas enpty. Do not modify the values of this hash, asytlaee the actual values stored
in the optree.

Furthermore, when called from within tiB package in list coni, and with an argument, caller
returns more detailed information: it sets the lestiable@DB::args to be the arguments with which
the subroutine waswoked.

Be avare that the optimizer might taa gotimized call frameswaay beforecaller had a chance to
get the information. That means thuatler(N) might not return information about the call frame
you expect it to, foN > 1. In particular, @DB::args might hare information from the prgous
timecaller was alled.

Be avare that setting@DB::args is best efort, intended for debugging or generating backtraces, and
should not be relied upon. In particylas @_contains aliases to the callegrguments, Perl does not
take a opy of @, so @DB::args will contain modifications the subroutine makes@p or its
contents, not the original values at call tim@DB::args , like @, does not hold explicit references
to its elements, so under certain cases its elements meaydeome freed and reallocated for other
variables or temporaryalues. Finallya sde effect of the current implementation is that tHea$ of
shift @ cannormallybe undone (but ngiop @ __ or other splicingand not if a reference t@ _

perl v5.18.2 2014-01-06 101

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

102

has been tan, and subject to the aaat about reallocated elements), @DB::args is actually a
hybrid of the current state and initial state@f. Buyer bevare.

chdirEXPR

chdir FILEHANDLE

chdir DIRHANDLE

chdir
Changes the orking directory toEXPR, if possible. If EXPR is omitted, changes to the directory
specified by$SENV{HOME} if set; if not, changes to the directory specified 4#5NV{LOGDIR}.
(UndervMs, the variable3ENV{SYS$LOGIN} is also cheald, and used if it is set.) If neither is set,
chdir does nothing. It returns true on success, false otherwise. See the examptieunder

On systems that suppddhdir(2), you may pass a filehandle or directory handle as theremt. On
systems that dohsupportfchdir (2), passing handles raises an exception.

chmodLIST
Changes the permissions of a list of fil&he first element of the list must be the numeric mode,
which should probably be an octal numbkaed which definitely shouldot be a string of octal digits:
0644 is okay but "0644" is not. Returns the number of files successfully changed. SeéaaiSo
if all you have is a $ring.

$cnt = chmod 0755, "foo", "bar";

chmod 0755, @executables;

$mode = "0644"; chmod $mode, "foo"; # ! 1l sets mode to
——wW——r-T

$mode = "0644"; chmod oct($mode), "foo"; # this is better

$mode = 0644, chmod $mode, "foo"; # t his is best

On systems that suppdadhmod2), you may pass filehandles among the files. On systems that don’
supportfchmod2), passing filehandles raises awaption. Filehandlemust be passed as globs or
glob references to be recognized; bamels are considered filenames.

open(my $fh, "<", "foo");
my $perm = (stat $th)[2] & 07777;
chmod($perm | 0600, $fh);

You can also import the symbol _I* constants from thEcntl module:

use Fentl gw(:mode);
chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTHI|S_IXOTH, @executables;
| dentical to the chmod 0755 of the example above.

Portability issues: “chmodin perlport.

chompVARIABLE

chomp(LIST)

chomp
This safer version ofchop” removes any trailing string that corresponds to the current valu&/of
(also known as$INPUT_RECORD_SEPARATOR the English module). Itreturns the total
number of characters rerml from all its aguments. 18 dten used to reme the newline from the
end of an input record when you're worried that the final record may be missing/litsenéWhenin
paragraph mode$(="), it removes dl trailing newlines from the string. When in slurp mode
($/ = undef) or fixed-length record mode$(is a reference to an irger or the like; see pedv)
chomp()won’t remove anything. If VARIABLE is omitted, it chomp$. Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);
..

}
If VARIABLE is a hash, it chomps the haskaélues, but not itseys.

You can actually chomp anything thatn alue, including an assignment:

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

chomp($cwd = "pwd);
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characteeslisneaturned.

Note that parentheses are necessary when you're chompijtigngnthat is not a simpleaviable.

This is becausehomp $cwd = "pwd’; is interpreted agchomp $cwd) = "pwd’; , rather
than aschomp($cwd = pwd’) which you might gpect. Similarly chomp $a, $b is
interpreted ashomp($a), $b rather than ashomp($a, $b)

ChopVARIABLE

chop(LIST)

chop

Chops of the last character of a string and returns the character chofipednuch more dicient
thans/.$//s because it neither scans nor copies the stfh§yARIABLE is omitted, chop$. If
VARIABLE is a hash, it chops the haskalues, but not itseys.

You can actually chop anything thatan /alue, including an assignment.
If you chop a list, each element is chopped. Only the value of thehiagtis returned.

Note that chop returns the last characterTo return all but the last charactetuse
substr($string, 0, —1)

See also “chomp”.

chownLIST
Changes the owner (and group) of a list of fil€ke first two dements of the list must be themeric
uid and gid, in that orderA value of -1 in either position is interpreted by most systems te ltbat
value unchanged. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo’, 'bar’;
chown $uid, $gid, @filenames;

On systems that suppddhown(2), you may pass filehandles among the files. On systems that don’
supportfchown(2), passing filehandles raises acaption. Filehandlemust be passed as globs or
glob references to be recognized; bamels are considered filenames.

Heres an @ample that looks up nonnumeric uids in the passwd file:

print "User: ";

chomp($user = <STDIN>);
print "Files: ";
chomp($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not aléa to change the ownership of the file unless you're the superuser
although you should be able to change the group yoo&ryour secondary groups. On insecure
systems, these restrictions may be relaxed, but this is not a portable assu@ptRDSIX systems,

you can detect this condition this way:

use POSIX qw(sysconf PC_CHOWN_RESTRICTED);
$can_chown_giveaway = not sysconf(_ PC_CHOWN_RESTRICTED);

Portability issues: “chmodin perlport.

chrNUMBER
chr Returns the character represented by H#VBER in the character set-or example,chr(65) s
"A" in eitherASCIl or Unicode, and chr(0x263a) is a Unicode synikce.

Negative values gie the Unicode replacement character (Oxfffd)), except under the bytes pragma,
where the lav eight bits of the value (truncated to an integer) are used.

perl v5.18.2 2014-01-06 103

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

104

If NUMBER is omitted, use$.
For the reverse, use “ord”.

Note that characters from 128 to 255 (inalepiare by default internally not encoded @sF-8 for
backward compatibility reasons.

See perlunicode for more about Unicode.

chrootFILENAME

chroot
This function works like the system call by the same name: it esathe named directory theweoot
directory for all further pathnames that begin with by your process and all its childre(it doesnt
change your current working directprwhich is unaflected.) ©r security reasons, this call is
restricted to the superusdf FILENAME is omitted, does ehroot to$.

Portability issues: “chrootin perlport.

closeFILEHANDLE

close
Closes the file or pipe associated with the filehandle, flushee théfers, and closes the system file
descriptor Returns true if those operations succeed and if no emmsrreported by gnPerllO layer
Closes the currently selected filehandle if the argument is omitted.

You don't haveto closeFILEHANDLE if you are immediately going to do anotlegren on it, because
open closes it for you. (See openblowever, an explicit close on an input file resets the line
counter §.), while the implicit close done lgpen does not.

If the filehandle came from a piped opeigse returns false if one of the other syscallgoimed

fails or if its program gits with non-zero status. If the only problem was that the program exited non-
zero,$! will be set to0. Closing a pipe also waits for the procegsceiting on the pipe tox@ —in

case you wish to look at the output of the pipe afietde— andmplicitly puts the exit status value of
that command int@? and${"CHILD_ERROR_NATIVE} .

If there are multiple threads runningpse on a filehandle from a piped open returns true without
waiting for the child process to terminate, if the filehandle is still open in another thread.

Closing the read end of a pipe before the process writing to it at the other end is done writing results in
the writer receiving &IGPIPE. If the other end cathandle that, be sure to read all the data before
closing the pipe.

Example:
open(OUTPUT, '|sort >foo") # pipe to sort
or die "Can't start sort: $!";
#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
: " Exit status $? from sort";
open(INPUT, 'foo") # get sort's results
or die "Can't open 'foo’ for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually the real
filehandle name or an autovivified handle.

closedirDIRHANDLE
Closes a directory opened bgendir and returns the success of that system call.

connectSOCKET,NAME
Attempts to connect to a remote setkjust like connec(2). Returnstrue if it succeeded,afse
otherwise.NAME should be a paed address of the appropriate type for the esbcBedhe examples
in “Sockets: Client/Server Communicatiomi perlipc.

continueBLOCK

continue
When followed by &LOCK, continue is actually a flav control statement rather than a functidh.
there is acontinue BLOCK attached to &LOCK (typically in awhile orforeach), itis always

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

executed just before the conditional is about to bauated again, just li the third part of dor
loop in C. Thus it can be used to increment a loaable, @en when the loop has been continued
via thenext statement (which is similar to thed®ntinue statement).

last , next ,orredo may appear within aontinue block;last andredo behae @ if they had
been &ecuted within the main block. So witlext , but since it will execute acontinue block, it
may be more entertaining.

while (EXPR) {
redo always comes here
do_something;
} ¢ ontinue {
next always comes here
do_something_else;
t hen back the top to re-check EXPR
}

last always comes here

Omitting thecontinue section is eqwalent to using an empty one, logically enoughnegt goes
directly back to check the condition at the top of the loop.

When there is n@LOCK, continue is a function that falls through the curraviten or default
block instead of iterating a dynamically enclosfogeach or exiting a lexically enclosingiven .
In Perl 5.14 and earligthis form ofcontinue was oly available when thé'switch" feature vas
enabled. Sefeature and “Switch Statemeritsi perlsyn for more information.

gng)Ig;?urns the cosine BXPR (expressed in radians). BXPRis omitted, takes the cosine $f.
For the inverse cosine operation, you may use Math::Trig::acos() function, or use this
relation:
sub acos { atan2(sqrt(1 = $_[0] *$_[O]), $_[0]) }
crypt PLAINTEXT,SALT

Creates a digest string exactlydithe crypt(3) function in the C library (assuming that you actually
have a vesion there that has not been extirpated as a potential munition).

crypt() is a one-way hash functiorhe PLAINTEXT andSALT are turned into a short string, called a
digest, which is returned. The samBAINTEXT and SALT will always return the same stringutb
there is no (known) way to get the origirLAINTEXT from the hash.Small changes in the
PLAINTEXT or SALT will result in large changes in the digest.

There is no decrypt function. This function isdall that useful for cryptograph(for that, look for
Crypt modules on your nearlPAN mirror) and the nameéctypt” is a bit of a misnomer Instead it

is primarily used to check if tovpieces of text are the same without having to transmit or storexthe te
itself. An example is checking if a correct password igegi Thedigest of the password is stored,
not the password itselfThe user types in a password thatrgpt()d with the same salt as the stored
digest. Ifthe two digests match, the password is correct.

When verifying an @sting digest string you should use the digest as the saltcflpt(Splain,

$digest) eq $digest). TheSALT used to create the digest is visible as part of the digéss.
ensurescrypt() will hash the ne string with the same salt as the dige$his allows your code to

work with the standard crypt and with more exotic implementations. In other words, assume nothing
about the returned string itself nor abouvhmary bytes of SALT may matter.

Traditionally the result is a string of 13 bytesotfirst bytes of the salt, followed by 11 bytes from the
set[./0-9A-Za-z] , and only the first eight bytes ®LAINTEXT mattered. Bualternatve hashing
schemes (lik MD5), higher leel security schemes (lk C2), and implementations on non-Unix
platforms may produce different strings.

When choosing a mesalt create a random twcharacter string whose characters come from the set
[./0-9A-Za-Z] (like join ", (", '/', 0..9, 'A'..'Z", 'a"..'z")[rand

64, rand 64]). Thisset of characters is just a recommendation; the characters allowed in the salt
depend solely on your systesttypt library, and Perl cant’restrict what saltsrypt() accepts.

perl v5.18.2 2014-01-06 105

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

106

Heres an gample that makes sure that wheeruns this program knows their password:
$pwd = (getpwuid($<))[1];

system "stty —echo";

print "Password: ";
chomp($word = <STDIN>);
print "\n";

system "stty echo";

if (crypt($word, $pwd) ne $pwd) {

die "Sorry..\n";
} else{
print "ok\n";

}

Of course, typing in your own password to whaeasks you for it is unwise.

The crypt function is unsuitable for hashing large quantities of data, not least of all becausetyou can’
get the information back. Look at the Digest module for more robust algorithms.

If using crypt() on a Unicode string (whichotentiallyhas characters with codepoints ad@55), Perl
tries to mak snse of the situation by trying to downgrade (ayoafp the string back to an eight-bit
byte string before callingrypt() (on that cop). If that works, good. If notrypt() dies withWide
character in crypt

Portability issues: “crypt'in perlport.

dbmcloseHASH

[This function has been largely superseded bytiiee function.]
Breaks the binding betweerbaM file and a hash.

Portability issues: “dbmcloseih perlport.

dbmoperHASH,DBNAME,MASK

[This function has been largely superseded by the tie function.]

This binds adbm(3), ndbm(3), sdbm(3), gdbm(3), or Berleley DB file to a hash.HASH is the name
of the hash.(Unlike normal open, the first agument isnot a fiehandle, een though it looks lile
one). DBNAME is the name of the database (without.tfieor .pagextension if a). If the database
does not exist, it is created with protection specifiedViysK (as modified by thaimask). To
prevent creation of the database if it dogsXist, you may specify ®IODE of 0, and the function will
return a false value if it canfind an &isting database. If your system supports only the dbdn
functions, you may makonly onedbmopen call in your program. In older versions of Perl, if your
system had neithebBM nor ndbm, callingdbmopen produced a fatal error; it mofalls back to
sdbm(3).

If you dont havewrite access to theBM file, you can only read hash variables, not set them. If you
want to test whether you can write, either use file tests or try setting a dummy hash entry inside an
eval to trap the error.

Note that functions such &eys andvalues may return huge lists when used org&bBM files.
You may prefer to use theach function to iterate wer largeDBM files. Example:

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history',0666);
while (($key,$val) = each %HIST) {

print $key, ' ="', unpack('L',$val), "\n";
}
dbmclose(%HIST);

See also AyDBM_File for a more general description of the pros and cons of the various dbm
approaches, as well as DB_File for a particularly rich implementation.

You can control whictDBM library you use by loading that library before you chlinopen()

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use DB_File;
dbmopen(%NS_Hist, "SENV{HOMEY}/.netscape/history.db")
or die "Can't open netscape history file: $!";

Portability issues: “dbmopehin perlport.

definedEXPR
defined

Returns a Boolean value telling whetl@PR has a alue other than the undefinedlveundef . If
EXPRis not present$_ is checked.

Many operations returmndef to indicate &ilure, end of file, system erraminitialized variable, and
other exceptional conditions. This function allows you to distinguistief from other alues. (A

simple Boolean test will not distinguish amamgdef , zero, the empty string, arl@" , which are all

equally filse.) Notethat sinceundef is a valid scalarits presence doesnmecessarilyindicate an

exceptional conditionpop returnsundef when its argument is an empty arraywhen the element
to return happens to hmdef .

You may also usalefined(&func) to check whether subroutir&func has &er been defined.
The return value is unaffected byydiorward declarations a&func . A subroutine that is not defined
may still be callable: its package maywaan AUTOLOADnethod that mads it spring into xdstence
the first time that it is called; see perlsub.

Use ofdefined on aggrgaes (hashes and arrays) is deprecatedsed to report whether memory
for that aggrgate had ger been allocated. This behavior may disappear in future versions of Perl.
You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (Yoa_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whetkgretigtkin
the hash. Use “existsf or the latter purpose.

Examples:

print if defined $switch{D};
print "$val\n" while defined($val = pop(@ary));
die "Can't readlink $sym: $!"
unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Mary folks tend to verusedefined and are then surprised to digeothat the numbe®d and
" (the zero-length string) are, in fact, definedlses. Br example, if you say

"ab" =" /a(.*)b/;

The pattern match succeeds &idis defined, although it matchedaothing”. It didn't really fail to

match agthing. Ratherit matched something that happened to be zero characters Tbigyis all
very abore-board and honest. When a function returns an undefined vatuanitimission that it
couldnt give you an honest answego you should uséefined only when questioning the irggty

of what you're trying to do. At other times, a simple comparisdhdo™ is what you want.

See also'indef”, “exists”, ‘ ‘ref”.

deleteEXPR

perl v5.18.2

Given an «pression that specifies an element or slice of a hdelete deletes the specified
elements from that hash so tlesiists() on that element no longer returns true. Setting a hash element
to the undefined value does not remmdis key, but deleting it does; see “exists”.

In list context, returns the value oalues deleted, or the last such element in scalar xtonide
return lists length alvays matches that of the argument list: deleting nastent elements returns the
undefined value in their corresponding positions.

delete()may also be used on arrays and array slices, but its behavior is less straggttfokithough
exsts() will return false for deleted entries, deleting array elementsrrahanges indices ofxesting
values; useshift() or splice()for that. However, if all deleted elements fall at the end of an arthg

2014-01-06 107

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

array’s 9ze shrinks to the position of the highest element that still tests tregigts(), or to O if none
do.

WARNING: Calling delete on array values is deprecated and likely to bevednroa future \ersion of
Perl.

Deleting from%ENVMmModifies the erironment. Deletingrom a hash tied to BBM file deletes the
entry from theDBM file. Deletingfrom atied hash or array may not necessarily return anything; it
depends on the implementation of tied package'sDELETE method, which may do whater it
pleases.

The delete local EXPR construct localizes the deletion to the current block at run tidil
the block exits, elements locally deleted temporarily no longest.e See” Localized deletion of
elements of composite typéisi perlsub.

%hash = (foo => 11, bar => 22, baz => 33);

$scalar = delete $hash{foo}; # $scalaris 11
$scalar = delete @hash{gw(foo bar)}; # $scalar is 22

@array = delete @hash{gw(foo baz)}; # @array is (undef,33)

The following (inefficiently) deletes all the values%HASHNd@ARRAY:
foreach $key (keys %HASH) {

delete SHASH{$key};

}

foreach $index (0 .. $#ARRAY) {
delete SARRAY[$index];

}

And so do these:
delete @HASH{keys %HASH};

delete @ARRAY]O .. $#ARRAY];

But both are slower than assigning the empty list or undefitihlASHr @ARRAYWhich is the
customary way to empty out an aggpgie:

%HASH = (); # completely empty %HASH
undef %HASH; # f orget %HASH ever existed
@ARRAY = (); # completely empty @ARRAY

undef @ARRAY; # f orget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its final operation is an element or slice of an
aggrgate:

delete $ref—>[$x][$y[{$key};
delete @{$ref->[$x][$y]{$keyl, $key2, @morekeys};

delete $ref->[$x][$y][$index];
delete @{$ref->[$x][Sy]}$Sindex1, $index2, @moreindices];

dieLIST
die raises an xception. Insidean eval the error message is stuffed irb@ and theeval is
terminated with the undefinedalue. If the exception is outside of all enclosiegal s, then the
uncaught exception printdST to STDERRand exits with a non-zeraalue. Ifyou need to xt the
process with a specific exit code, see “exit”.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
chdir ‘/usr/spool/news' or die "Can't cd to spool: $1\n"

If the last element ofIST does not end in a newline, the current script line humber and input line
number (if any) are also printed, and a newline is suppldmte that the “input line numbeér(also

108 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

known as ‘chunk”) is subject to whateer notion of “line’’ happens to be currently in effect, and is
also aailable as the special varialfie . See “$/” in perlvar and “$ i n perlvar.

Hint: sometimes appendirig stopped" to your message will cause it to nealietter sense when
the string'at foo line 123" is appended. Suppose you are running script “canasta”.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectly

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

If the output is empty anfi@already contains a value (typically from a previoud)ethat value is
reused after appenditiy...propagated" . This is useful for propagating exceptions:

eval {.. };
die unless $@ =" /Expected exception/;

If the output is empty an8@ contains an object reference that haBROPAGATEHnethod, that
method will be called with additional file and line number parameters. The return value replaces the
vaue in$@ i.e., as ifP@ = eval { $@—>PROPAGATE(_ _FILE_, _ _LINE_) } were

called.

If $@is empty then the strintpied" is used.

If an uncaughteception results in interpreter exit, the exit code is determined from the val@es of
and$? with this pseudocode:

exit $! if $!; # errno
exit $? >> 8 if $? >> 8§; # child exit status
exit 255; # | astresort

The intent is to squeeze as much possible information about the likely cause into the limited space of
the system exit code-owever, s $! is the value of Gerrno , which can be set by grsystem call,

this means that the value of thaétecode used bgie can be non-predictable, so should not be relied
upon, other than to be non-zero.

You can also caldie with a reference argument, and if this is trapped withiewat , $@contains
that reference. This permits more elaborateeption handling using objects that maintain arbitrary
state about thexeeption. Sucla ssheme is sometimes preferable to matching particular stalugs

of $@with regular &pressions. Becausg@is a global variable aneval may be used within object
implementations, be careful that analyzing the error object daegace the reference in the global
variable. It's easiest to mak a bcal coly of the reference before wmmanipulations. Hers' an
example:

use Scalar::Util "blessed";

eval { ... ; die Some::Module::Exception—>new(FOO => "bar") };
if (my $ev_err = $@) {
if (blessed($ev_err)
&& $ev_err—>isa("Some::Module::Exception™)) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

Because Perl stringifies uncaught exception messages before,displiyprobably want to werload
stringification operations on exception objects. Sesl@ad for details about that.

You can arrange for a callback to be run just before diee does its deed, by setting the
$SIG{_DIE_} hook. Theassociated handler is called with the errott tnd can change the
error message, if it sees fit, by callidig agin. See' %SIG” in perlvar for details on settingpSIG

perl v5.18.2 2014-01-06 109

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

entries, and‘éval BLOCK” for some gamples. Althoughhis feature was to be run only right before
your program was to exit, this is not currently so: $8%G{ DIE_} hook is currently called
evaen insideeval()ed blocks/strings! If one wants the hook to do nothing in such situations, put

die @_if$°S;
as the first line of the handler (sé®"S” in perlvar). Becausdhis promotes strange action at a
distance, this counterintuit behavior may be fixed in a future release.

See als@xt(), warn(), and the Carp module.

doBLOCK
Not really a function.Returns the value of the last command in the sequence of commands indicated
by BLOCK. When modified by thevhile oruntil loop modifier executes theBLOCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do BLOCK doesnot count as a loop, so the loop control statemeeis , last , or redo cannot be
used to lege a restart the block. See perlsyn for altervattrategies.

do SUBROUTINELIST)
This form of subroutine call is deprecatezl)BROUTINEcan be a baveord or scalar variable.

doEXPR
Uses the value dXPRas a filename andecutes the contents of the file as a Perl script.

do 'stat.pl’;
is largely like
eval “cat stat.pl’;

except that its nore concise, runs no external processespk track of the current filename for error
messages, searches fENCdirectories, and updaté@sINC if the file is found. See ‘@INC" in
perivar and ‘%INC" in perlvar for these ariables. Italso differs in that codeveuated withdo
FILENAME cannot see lexicals in the enclosing scapel STRING does. Its the same, heever,

in that it does reparse the filgegy time you call it, so you probably ddanvant to do this inside a
loop.

If do can read the file but cannot compile it, it retunglef and sets an error messagé$@ If do
cannot read the file, it returns undef and $&tdo the error Always check$@first, as compilation
could fail in a way that also se$$. If the file is successfully compiledp returns the value of the
last expressionvaluated.

Inclusion of library modules is better done with thee andrequire operators, which also do
automatic error checking and raise an exception if tharg'oblem.

You might like to tsedo to read in a program configuration file. Manual error checking can be done
this way:

r ead in config files: system first, then user
for $file ("/share/prog/defaults.rc”,
"$ENV{HOME}/.someprogrc")

{
unless ($return = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't do $file: $!" unless defined $return;
warn "couldn't run $file" unless $return;
}
}
dumpLABEL
dumpEXPR

dump
This function causes an immediate core dump. See alseulmmmand-line switch in perlrun,
which does the same thing. Primarily this is so that you can ussthenp program (not supplied)
to turn your core dump into arxeeutable binary after having initialized all youanables at the
beginning of the program.When the ne binary is eecuted it will begin by recuting agoto

110 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

LABEL (with all the restrictions thagoto suffers). Thinkof it as a goto with an intervening core
dump and reincarnationlf LABEL is omitted, restarts the program from the tdpe dump EXPR
form, available starting in Perl 5.18.0, alle a name to be computed at run time, being otherwise
identical todump LABEL.

WARNING: Any files opened at the time of the dump wiidit be open aymore when the program is
reincarnated, with possible resulting confusion by Perl.

This function is nw largely obsolete, mostly becausesitlery hard to covert a core file into an
executable. Thas why you should nar invdke it as CORE::dump() , if you dont want to be varned
against a possible typo.

Unlike nost named operators, this has the same precedence as assignment. Ik@ngistran the
looks-like-a-function rule, sdump (“foo")."bar" will cause ‘bar” to be part of the agument
to dump.

Portability issues: “dumpin perlport.

eachHASH
eachARRAY
eachEXPR

perl v5.18.2

When called on a hash in list coxttereturns a 2—element list consisting of they lend value for the
next element of a hashin Perl 5.12 and later onlit will also return the indeand value for the nd

element of an array so that you can iterater @t; older Perls consider this a syntax err@vhen

called in scalar context, returns only they Knot the value) in a hash, or the irde an aray.

Hash entries are returned in an apparently random.ofider actual random order is specific to a
given hash; the gact same series of operations om twmshes may result in a different order for each
hash. Ary insertion into the hash may change the qraemill any deletion, with the exception that
the most recentdy returned byeach or keys may be deleted without changing the or& long as

a gven hash is unmodified you may rely émys , values andeach to repeatedly return the same
order as each othe®ee ‘Algorithmic Complexity Attacks'in perlsec for details on whhash order is
randomized. Aside from the guaranteesvjuted here the exact details of PeHash algorithm and the
hash traersal order are subject to change iy eglease of Perl.

After each has returned all entries from the hash or atfeynext call teach returns the empty list
in list context andundef in scalar context; the next call foling that one restarts iterationEach
hash or array has its own internal iteratmcessed byach, keys , and values . The iterator is
implicitly reset whereach has reached the end as just described; it caxgieidy reset by calling
keys orvalues on the hash or arrayf you add or delete a hashdements while iteratingwer it,
entries may be skipped or duplicatedso don’t do that. Exceptionin the current implementation, it
is always safe to delete the item most recently returneegdsh() , so te folloving code verks
properly:

while (($key, $value) = each %hash) {

print $key, "\n";

delete $hash{$key}; # This is safe
}

This prints out your environment &khe printenv(1) program, but in a different order:

while (($key,$value) = each %ENV) {
print "$key=%$value\n";
}

Starting with Perl 5.14each can tale a £alarEXPR,which must hold reference to an unblessed hash
or array The argument will be dereferenced automaticallis aspect oéach is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

while (($key,$value) = each $hashref) { ... }

As of Perl 5.18 you can use a baeeh in awhile loop, which will sets_ on every iteration.

2014-01-06 111

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

112

while(each %ENV) {
print "$_=$ENV{$_H}n";
}

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.012; # so k eys/values/each work on arrays
use 5.014; # so k eys/values/each work on scalars (experimental)
use 5.018; # so each assigns to $_ in a lone while test

See alskeys , values , andsort .

eof FILEHANDLE

eof ()

eof Returns 1 if the next read dnLEHANDLE will return end of fileor if FILEHANDLE is not open.
FILEHANDLE may be an expression whosalue gves the real filehandle. (Note that this function
actually reads a character and tlhiigetc s it, so isnt useful in an interacte @ntext.) Do not read
from a terminal file (or cakkof(FILEHANDLE) on it) after end-of-file is reached. File types such as
terminals may lose the end-of-file condition if you do.

An eof without an agument uses the last file reatllsing eof() with empty parentheses is
different. Itrefers to the pseudo file formed from the files listed on the command line and accessed via
the<> operator Since <> isn't explicitly opened, as a normal filehandle is,enf() before<> has

been used will caus@ARGYb be examined to determine if input igidable. Similarly an eof()

after <> has returned end-of-file will assume you are processing an@WdRGVist, and if you

haven't set @ARGWvill read input fromSTDIN; see “I/O Operators'in perlop.

In awhile (<>) loop, eof or eof(ARGV) can be used to detect the end of each file, whereas
eof() will detect the end of the very last file onligxamples:

r eset line numbering on each input file

while (<>) {
next if /\s*#/; # skip comments
print "$.\t$_";
} ¢ ontinue {
close ARGV if eof; # Not eof()!
}
i nsert dashes just before last line of last file
while (<>) {
if (eof()) { # check for end of last file
print " \n";
} .
print;
last if eof(); # needed if we're reading from a terminal
}

Practical hint: you almost xmer need to useof in Perl, because the input operators typically return
undef when thg run out of data or encounter an error.

evd EXPR

evd BLOCK

evd
In the first form, the return value &XPRis parsed andxecuted as if it were a little Perl program.
The value of the expression (which is itself determined within scalarxtpigefirst parsed, and if
there were no errorsxecuted as a block within the lexical context of the current Perl progiidnis.
means, that in particulaany outer lexical variables are visible to it, and/ggackage variable settings
or subroutine and format definitions remain afterwards.

Note that the value is parsedesy time theeval executes. IfEXPRis omitted, galuates$. This
form is typically used to delay parsing and subsequastugion of the text oEXPRuntil run time.

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

If the unicode_eval feature is enabled (which is the default undeuse 5.16 or higher
declaration),EXPR or $_ is treated as a string of characters,use utf8 declarations hae o

effect, and source filters are forbidden. the absence of thenicode_eval feature, the string will
sometimes be treated as characters and sometimes as bytes, depending on the internal encoding, and
source filters aotated within theeval exhibit the erratic, but historical, behaviour of affecting some

outer file scope that is still compiling. See also thealbytes’ keyword, which alvays treats its input

as a byte stream and works properly with source filters, and the feature pragma.

In the second form, the code within tBeOCK is parsed only once-at the same time the code
surrounding theeval itself was parsed-and executed within the context of the current Perl
program. Thisform is typically used to trap exceptions moréceédntly than the first (see bel,
while also providing the benefit of checking the code wiBli@CK at compile time.

The final semicolon, if an may be omitted from the value BXPR or within theBLOCK.

In both forms, the alue returned is the value of the last expressialuated inside the mini-program;

a return statement may be also used, just as with subroutines. The expression providing the return
value is auated in void, scalaror list context, depending on the context of thal itself. See
“wantarray’ for more on hw the ezaluation context can be determined.

If there is a syntax error or runtime egror adie statement is>acuted,eval returnsundef in
scalar context or an empty list in list cortteand$@is set to the error message. (Prior to 5.16)@ b
causedundef to be returned in list context for syntax errors, but not for runtime errors.) If tlaere w
no error $@is set to the empty stringA control flov operator lile last or goto can bypass the
setting of$@ Bewae that usingeval neither silences Perl from printingawiings toSTDERR, nor
does it stuf the text of warning messages irf@ To do dther of those, you he t use the
$SIG{__WARN_} facility, or turn of warnings inside theBLOCK or EXPR using

no warnings 'all’ . See “warn”, perlvar warnings and perllexwarn.

Note that, becauseval traps otherwise-fatal errors, it is useful for determining whether a particular
feature (such asocket or symlink) is implemented. Itis also Perb exception-trapping
mechanism, where the die operator is used to raise exceptions.

If you want to trap errors when loading &8 module, some problems with the binary interface (such
as Perl version &) may be fatal een with eval unlessSENV{PERL_DL_NONLAZY]Jis set. See
perlrun.

If the code to beecuted doest’vary, you may use theval-BLOCK form to trap run-time errors
without incurring the penalty of recompiling each time. The eiifoany, is dill returned in$@
Examples:

make divide—by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b'; warn $@ if $@;

a compile-time error
eval { $answer = }; # WRONG

a r un—time error
eval '$answer ='; # sets 3@

Using theeval{} form as an exception trap in libraries doesehaome issues. Due to the current
arguably broken state of DIE__ hooks, you may wish not to triggeryan DIE__ hooks that
user code may ke installed. Yu can use thdocal $SIG{_ _DIE_} construct for this
purpose, as this example shows:

a private exception trap for divide—by-zero
eval { local $SIG{"_ _DIE_ '} $answer = $a / $b; };
warn $@ if $@;

This is especially significant,\gn that _DIE__ hooks can caltlie again, which has the effect of
changing their error messages:

perl v5.18.2 2014-01-06 113

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

114

__DIE__ hooks may modify error messages

{
local $SIG{"_ _DIE_1Y =
sub { (my $x = $_[0]) =" s/foo/bar/g; die $x };
eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"
}

Because this promotes action at a distance, this counteviatbiéhavior may be fixed in a future
release.

With aneval , you should be especially careful to remember \ghaing looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2
eval '$x’; # CASE 3
eval { $x }; # CASE 4
eval "\$$x++"; # CASE 5
$x++; # CASE®6

Cases 1 and 2 abe behave identically: thg run the code contained in thariable$x. (Although

case 2 has misleading double quotes making the reashelewwhat else might be happening (nothing

is).) Cases and 4 likewise behge in the same way: tlyerun the codebx' , which does nothingui

return the alue of$x. (Case 4 is preferred for purely visual reasons, but it also has the advantage of
compiling at compile-time instead of at run-time.) Case 5 is a place where normaliyoytillike to

use double quotes, except that in this particular situation, you can just use symbolic references instead,
as in case 6.

Before Perl 5.14, the assignmen®t@occurred before restoration of localizeatiables, which means
that for your code to run on oldeensions, a temporary is required if you want to mask some but not
all errors:

alter $@ on nefarious repugnancy only
{
my $e;
{
local $@; # protect existing $@
eval { test_repugnancy() };
$@ =" /nefarious/ and die $@; # Perl 5.14 and higher only
$@ =" /nefarious/ and $e = $@;
}
die $e if defined $e

}

eval BLOCK doesnotcount as a loop, so the loop control statemeets , last , or redo cannot
be used to leee a restart the block.

An eval " executed within a subroutine defined in ti¥B package doesh’see the usual
surrounding lexical scopeubrather the scope of the first non-DB piece of code that calletbit.
don't normally need to worry about this unless you are writing a Perl debugger.

evdbytesEXPR
evdbytes

This function is lile “eval’” with a string argument, except itwalys parses its argument, $r if
EXPRis omitted, as a string of byte#é string containing characters whose ordinal value exceeds 255
results in an errorSource filters actiated within the ealuated code apply to the code itself.

This function is only @ailable under thevalbytes feature, ause v5.16 (or higher) declaration,
or with aCORE:: prefix. Sedeature for more information.

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

exec LIST

exec PROGRAM LIST
The exec function eecutes a system commaadd never eturns usesystem instead ofexec if
you want it to return. It fails and returnalde only if the command does nadst andit is executed
directly instead of via your systesrommand shell (see below).

Since its a @mmon mistak to e exec instead ofsystem , Perl warns you ifexec is called in
void context and if there is a following statement thattidié , warn, or exit (if —w is set—but
you alvays do that, right?). If yoweally want to follov an exec with some other statement, you can
use one of these styles tooal the warning:

exec ('foo") or print STDERR "couldn't exec foo: $!";
{ e xec (‘foo") }; print STDERR "couldn't exec foo: $!";

If there is more than one argumentLit$T, or if LIST is an array with more than onalwue, calls
execvp(3) with the arguments inIST. If there is only one scalar argument or an array with one
element in it, the argument is checked for shell metacharacters, and if therey,atiee agntire
argument is passed to the systengbmmand shell for parsing (this ibin/sh —c on Unix
platforms, but varies on other platforms). If there are no shell metacharacters iguhmerat; it is
split into words and passed directlyewecvp , which is more dicient. Examples:

exec '/bin/echo’, "Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you dont really want to gecute the first argument, but want to lie to the program youxaceiéng
about its own name, you can specify the program you actually want to run ‘agl@eact object’
(without a comma) in front of theST. (This alvays forces interpretation of théST as a multialued
list, even if there is only a single scalar in the list.) Example:

$shell = '/bin/csh’;
exec $shell '-sh’; # pretend it's a login shell

or, more directly,
exec {'/bin/csh'} '-sh’; # pretend it's a login shell

When the arguments geteeuted via the system shell, results are subject to its quirks and capabilities.
See“ STRING" in perlop for detalils.

Using an indirect object witkxec or system is also more secure. This usage (which alsoke/
fine with system() forces interpretation of the arguments as a mallied list, een if the list had just
one agument. Thatvay you're safe from the shellxpanding wildcards or splitting up words with
whitespace in them.

@args = ("echo surprise");

exec @args; # subject to shell escapes
if @ args ==
exec { $args[0] } @args; # safe even with one-arg list

The first version, the one without the indirect object, raretttmprogram, passing isurprise”
an agument. Thesecond version didn't; it tried to run a program narhedho surprise’, didn’t find
it, and se®? to a non-zero value indicating failure.

Perl attempts to flush all files opened for output before xke, dut this may not be supported on
some platforms (see perlporf)o be safe, you may need to st (FAUTOFLUSH in English) or call
theautoflush() method oflO::Handle on ary open handles tovaid lost output.

Note thatexec will not call yourENDblocks, nor will it irvoke DESTROYnethods on your objects.

Portability issues: “gec” in perlport.

exiStSEXPR
Given an &pression that specifies an element of a hash, returns true if the specified element in the
hash haswer been initialized, een if the corresponding value is undefined.

perl v5.18.2 2014-01-06 115

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

116

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key}

exists may also be called on array elements, but its behavior is much less obvious and is strongly tied
to the use of'delete’ on arrays. Be aware that calling exists on array values is deprecated apty lik
to be remwed in a future version of Perl.

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only 8 d&fined and defined only if it exists, but thease
doesnt necessarily hold true.

Given an pression that specifies the name of a subroutine, returns true if the specified subroutine has
eve been declared,ven if it is undefined. Mentioning subroutine name forxésts or defined does

not count as declaring itNote that a subroutine that does not exist may still be callable: its package
may hae an AUTOLOADnNethod that makes it spring into existence the first time that it is called; see
perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that theEXPR can be arbitrarily complicated as long as the final operation is a hash oreyray k
lookup or subroutine name:

if (exists $ref->{A}->{B}->{$key}) {}
if (exists $hash{A}{B}{$key}) {}
if (exists $ref->{A}->{B}->[$ix]) {1}
if (exists $hash{A{B}[$ix]) {1}
if (exists &{$ref->{AH{BHS$key}}) {1}

Although the most deeply nested array or hash element will not springxiatenee just because its
existence was tested, y@mtenening ones will. Thus$ref->{"A"} and$ref->{"A"}->{"B"}

will spring into existence due to the existence test for&key element abee. This happens
anywhere the arm operator is used, includingen here:

undef $ref;
if (exists $ref->{"Some key"}) {1}
print $ref; # prints HASH(0x80d3d5c)

This surprising autavification in what does not at first or even sescond — glanceppear to be an
Ivalue context may be fixed in a future release.

Use of a subroutine call, rather than a subroutine name, as an argum&is(is an error.

exists ⊂ # OK
exists &sub(); # Error
exit EXPR
exit EvaluatesEXPRand exits immediately with thatlue. Example:

$ans = <STDIN>;
exit 0 if $ans =" /"[Xx]/;

See alsadie . If EXPRis omitted, exits with0 status. Theonly uniersally recognized values for
EXPR are 0 for success and for error; other glues are subject to interpretation depending on the
ernvironment in which the Perl program is runnirfgpr example, exiting 69§X_UNAVA ILABLE) from

a sendmailincoming-mail filter will cause the mailer to return the item uneedid, but thas rot true
evaywhere.

Don't useexit to abort a subroutine if theseay chance that someone might want to trap wrexte
error happened. Ustie instead, which can be trapped byesal .

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

The ext() function does not alays exit immediately It calls ary definedENDroutines first, but these
ENDroutines may not themselves abort tkit. eLikewise aly object destructors that need to be called
are called before the reatie ENDroutines and destructors can change ttiestatus by modifying
$?. If this is a problem, you can cdMOSIX::_exit($status) to avoid END and destructor
processing. Segerlmod for details.

Portability issues: “exit'in perlport.

exp EXPR
exp Returnse (the natural logarithm base) to the poweE®PR. If EXPRis omitted, giesexp($)

fc EXPR
fc Returns the casefolded versionEXPR. This is the internal function implementing ttfe escape in
double-quoted strings.

Casefolding is the process of mapping strings to a form where case differences are erased; comparing
two grings in their casefolded form isfeftively a way of asking if tw grings are equal, gerdless of
case.

Roughly if you ever found yourself writing this

Ic($this) eq Ic($that) # Wong!
or

uc($this) eq uc($that) # Also wrong!
or

$this =~ NQ$that\E\z/i # Right!

Now you can write
fc($this) eq fc($that)
And get the correct results.

Perl only implements the full form of casefoldingjtbyou can access the simple folds using
“ casefold() i n Unicode::UCD and‘prop_invmap() i n Unicode::UCD. Ier further information on
casefolding, refer to the Unicode Standard, specifically sections Bdfawult Case
Operations , 4.2 Case-Normative , and 5.18 Case Mappings , avalable at
<http://www.unicode.orgkrsions/latest/>, as well as the Case Chartgalable at
<http://www.unicode.org/charts/case/>.

If EXPRis omitted, use$_.
This function behees the same way under various pragma, such as in a locale, 'atots.

While the Unicode Standard definestedditional forms of casefolding, one for Turkic languages and
one that neer maps one character into multiple characters, these are not provided by the Perl core;
However, the CPAN moduleUnicode::Casing may be used to provide an implementation.

This keyword is available only when théfc" feature is enabled, or when prefixed WEBORE::;
See feature. Alternatelinclude ause v5.16 or later to the current scope.

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements thécntl (2) function. You'll probably hae o say

use Fcntl;

first to get the correct constant definitionStgument processing and value returneatkjust like
ioctl below. For example:

use Fentl;
fentl($filehandle, F_GETFL, $packed_return_buffer)
or die "can't fcntl F_GETFL: $!";

You don't haveto check fordefined on the return fromicntl . Like ioctl , it maps a0 return
from the system call intt0 but true" in Perl. This string is true in boolean caxtt@andO in
numeric contet. Itis also @empt from the normatw warnings on improper numeric cosrsions.

Note thatfcntl raises an»xeption if used on a machine that doesmplementfcntl (2). Seethe
Fcntl module or youfentl (2) manpage to learn what functions avalable on your system.

perl v5.18.2 2014-01-06 117

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

118

Heres an gample of setting a filehandle namBEMOTEO be non-blocking at the systenvéde
You'll have negotiate$| on your own, though.

use Fentl gw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcnt(REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $\n";

$flags = fentl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can't set flags for the socket: $\n";

Portability issues: “fcntl’in perlport.

__FILE_ _

A special token that returns the name of the file in which it occurs.

fileno FILEHANDLE

Returns the file descriptor for a filehandle, or undefined if the filehandle is not open. If there is no real
file descriptor at th@S level, as can happen with filehandles connected to memory objeatpeia
with a reference for the third argument, -1 is returned.

This is mainly useful for constructing bitmaps feelect and lav-level POSIX tty-handling
operations. IFILEHANDLE is an expression, the value is@akas an indirect filehandle, generally its
name.

You can use this to find out whetherdwandles refer to the same underlying descriptor:

if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";
}

flock FILEHANDLE,OPERATION

Calls flock(2), or an emulation of it, ofFILEHANDLE. Returns true for success, false ailure.
Produces aadtal error if used on a machine that doesmplementflock(2), fentl(2) locking, or
lockf(3). flock is Perls portable file-locking interface, although it locks entire files pmigt
records.

Two potentially non-obvious but traditionfibck semantics are that itaits indefinitely until the
lock is granted, and that its locks anerely advisory. Such discretionary locks are more flexiblef b
offer fewer guarantees. This means that programs that do not aldtoalse may modify files
locked withflock . See perlport, your pos’ecific documentation, and your system-specific local
manpages for detailslt's best to assume traditional behavior if y@uwriting portable programs.
(But if you're not, you should as vedys feel perfectly free to write for your own system’
idiosyncrasies (sometimes callédatures’). Slavish adherence to portability concerns shouldat

in the way of your getting your job done.)

OPERATIONIs one ofLOCK_SH, LOCK_EX,or LOCK_UN, possibly combined withOCK_NB. These
constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic names if you import them
from the Fcntl module, either inddually, or as agroup using theflock tag. LOCK_SHrequests a

shared lockiL.OCK_EX requests anxelusive lock, andLOCK_UN releases a previously requested lock.

If LOCK_NB is bitwise-or'ed withLOCK_SH or LOCK_EX, thenflock returns immediately rather

than blocking waiting for the lock; check the return status to see if you got it.

To avoid the possibility of miscoordination, Perl wmoflushes FILEHANDLE before locking or
unlocking it.

Note that the emulation built withockf(3) doesnt provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semanticslabktf(3) implements. Most if
not all systems implemembckf(3) in terms offcntl(2) locking, though, so the differing semantics
shouldnt bite too mawy people.

Note that thdcntl (2) emulation oflock(3) requires thaEILEHANDLE be open with read intent to use
LOCK_SHand requires that it be open with write intent to LBEK_EX.

Note also that some versionsflafck cannot lock thingser the network; you would need to use
the more system-speciffecntl for that. If you like you can force Perl to ignore your system’

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

flock(2) function, and so pwide its avn fcntl(2)-based emulation, by passing the switch
-Ud_flock to theConfigureprogram when you configure and build avrfeerl.

Heres a mailbox appender foBSD systems.
i mport LOCK_* and SEEK_END constants
use Fentl gw(:flock SEEK _END);

sub lock {
my ($th) = @_;
flock($fh, LOCK_EX) or die "Cannot lock mailbox — $\n";

and, in case someone appended while we were waiting...
seek($fh, 0, SEEK_END) or die "Cannot seek — $1\n";

}
sub unlock {

my ($th) = @_;

flock($fh, LOCK_UN) or die "Cannot unlock mailbox — $1\n";
}

open(my $mbox, ">>", "/usr/spool/mail/$SENV{'USER'}")
or die "Can't open mailbox: $!";

lock($mbox);
print $mbox $msg,"\n\n";
unlock($mbox);

On systems that support a rélatk(2), locks are inherited acroksk() calls, whereas those that must
resort to the more capriciodentl(2) function lose their locks, making it seriously harder to write
servers.

See also DB_File for othdiock()examples.
Portability issues: “flocK’in perlport.

fork
Does afork(2) system call to create amgrocess running the same program at the same plbint.
returns the child pid to the parent procéss) the child process, amdef if the fork is unsuccessful.
File descriptors (and sometimes locks on those descriptors) are sharedyeviildrg else is copied.
On most systems supportirfigrk(), great care has gone into making it extremely efficient (for
example, using copy-on-write technology on data pages), making it the dominant paradigm for
multitasking @er the last fev decades.

Perl attempts to flush all files opened for output before forking the child process, but this may not be
supported on some platforms (see perlpoft).be safe, you may need to s¢f (PAUTOFLUSH in
English) or call thewutoflush() method oflO::Handle on ary open handles tovaid duplicate

output.

If you fork without ever waiting on your children, you will accumulate zombies. On some systems,
you can ®oid this by settingbSIG{CHLD} to "IGNORE". See also perlipc for more examples of
forking and reaping moribund children.

Note that if your forked child inherits system file descriptorsell&TDIN andSTDOUT that are actually
connected by a pipe or socketge if you exit, then the remote server (such as, &&GI script or a
backgrounded job launched from a remote sheil)'tithink you're done.You should reopen those to
/dev/nullif it' s any issue.

On some platforms such asntfows, where thdork() system call is notvailable, Perl can be built to
emulatefork() in the Perl interpreterThe emulation is designed, at thedeof the Perl program, to be
as compatible as possible with th&rix” fork(). Howeve it has limitations that he t© be
considered in code intended to be portable. See perlfork for more details.

Portability issues: “forK’'in perlport.

perl v5.18.2 2014-01-06 119

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

format
Declare a picture format for use by thate function. For example:

format Something =
Test: @<<<<<<<< @||||| @>>>>>
$str, $%, '$" . int($num)

$str = "widget";

$num = $cost/$quantity;
$” ='Something’;

write;

See perlform for mgndetails and examples.

formline PICTURE,LIST
This is an internal function used lyrmat s, though you may call it, too. It formats (see perlform) a
list of values according to the contents RICTURE, placing the output into the format output
accumulator$™A (or PACCUMULATOIR English). Eventually when awrite is done, the contents
of $ A are written to some filehandl&ou could also read”A and then se$”A back to™ . Note
that a format typically does orfermline per line of form, bt the formline function itself
doesnt care hoav mary newlines are embedded in téCTURE. This means that the and™ tokens
treat the entirePICTURE as a single line.You may therefore need to use multiple formlines to
implement a single record format, justditheformat compiler.

Be careful if you put double quotes around the picture, becaugelsaracter may be taken to mean
the beginning of an array namtarmline always returns true. See perlform for other examples.

If you are trying to use this instead wfite to capture the output, you may find it easier to open a
filehandle to a scalaopen $fh, ">", \$output) and write to that instead.

getcFILEHANDLE

getc
Returns the next character from the input file attach&dLEHANDLE, or the undefined value at end
of file or if there was an error (in the latter c&eis set). If FILEHANDLE is omitted, reads from
STDIN. This is not particularly ditient. Havever, it cannot be used by itself to fetch single
characters without waiting for the user to hit entear that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";
}

else {
system "stty",
}

$key = getc(STDIN);

—icanon’, 'eol’, "\001";

if ($BSD_STYLE) {
system "stty —cbreak </dev/tty >/dev/tty 2>&1";
}

else {
system 'stty’, 'icanon’, 'eol’, “@"; # ASCIlI NUL
}
print "\n";
Determination of whetheBSD_STYLEshould be set is left as areecise to the reader.

The POSIX::getattr function can do this more portably on systems purporth@siX
compliance. Sealso theTerm::ReadKey module from your nearestPAN site; details orCPAN
can be found underCPAN" in perlmodlib.

getlogin
This implements the C library function of the same name, which on most systems returns the current
login from/etc/utmpif any. If it returns the empty string, ugetpwuid

120 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

$login = getlogin || getpwuid($<) || "Kilroy";
Do not considegetlogin for authentication: it is not as securegaspwuid

Portability issues: “getloginin perlport.

getpeernam&0OCKET
Returns the packed sockaddr address of the other endb@KET connection.

use Socket;
$hersockaddr = getpeername(SOCK);
($port, Siaddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

getpgrpPID

Returns the current process group for the specified Use aPID of 0 to get the current process
group for the current proces®ill raise an exception if used on a machine that doé@splement
getpgrp(2). If PID is omitted, returns the process group of the current prodéste that thePOSIX
version ofgetpgrp does not acceptRD argument, so onl?ID==0 is truly portable.

Portability issues: “getpgrpin perlport.

getppid
Returns the process id of the parent process.

Note for Linux users: Between v5.8.1 and v5.16.0 Perl woubdk varound non-POSIX thread
semantics the minority of Linux systems (and Debian GNU/kFreeBSD systems) that used
LinuxThreads, this emulation has since been rethoSee the documentation for $$ for details.

Portability issues: “getppidin perlport.

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or. a8segetpriority (2).) Wil raise a
fatal exception if used on a machine that daeismplementgetpriority (2).

Portability issues: “getpriority’in perlport.

getpwnanmNAME
getgrnamNAME
gethostbynamsAME
getnetbynam&lAME
getprotobynam@&AME
getpwuiduID

getgrgidGID
getservbynam&AME,PROTO
gethostbyaddADDR,ADDRTYPE
getnetbyaddADDR,ADDRTYPE
getprotobynumbeXUMBER
getservbyporPORT,PROTO
getpwent

getgrent

gethostent

getnetent

getprotoent

getservent

setpwent

setgrent
sethostenSTAYOPEN
setnetenSTAYOPEN
setprotoenSTAYOPEN
setservenSTAYOPEN
endpwent

perl v5.18.2 2014-01-06 121

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

endgrent

endhostent

endnetent

endprotoent

endservent
These routines are the same as their counterparts in the system C librésy context, the return
values from the various get routines are as follows:

($name,$passwd,$uid,$gid,
$quota,$comment,$gcos,$dir,$shell, $expire) = getpw*

($name,$passwd,$gid, $members) = getgr*

($name,$aliases,$addrtype,$length,@addrs) = gethost*

($name,$aliases,$addrtype,$net) = getnet*

($name, $aliases,$proto) = getproto*

($name, $aliases,$port,$proto) = getserv*

(If the entry doest’exist you get an empty list.)

The exact meaning of thiggcos field varies It it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to the Beetae, havever, that in

mary system users are able to change this information and therefore it cannot be trusted and therefore
the$gcos is tainted (see perlsecThe$passwd and$shell , users encrypted password and login

shell, are also tainted, for the same reason.

In scalar context, you get the name, unless the functaananookup by name, in which case you get
the other thing, whater itis. (Ifthe entry doeshexist you get the undefinecdle.) r example:

$uid = getpwnam($name);
$name = getpwuid($num);
$name = getpwent();

$gid = getgrnam($name);
$name = getgrgid($num);
$name = getgrent();

#etc.

In getpw*() the fields$quota , comment, and $expire are special in that tlgeare unsupported
on mary systems. Ifthe $quota is unsupported, it is an empty scaldfit is supported, it usually
encodes the disk quota. If tBeomment field is unsupported, it is an empty scalHrit is supported

it usually encodes some administvatitomment about the usetn some systems th§quota field
may be$change or $age, fields that hee o do with password aging. In some systems the
$comment field may be$class . The $expire field, if present, encodes the expiration period of
the account or the passrd. For the aailability and the &act meaning of these fields in your system,
please consulgepwnam(3) and your systera’pwd.hfile. You can also find out from within Perl
what your$quota and$comment fields mean and whether youvieathe $expire field by using
the Config module and thealuesd pwquota , d_pwage, d_pwchange , d_pwcomment, and
d_pwexpire . Shadav passvord files are supported only if youendor has implemented them in
the intuitve fashion that calling the regular C library routines gets the shagosions if you'e
running under prilege or if there eists theshadow(3) functions as found in System V (this includes
Solaris and Linux). Those systems that implement a proprietarystmdsvord facility are unlilely

to be supported.

The$members vaue returned bgetgr*() is a space-separated list of the login names of the members
of the group.

For the gethost*() functions, if theh_errno variable is supported in C, it will be returned to you via

$? if the function call &ils. The@addrs vaue returned by a successful call is a list of ealdresses
returned by the corresponding library call. In the Internet domain, each address is four bytes long; you
can unpack it by saying something like:

($a,$b,$c,$d) = unpack('W4',$addr[0]);

The Socket library makes this slightly easier:

122 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use Socket;
$iaddr = inet_aton("127.1"); # or whatever address
$name = gethostbyaddr($iaddr, AF_INET);

or g oing the other way
$straddr = inet_ntoa($iaddr);

In the opposite wayo resole a fostname to th&® address you can write this:

use Socket;
$packed_ip = gethostbyname("www.perl.org");
if (defined $packed_ip) {
$ip_address = inet_ntoa($packed_ip);
}

Make aure gethostbyname() is called iINSCALAR contet and that its return value is checked for
definedness.

Thegetprotobynumber function, een though it only takes one argument, has the precedence of a
list operatorso kewae:

getprotobynumber $number eq 'icmp’ # WRONG

getprotobynumber($number eq ‘icmp") # actually means this

getprotobynumber($number) eq ‘icmp’ # better this way
If you get tired of remembering which element of the return list contains which retiue 9y-name
interfaces are pnoded in standard modulegile::stat , Net::hostent , Net::netent
Net::protoent , Net::servent , Time::gmtime Time::localtime , and
User::grent . These werride the normal built-ins, supplyingeksions that return objects with the

appropriate names for each fielgor example:

use File::stat;
use User::pwent;
$is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks as though thee the same method calls (uid), yheren't, because a
File::stat object is different from &ser::pwent object.

Portability issues: “getpwnarmn perlport to “endserventin perlport.

getsocknam&OCKET
Returns the padd sockaddr address of this end of #@CKET connection, in case you daoiknow
the address because yowéaveal different IPs that the connection mighteaome in on.

use Socket;
$mysockaddr = getsockname(SOCK);
($port, Smyaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",
scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockopBSOCKET,LEVEL,OPTNAME
Queries the option name&xPTNAME associated witlSOCKETat a gven LEVEL. Options may exist at
multiple protocol lgels depending on the socket typajtlat least the uppermost socketele
SOL_SOCKET (defined in theSocket module) will ist. To query options at anothervd the
protocol number of the appropriate protocol controlling the option should be supptiedxample,
to indicate that an option is to be interpreted byTie protocol,LEVEL should be set to the protocol
number offCP,which you can get usingetprotobyname

The function returns a packed string representing the requested socket optrateforon error with
the reason for the error placed $. Just what is in the packed string dependsL&vEL and
OPTNAME; consultgetsodkopt (2) for details. A common case is that the option is angetein which
case the result is a packed integérich you can decode usingpack with thei (orl) format.

Heres an gample to test whether Nagsedgorithm is enabled on a socket:

perl v5.18.2 2014-01-06 123

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

124

use Socket qw(:all);

defined(my $tcp = getprotobyname(“tcp"))

or die "Could not determine the protocol number for tcp";
my $tcp = IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, TCP_NODELAY)

or die "getsockopt TCP_NODELAY: $!";
my $nodelay = unpack("l", $packed);
print "Nagle's algorithm is turned ",

$nodelay ? "off\in" : "on\n";

Portability issues: “getsockopth perlport.

globEXPR

glob
In list contet, returns a (possibly empty) list of filename expansions on the valEP&fsuch as the
standard Unix shellbin/csh would do. In scalar context, glob iterates through such filename
expansions, returning undef when the listxdausted. Thiss the internal function implementing the
<*.c> operatorbut you can use it directlylf EXPRis omitted,$_ is used. The<*.c> operator is
discussed in more detail in “I/O Operatoig’ perlop.

Note thatglob splits its arguments on whitespace and treats each segment as separateAmttern.
such,glob("*.c *.h") matches all files with ac or .h extension. Theexpressionglob(".*

*) matches all files in the current working directofy you want to glob filenames that might
contain whitespace, you'll ka o use extra quotes around the spafi,ename to protect it.For
example, to glob filenames thatugean e followed by a space followed by &n use either of:

@spacies = <"*e f*">;
@SpaC|eS = glob "'*e f*lll;
@spacies = glob q("*e f*");

If you had to get a variable through, you could do this:

@spacies = glob "*${var}e f*";
@Spacies = g|0b QQ("*${Var}e f*");

If non-empty braces are the only wildcard characters used gidhe, no filenames are matchedjtb
potentially mawg strings are returnedrFor example, this produces nine strings, one for each pairing of
fruits and colors:

@many = glob "{apple,tomato,cherry}={green,yellow,red}";

This operator is implemented using the standkalet:Glob extension. Seéile::Glob for details,
includingbsd_glob which does not treat whitespace as a pattern separator.

Portability issues: “globy'in perlport.

gmtimeEXPR

gmtime
Works just like “localtime” but the returned values are localized for the standard Greenwich time
zone.

Note: When called in list conte $isdst , the last @lue returned by gmtime, isvedys 0. There is
no Daylight Saving Time iGMT.

Portability issues: “gmtimein perlport.

gotoLABEL

gOtoEXPR

goto &NAME
The goto—-LABEL form finds the statement labeled witABEL and resumesxecution there. It
cant be wsed to get out of a block or subroutineegito sort . It can be used to go almostyavhere
else within the dynamic scope, including out of subroutines, Isutstially better to use some other
construct such dsst ordie . The author of Perl has v& felt the need to use this form géto
(in Perl, that is; C is another matter). (The difference is that C does not offer named loops combined
with loop control. Perl does, and this replaces most structured ugetofin other languages.)

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

The goto—EXPR form expects a label name, whose scope will be redalynamically This allovs
for computedgoto s per FORTRAN, but isn't necessarily recommended if you're optimizing for
maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

As shown in this xample,goto—EXPR is exempt from the “looks lile a unction’ rule. A pair of

parentheses following it does not (necessarily) delimit iguraent. goto("NE")."XT" is
equiaent to goto NEXT . Also, unlike most named operators, this has the same precedence as
assignment.

Use ofgoto—LABEL or goto—EXPR to jump into a construct is deprecated and will issuarsing.
Even then, it may not be used to go inty aanstruct that requires initialization, such as a subroutine
or aforeach loop. Italso cart be wsed to go into a construct that is optimizeca

The goto—&NAME form is quite different from the other formsgdto . In fact, it isnt a goto in the
normal sense at all, and dodshave the stigma associated with other gotos. Instead, it exits the
current subroutine (losing nrchanges set bjocal()) and immediately calls in its place the named
subroutine using the current value @f. This is used byAUTOLOADBubroutines that wish to load
another subroutine and then pretend that the other subroutine had been called in the firscplatce (e
that aly modifications to@ _in the current subroutine are propsed to the other subroutinefter
thegoto , not even caller will be able to tell that this routine was called first.

NAME neednt be the name of a subroutine; it can be a scalar variable containing a code reference or a
block that ealuates to a code reference.

grepBLOCK LIST

grepEXPR,LIST
This is similar in spirit to, but not the same g&p(1) and its relaties. Inparticular it is not limited
to using regular expressions.

Evaluates theBLOCK or EXPR for each element ofIST (locally setting$ _ to each element) and
returns the list value consisting of those elements for which the expregdligated to true. In scalar
context, returns the number of times the expression was true.

@foo = grep(!/*#/, @bar); # weed out comments
or equvaently,
@foo = grep {{/'#/} @bar; # weed out comments

Note that$_ is an alias to the list value, so it can be used to modify the elementsLa$thaVhile

this is useful and supported, it can cause bizarre results if the elemen&T afre not ariables.
Similarly, grep returns aliases into the original list, much as a for $olagdex variable aliases the list
elements. Thais, modifying an element of a list returned by grep (for examplefaneach , map

or anothergrep) actually modifies the element in the original list. This is usually something to be
avaded when writing clear code.

If $_is lexical in the scope where tgeep appears (because it has been declared with the deprecated
my $_ construct) then, in addition to being locally aliased to the list elententseeps being beical
inside the block; i.e., it canbe een from the outsideyaiding ary potential side-effects.

See also “mapfor a list composed of the results of B180CK or EXPR.

hexEXPR
hex InterpretEXPR as a hr string and returns the correspondinglue. (D corvert strings that might
start with eitheB, 0x, or Ob, see “oct”.) If EXPRis omitted, use$_.

print hex 'OxAf'; # prints '175'
print hex 'aF"; # same

Hex strings may only represent imgers. Stringshat would cause integewverflow trigger a varning.
Leading whitespace is not stripped, ualikct(). To present something as hex, look intprintf’’,
“sprintf”, and “unpack”.

perl v5.18.2 2014-01-06 125

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

importLIST
There is no biltin import function. Itis just an ordinary method (subroutine) defined (or inherited)
by modules that wish toxport names to another modul&he use function calls theimport
method for the package used. See also “use”, perlmod, and Exporter.

indexSTR,SUBSTR,POSITION

indexSTR,SUBSTR
The inde function searches for one string within anottat without the wildcard-lik behavior of a
full regular-epression pattern match. It returns the position of the first occurrergigBsTRiIn STR
at or afterPOSITION. If POSITION is omitted, starts searching from thegimming of the string.
POSITIONbefore the beginning of the string or after its end is treated as if it weregdinaibg or the
end, respeoctely. POSITION and the return value are based at zero. If the substring is not found,
index returns -1.

int EXPR

int Returns the integer portion &XxPR. If EXPRis omitted, use$. You should not use this function
for rounding: one because it truncatesaals0, and two because machine representations of floating-
point numbers can sometimes produce counterimuiti results. Ber eample,
int(—6.725/0.025) produces —268 rather than the correct —269; gHattause it really more
like -268.99999999999994315658 insteadUsually the sprintft , printf |, or the
POSIX::floor andPOSIX::ceil functions will sere you better than wilint().

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements théoctl (2) function. You'll probably first hae say

require "sys/ioctl.ph"; # probably in
$Config{archlib}/sys/ioctl.ph

to get the correct function definitiondf sys/ioctl.phdoesnt exist or doesrt’ have the correct
definitions you'll hae © roll your own, based on your C header files sucksys/ioctl.h> (There is
a Rerl script callech2ph that comes with the Perl kit that may help you in this, bstrbhtrivial.)
SCALAR will be read and/or written depending on #@NCTION; a C minter to the string value of
SCALAR will be passed as the third argument of the adal call. (If SCALAR has no string
value but does ha a rumeric value, that value will be passed rather than a pointer to the sthirg v
To guarantee this to be true, ad@ #o the scalar before using ithhe pack andunpack functions
may be needed to manipulate the values of structures usectlby .

The return value abctl (andfcntl) is as bllows:

if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"
anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the actual
value returned by the operating system:

$retval = ioctl(...) || -1;
printf "System returned %d\n", $retval;

The special string'0 but true" is exempt from —w complaints about improper numeric
corversions.

Portability issues: “ioctl'in perlport.

join EXPR,LIST
Joins the separate stringsLo$T into a single string with fields separated by thtug of EXPR, and
returns that ne string. Example:

$rec = join(":', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
Beware that unlikesplit , join doesnt take a mttern as its first gument. Comparésplit”.

keys HASH
keys ARRAY

126 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

keys EXPR
Called in list context, returns a list consisting of all tegskof the named hash, or in Perl 5.12 or later
only, the indices of an arrayPerl releases prior to 5.12 will produce a syntax error if you try to use an
array agument. Inscalar context, returns the number efkor indices.

Hash entries are returned in an apparently random.ofider actual random order is specific to a
given hash; the gact same series of operations om tmshes may result in a different order for each
hash. Ary insertion into the hash may change the qraemill any deletion, with the exception that
the most recentdy returned byeach or keys may be deleted without changing the or& long as

a gven hash is unmodified you may rely émys , values andeach to repeatedly return the same
order as each otheBee ‘Algorithmic Complexity Attacks'in perlsec for details on whhash order is
randomized. Aside from the guaranteesvjuted here the exact details of PeHash algorithm and the
hash traersal order are subject to change iy eglease of Perl.

As a side dect, callingkeys() resets the internal iterator of ti\SH or ARRAY (see ‘each’). In
particular calling keys()in void context resets the iterator with no othesrbead.

Here is yet another way to print your environment;

@keys = keys %ENV;
@values = values %ENV;
while (@keys) {
print pop(@keys), '=', pop(@values), "\n";

or how about sorted by éy:

foreach $key (sort(keys %ENV)) {
print $key, '=', SENV{$Skey}, "\n";
}

The returned alues are copies of the originayk in the hash, so modifying them will not affect the
original hash. Compare “values”.

To sort a hash by value, ydunheed to use sort function. Heres a cescending numeric sort of a
hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;
}

Used as an blue,keys allows you to increase the number of hasickets allocated for the ggn
hash. Thiscan gain you a measure ofieiency if you knaw the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $¥dfrggu say

keys %hash = 200;

then%hash will have & least 200 bckets allocated for it——256 of them, in fact, since it rounds up to
the next power of to. Thesebuckets will be retainedven if you do%hash = () , useundef
%hash if you want to free the storage whiéhash is still in scope.You can't shrink the number of
buckets allocated for the hash usikgys in this way (but you neednivorry about doing this by
accident, as trying has no effecReys @array in an Ivalue context is a syntax error.

Starting with Perl 5.14keys can tale a £alarEXPR,which must contain a reference to an unblessed
hash or array The argument will be dereferenced automaticalifiis aspect okeys is considered
highly experimental. Thexact behaviour may change in a future version of Perl.

for (keys $hashref) { ... }
for (keys $obj—>get_arrayref) { ... }

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.012; # so k eys/values/each work on arrays
use 5.014; # so k eys/values/each work on scalars (experimental)

perl v5.18.2 2014-01-06 127

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

128

See als@ach, values , andsort .

kill SIGNAL, LIST
kill SIGNAL

Sends a signal to a list of processes. Returns the number of processes successfully signaled (which is
not necessarily the same as the number actually killed).

$cnt = kill 'HUP', $child1, $child2;
kill 'KILL', @goners;

SIGNAL may be either a signal name (a string) or a signal numbeignal name may start with a
SIG prefix, thus FOO and SIGFOO refer to the same signalThe string form ofSIGNAL is
recommended for portability because the same signal may tfferent numbers in dirent
operating systems.

A list of signal names supported by the current platform can be foub@anfig{sig_name}
which is provided by th€onfig module. See Config for more details.

A negdive dgnal name is the same as gare sgnal numberkilling process groups instead of
processes. df example kill '-KILL', $pgrp andkill -9, $parp will sendSIGKILL to
the entire process group specified. That means you usually want to use positigative sgnals.

If SIGNAL is either the number O or the strid§RO(or SIGZZERQ, no signal is sent to the process,
but kil checks whether #'possibleto send a signal to it (that means, to be brief, that the process is
owned by the same user we ae the supeuser). Thids useful to check that a child process is still
alive even if only as a zombie) and hasehanged itaJID. See perlport for notes on the portability of
this construct.

The behavior of kill when ROCESSumber is zero or mgetive cepends on the operating system.
For example, on POSIX-conforming systems, zero will signal the current process group, —1 will signal
all processes, and amther ngaive PROCESSwumber will act as a getive sgnal number and Kkill

the entire process group specified.

If both the SIGNAL and thePROCESSare n@aive, the results are undefinedd warning may be
produced in a future version.

See “Signals’in perlipc for more details.

On some platforms such asntfows where thdork() system call is notwailable. Perlcan be built to
emulatefork() at the interpreter l&l. This emulation has limitations related to kill thatvkato be
considered, for code running on Windows and in code intended to be portable.

See perlfork for more details.

If there is noLIST of processes, no signal is sent, and the return value is 0. This form is sometimes
used, hwever, because it causes tainting checks to be rBaot see “Laundering and Detecting
Tainted Datd’in perlsec.

Portability issues: “kill’ in perlport.

lastLABEL
lastEXPR
last Thelast command is lik thebreak statementin C (as used in loops); it immediately exits the loop

in question. If theeABEL is omitted, the command refers to the innermost enclosing [Boglast
EXPRform, available starting in Perl 5.18.0, allows a label name to be computed at run time, and is
otherwise identical ttast LABEL . Thecontinue block, if ary, is not executed:

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header
#...

}

last cannot be used toit a block that returns a value sucheasl {} ,sub{} ,ordo{} ,and
should not be used to exigeep() or map()operation.

Note that a block by itself is semantically identical to a loop tkeduges once.Thuslast can be
used to effect an early exit out of such a block.

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

See also “continuéfor an illustration of hovast , next , andredo work.

Unlike nost named operators, this has the same precedence as assignment. Ik@ngistran the
looks-like-a-function rule, stast (“foo")."bar" will cause ‘bar” to be part of the agument
to last

Ic EXPR
Ic Returns a lowercased version®XPR. This is the internal function implementing tkie escape in
double-quoted strings.

If EXPRis omitted, use$_.
What gets returned depends owesal factors:

If use bytes s in effect:
The results followASCIl semantics. Onlgharacter®\-Z change, t@-z respectiely.

Otherwise, ifuse locale (but notuse locale ":not_characters')isin efect:
Respects currentC_CTYPE locale for code points < 256; and uses Unicode semantics for the
remaining code points (this last can only happen ifJfes flag is also set). See perllocale.

A deficieny in this is that case changes that cross the 255/256 boundary are not well-defined.
For example, the lower case afATIN CAPITAL LETTER SHARP S(U+1E9E) in Unicode
semantics is U+00DF (oASCII platforms). Butunderuse locale , the lower case of
U+1E9E is itself, because OxDF may not Ib€TIN SMALL LETTER SHARP Sin the current
locale, and Perl has no way of knowing if that charactem exists in the locale, much less what
code point it is.Perl returns the input character unchanged, for all instances (and thete aren’
many) where the 255/256 boundary would otherwise be crossed.

Otherwise, IfEXPRhas theUTF8 flag set:
Unicode semantics are used for the case change.

Otherwise, ifuse feature 'unicode_strings' or use locale ":not_characters'
is in effect:
Unicode semantics are used for the case change.

Otherwise:
ASCII semantics are used for the case charige lowercase of gncharacter outside th&eScCll
range is the character itself.

Icfirst EXPR

Icfirst
Returns the value oEXPR with the first character Veercased. Thisis the internal function
implementing thél escape in double-quoted strings.

If EXPRis omitted, use$_.
This function behees the same way under various pragmata, such as in a locale,’ aks:.

lengthEXPR

length
Returns the length icharactersof the value oEXPR. If EXPRis omitted, returns the length $f . If
EXPRis undefined, returnsndef .

This function cannot be used on an entire array or hash to findwuhéugy elements these ka. For
that, usescalar @array andscalar keys %hash , respectiely.

Like dl Perl character operationkngth() normally deals in logical characters, notypical bytes.
For how mary bytes a string encoded asUTF-8 would talke o, use
length(Encode::encode_utf8(EXPR)) (you'll have o use Encode first). SeeEncode
and perlunicode.

__LINE_ _
A special token that compiles to the current line number.

link OLDFILE,NEWFILE
Creates a nefilename linked to the old filename. Returns true for success, false otherwise.

Portability issues: “linK’'in perlport.

perl v5.18.2 2014-01-06 129

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

listen SOCKET,QUEUESIZE
Does the same thing that tligten(2) system call does. Returns true if it succeedade fotherwise.
See the example in “Sockets: Client/Server Communicaiioperlipc.

local EXPR
You really probably want to be usingy instead, becaudecal isn't what most people think of as
“local”. See" Private Variables viany()' i n perlsub for details.

A local modifies the listed variables to be local to the enclosing block, filgalorle more than one
value is listed, the list must be placed in parentheses. “Bemporary Values vitocal()” i n perlsub
for details, including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion of array/hash
elements to the current block. See “Localized deletion of elements of compositéitypesisub.

localtimeEXPR

localtime
Corverts a time as returned by the time function to a 9—element list with the time analyzed for the
local time zone.Typically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
localtime(time);

All list elements are numeric and come straight out of the C ‘struct®s®c , $min, and $hour are
the seconds, minutes, and hours of the specified time.

$mday is the day of the month ar®imon the month in the rang@..11 , with O indicating January
and 11 indicating DecembeThis makes it easy to get a month name from a list:

my @abbr = gw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print "$abbr[$mon] $mday";
$mon=9, $mday=18 gives "Oct 18"

$year contains the number of years since 1900.get a 4—-digit year write:
$year +=1900;

To get the last tw digits of the year (e.g., “0lin 2001) do:
$year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicatiagnésday.$yday is the
day of the yeaiin the range..364 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving Time, false otherwise.

If EXPRis omitted,localtime() uses the current time (as returnedibe(3)).
In scalar contextipcaltime() returns thectime(3) value:
$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

The format of this scalar value i®t locale-dependent but built into Peffor GMT instead of local
time use the‘gmtime” builtin. See also the Time::Local module (for cowmerting seconds,
minutes, hours, and such back to the gatevalue returned byime()), and thePOSIX module’s
strftime(3) andmktime(3) functions.

To get somewhat similarut locale-dependent date strings, set up your locale environragables
appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);

$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
or f or GMT formatted appropriately for your locale:
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that thé¥oaand%h the short forms of the day of the week and the month of the iyagrnot
necessarily be three characters wide.

The Time::gmtime and Time::localtime modules provide avemient, by-name access mechanism to

130 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

thegmtime()andlocaltime()functions, respeatély.
For a comprehensie date and time representation look at the DateTime modul#PAN.
Portability issues: “localtimein perlport.

lock THING
This function places an advisory lock on a sharadable or referenced object containedTHING
until the lock goes out of scope.

The value returned is the scalar itself, if thguanent is a scalaor a ieference, if the argument is a
hash, array or subroutine.

lock() is a “weak leyword” : this means that if youé defined a function by this name (beforeyan
calls to it), that function will be called instead. If you are not underthreads::shared this
does nothing. See threads::shared.

log EXPR

log Returns the natural logarithm (bageof EXPR. If EXPRis omitted, returns the log & . To get the
log of another base, use basic algebra: The base-N log of a number is equal to the natural log of that
number divided by the natural log of Wor example:

sub log10 {

my $n = shift;

return log($n)/log(10);
}

See also “exp’for the irverse operation.

IstatFILEHANDLE

IstatEXPR

IstatDIRHANDLE

Istat
Does the same thing as teat function (including setting the special filehandle) but stats a
symbolic link instead of the file the symbolic link points tbsymbolic links are unimplemented on
your system, a normastat is done. For much more detailed information, please see the
documentation fostat

If EXPRis omitted, stat$.
Portability issues: “Istatin perlport.
m// The match operatoiSee “Regexp Quote-Lik Operators’in perlop.

mapBLOCK LIST

mMapEXPR,LIST
Evaluates theBLOCK or EXPR for each element ofIST (locally setting$_ to each element) and
returns the list value composed of the results of each siaimaton. Inscalar contg, returns the
total number of elements so generatédfaluatesBLOCK or EXPRin list context, so each element of
LIST may produce zero, one, or more elements in the returned value.

@chars = map(chr, @numbers);

translates a list of numbers to the corresponding characters.
my @squares =map {$_*$_} @numbers;

translates a list of numbers to their squared values.
my @squares=map{$_>5?($_*$) : ()} @numbers;

shavs that number of returned elements caffedifrom the number of input element$o amit an
element, return an empty list (). This could also be &etliby writing

my @squares=map{$_*$_}grep{$_>5} @numbers;
which makes the intention more clear.

Map alvays returns a list, which can be assigned to a hash such that the elements hgboahe k
pairs. Seeerldata for more details.

perl v5.18.2 2014-01-06 131

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

%hash = map { get_a_key_for($_) => $_} @array;
is just a fung way to write

%hash = ();

foreach (@array) {
$hash{get _a key for($)}=$;

}

Note that$_ is an alias to the list value, so it can be used to modify the elementsLa$thaVhile
this is useful and supported, it can cause bizarre results if the elemen&T afre not ariables.
Using a rgularforeach loop for this purpose would be clearer in most cases. Se€egisp”‘for
an array composed of those items of the original list for whicBLReCK or EXPR evduates to true.

If $_is lexical in the scope where theap appears (because it has been declared with the deprecated
my $_ construct), then, in addition to being locally aliased to the list elenfentseps being keical
inside the block; that is, it cartbe en from the outsideyaiding ary potential side-effects.

{ starts both hash references and blocksnap { ... could be either the start of mB8pOCK LIST
or mapEXPR, LIST Because Perl doedrnbok ahead for the closirgit has to tak a giess at which
it's dealing with based on what it finds just after theUsually it gets it right, bt if it doesnt it won't
realize something is wrong until it gets to thend encounters the missing (or ypected) comma.
The syntax error will be reported close to }hebut you'll need to change something near {hsuch
as using a unary to give Rerl some help:

%hash=map{ "\L$ "=>1 } @array # perl guesses EXPR. wrong
%hash =map {+"\L$ "=>1 } @array # perl guesses BLOCK. right
%hash = map { ("\L$_" => 1) } @array # this also works

%hash=map{ Ic($)=>1 } @array # as does this.

%hash = map +(Ic($_) => 1), @array # this is EXPR and works!

%hash=map (1 c($), 1), @array # evaluates to (1, @array)
or to force an anon hash constructor te

@hashes = map +{Ic($_) => 1 }, @array # EXPR, so needs
comma at end

to get a list of anonymous hashes each with only one entry apiece.

mkdir FILENAME,MASK

mkdir FILENAME

mkdir
Creates the directory specified BALENAME, with permissions specified byASK (as modified by
umask). If it succeeds it returns true; otherwise it returns false an@'s€txrno). MASK defaults to
0777 if omitted, an@&ILENAME defaults td$_ if omitted.

In general, it is better to create directories with a perma$sASK and let the user modify that with
their umask than it is to supply a restriggé MASK and gie the user no way to be more permissi
The &ceptions to this rule are when the file or directory should be kegpitepr{imail files, for
instance). Theerlfunc(l) entry onumask discusses the choice MRASK in more detail.

Note that according to tH®OSIX 1003.1-199¢he FILENAME may hae any mmber of trailing slashes.
Some operating and filesystems do not get this right, so Perl automaticallyesedhtrailing slashes
to keep geryone happ.

To recursvely create a directory structure, look at thkpath function of the File::Path module.

msgctliD,CMD,ARG
Calls the System WC functionmsgctl(2). You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitions.CMD is IPC_STAT, thenARG must be a variable that
will hold the returnednsqid_ds structure. Returnbke ioctl : the undefined value for errdi0
but true" for zero, or the actual return value otherwise. See &gsV IPC” in perlipc and the
documentation folPC::SysV andIPC::Semaphore

132 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Portability issues: “msgctlin perlport.

msggeEY,FLAGS
Calls the System WPC function msgyet (2). Returnghe message queue id, wndef on error See
also “SysVIPC" in perlipc and the documentation 1®C::SysV andIPC::Msg .

Portability issues: “msggétn perlport.

msgrcvIiD,VAR,SIZE, TYPE,FLAGS
Calls the System \PC function msgrcv to rece¢ a nessage from message queDeinto variable
VAR with a maximum message sizeSIZE. Note that when a message is reegj the message type
as a natie long integer will be the first thing VAR, followed by the actual messagé&his packing

may be opened withnpack("l! a*") . Taints the ariable. Returnsrue if successful, false on
error See also ‘SysV IPC” in perlipc and the documentation folPC::SysV and
IPC::SysV::Msg

Portability issues: “msgrcvin perlport.

msgsndD,MSG,FLAGS
Calls the System WPC function msgsnd to send the messsiG to the message quele. MSG
must begin with the nat long inteyer message type, be followed by the length of the actual message,
and then finally the message itsefhis kind of packing can be aché with pack("l' a*",
$type, $message) . Returns true if successful, false on err@e also thdPC::SysV and
IPC::SysV::Msg documentation.

Portability issues: “msgsndhn perlport.

my EXPR

my TYPE EXPR

my EXPR : ATTRS

my TYPE EXPR : ATTRS
A mydeclares the listed variables to be local (lexically) to the enclosing block, fdgabr. If more
than one value is listed, the list must be placed in parentheses.

The exact semantics and interfacerT¥PE andATTRS are still eolving. TYPE is currently bound to

the use of thdields pragma, and attributes are handled using attebutes pragma, or
starting from Perl 5.8.0 also via tidtribute::Handlers module. Seé Private Variables via
my()' i n perlsub for details, and fields, attributes, and Attribute::Handlers.

nextLABEL

nextEXPR

next

Thenext command is lik thecontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if ["#/; # discard comments
#...

}

Note that if there were eontinue block on the abee, it would get &ecuted &en on dscarded
lines. If LABEL is omitted, the command refers to the innermost enclosing [dbpnext EXPR

form, available as of Perl 5.18.0, alis a label name to be computed at run time, being otherwise
identical tonext LABEL .

next cannot be used to exit a block which returnsalae such asval {} ,sub{} ,ordo {}
and should not be used to exigrep() or map()operation.

Note that a block by itself is semantically identical to a loop thetutes once.Thusnext will exit
such a block early.

See also “continuéfor an illustration of hovast , next , andredo work.

Unlike nost named operators, this has the same precedence as assignment. Ike@ngistran the
looks-like-a-function rule, saext ("foo")."bar" will cause ‘bar” to be part of the agument
to next .

perl v5.18.2 2014-01-06 133

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

134

Nno MODULE VERSION LIST
no MODULE VERSION
Nno MODULE LIST
no MODULE
no VERSION
See thause function, of whichno is the opposite.

OCtEXPR

oct InterpretsEXPR as an octal string and returns the correspondahgev (If EXPR happens to start of
with 0x, interprets it as a Restring. If EXPR starts of with Ob, it is interpreted as a binary string.
Leading whitespace is ignored in all three cases.) The following will handle decimal,, loctaty
and he in standard Perl notation:

$val = oct($val) if $val =" /°0/;

If EXPRis omitted, use$_. To go he other way (produce a number in octal), spentf() or
printf():

$dec_perms = (stat("filename™))[2] & 07777,
$oct_perm_str = sprintf "%0", $perms;

The oct() function is commonly used when a string suct644 needs to be comrted into a file
mode, for gample. AlthoughPerl automatically corerts strings into numbers as needed, this
automatic cowersion assumes base 10.

Leading white space is ignored withouaming, as too are wrirailing non-digits, such as a decimal
point (oct only handles non-nigtive integers, not rggtive integers or floating point).

openFILEHANDLE,EXPR
openFILEHANDLE,MODE,EXPR
openFILEHANDLE,MODE,EXPR,LIST
openFILEHANDLE,MODE,REFERENCE
openFILEHANDLE
Opens the file whose filename isgi by EXPR,and associates it witfILEHANDLE.

Simple examples to open a file for reading:

open(my $fh, "<", "input.txt")
or die "cannot open < input.txt: $!";

and for writing:

open(my $fh, ">", "output.txt")
or die "cannot open > output.txt: $!";

(The following is a comprehena reference tmpen() for a gentler introduction you may consider
perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element)wdfilebandle is
autovvified, meaning that theaviable is assigned a reference to a newly allocatedyarmrs
filehandle. Otherwiséf FILEHANDLE is an expression, itsalue is the real filehandle. (This is
considered a symbolic referenceuse strict "refs" shouldnotbe in effect.)

If EXPR is omitted, the global (package) scalar variable of the same name & ERANDLE
contains the filename. (Note that lexicariables —thoseleclared withmy or state ——will not
work for this purpose; so if you're usimgy or state , specify EXPRin your call to open.)

If three (or more) arguments are specified, the open mode (including optional encoding) in the second

argument are distinct from the filename in the thifIMODE is < or nothing, the file is opened for
input. If MODE is >, the file is opened for output, with existing files first being truncated
(“clobbered’) and nonaisting files newly createdlf MODE is >>, the file is opened for appending,
again being created if necessary.

You can put a+ in front of the> or < to indicate that you want both read and write access to the file;
thus+< is almost alvays preferred for read/write updatesthe +> mode would clobber the file first.
You can't usually use either read-write mode for updating textfiles, singe Héee variable-length
records. Se¢he —i switch in perlrun for a better approachhe file is created with permissions of

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

0666 modified by the processisnask value.
These various prefixes correspond tofopen(3) modes of , r+ , w, w+, a, anda+.

In the one- and taraigument forms of the call, the mode and filename should be concatenated (in that
order), preferably separated by white spadeu can — ut shouldnt— omit the mode in these forms
when that mode is. Itis dways safe to use the bragument form obpen if the filename aggument

is a known literal.

For three or more argumentsNfODE is |- , the filename is interpreted as a command to which output
is to be piped, and MIODE is —| , the filename is interpreted as a command that pipes output to us.
the two-aigument (and one-argument) form, one should replace dgswith the command.See
“Using open()for IPC” in perlipc for more examples of thigYou are not allowed topen to a
command that pipes both iand out, hut see IPC::Open2, IPC::Open3, an@idirectional
Communication with Another Proce'sisi perlipc for alternaties.)

In the form of pipe opens taking three or more arguments$sif is specified (extra arguments after
the command name) th&fST becomes arguments to the commanabled if the platform supports
it. The meaning ofopen with more than three guments for non-pipe modes is not yet defined, b
experimental “layers’'may give exraLIST arguments meaning.

In the two-aigument (and one-argument) form, openifigor — opensSTDIN and opening>— opens
STDOUT.

You may (and usually should) use the threguanent form of open to specify 1/O layers (sometimes
referred to as'disciplines’) to apply to the handle that affectyadhe input and output are processed
(see open and PerllO for more detailBix example:

open(my $fh, "<:encoding(UTF-8)", "filename")
|| die "can't open UTF-8 encoded filename: $!";

opens the UTF8-encoded file containing Unicode characters; see perluniintro. Note that if layers are
specified in the three-gument form, then default layers stored in ${"OPEN} (see perlvar; usually set
by the open pragma or the switch-CioD) are ignored. Those layers will also be ignored if you
specifying a colon with no name following itn that case the default layer for the operating system
(:raw on Unix, :crlf on Windows) is used.

Open returns nonzero on success, the undefiake wtherwise. If th@pen involved a pipe, the
return value happens to be the pid of the subprocess.

If you're running Perl on a system that distinguishes between text files and binary files, then you
should check outbBinmode’ for tips for dealing with this. Theely dstinction between systems that
needbinmode and those that doi's their text file formats. Systems ékJnix, Mac0S,and Plan 9,

that end lines with a single character and encode that character ihnnC aslo not needinmode .

The rest need it.

When opening a file, &' €ldom a good idea to continue if the request failedymamn is frequently
used withdie . Even if die won't do what you want (sgyn aCGl script, where you want to format a
suitable error message (but there are modules that can help with that problesm$) ciieck the
return value from opening a file.

As a special case the three-argument form with a read/write mode and the dhimkrtr being
undef :

open(my $tmp, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also usingorks for symmetrybut you really
should consider writing something to the temporary file fidu will need toseek()to do the
reading.

Perl is built using PerllO by dafilt; Unless yowe canged this (such as building Perl with
Configure —Uuseperlio), you can open filehandles directly to Perl scalars via:

open($fh, ">", \$variable) || ..
To (re)openSTDOUTor STDERRas an in-memory file, close it first:

perl v5.18.2 2014-01-06 135

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

close STDOUT;
open(STDOUT, ">", \$variable)
or die "Can't open STDOUT: $!";

General examples:

$ARTICLE = 100;
open(ARTICLE) or die "Can't find article SARTICLE: $\n";
while (<ARTICLE>) {...

open(LOG, ">>/usr/spool/news/twitlog"); # (log is reserved)
if t he open fails, output is discarded

open(my $dbase, "+<", "dbase.mine") # open for update
or die "Can't open 'dbase.mine' for update: $!";

open(my $dbase, "+<dbase.mine") # ditto
or die "Can't open 'dbase.mine' for update: $!";

open(ARTICLE, "-|", "caesar <$article") # decrypt article
or die "Can't start caesar: $!";

open(ARTICLE, "caesar <$article |") # ditto
or die "Can't start caesar: $!";

open(EXTRACT, "|sort >Tmp$$") # 3 is o ur process id
or die "Can't start sort: $!";

i n—memory files
open(MEMORY, ">", \$var)
or die "Can't open memory file: $!";
print MEMORY "foo\n"; # output will appear in $var

process argument list of files along with any includes

foreach $file (@ARGV) {
process($file, "fh00");
}

sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, "<", $filename)) {
print STDERR "Can't open $filename: $\n";

return;
}
local $_;
while (<$input>) { # note use of indirection
if (/#include "(.*)"/) {
process($1, $input);
next;
}
#... # whatever
}

}

See perliol for detailed info on PerllO.

You may also, in the Bourne shell tradition, specifyEatPR beginning with>&, in which case the rest
of the string is interpreted as the name of a filehandle (or file desciiptameric) to be duped (as

136 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

dup(2)) and opened.You may use& after >, >>, <, +>, +>> and +<. The mode you specify
should match the mode of the original filehandleuping a filehandle does not &kito account an
existing contents ofO buffers.) If you use the three-argument form, then you can pass either a
number the name of a filehandle, or the normal “reference to a glob”.

Here is a script that ges, redirects, and restor83 DOUTandSTDERRusing various methods:

#!/usr/bin/perl

open(my $oldout, ">&STDOUT") or die "Can't dup STDOUT: $!";
open(OLDERR, ">&", *STDERR) or die "Can't dup STDERR: $!";
open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
open(STDERR, ">&STDOUT") or die "Can't dup STDOUT: $!";
select STDERR; $| = 1; # make unbuffered

select STDOUT; $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # t his works for

print STDERR "stderr 1\n"; # subprocesses too

open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
open(STDERR, ">&0LDERR") or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify'<&=X"' , where X is a file descriptor number or a filehandle, then Perl will do an
equiaent of Csfdopen of that file descriptor (and not callp(2)); this is more parsimonious of
file descriptors.For example:

open for input, reusing the fileno of $fd
open(FILEHANDLE, "<&=$fd")

or
open(FILEHANDLE, "<&=", $fd)

or
open for append, using the fileno of OLDFH
open(FH, ">>&=", OLDFH)

or

open(FH, ">>&=0OLDFH")

Being parsimonious on filehandles is also useful (besides being parsimoniousarfgyles when
something is dependent on file descriptorse lir example locking usingock(). If you do just
open(A, ">>&B") , the filehandle A will not hae the same file descriptor as B, and therefore
flock(A) will not flock(B) nor vice ersa. Butwith open(A, ">>&=B") , the filehandles will share
the same underlying system file descriptor.

Note that under Perls older than 5.8.0, Perl uses the standard C ditidopen()to implement the
functionality On mary Unix systemsfdopen()fails when file descriptors exceed a certaalue,
typically 255. For Perls 5.8.0 and latePerllO is (most often) the default.

You can see whether your Perl was built with PerllO by runmped -V and looking for the
useperlio= line. Ifuseperlio isdefine ,you hae RerllO; otherwise you don't.

If you open a pipe on the commandthat is, specify eithdr or —| with the one- or tw-argument
forms ofopen), an implicitfork is done, s@pen returns twice: in the parent process it returns the
pid of the child process, and in the child process it returns (a defindd}e defined($pid) or

/I to determine whether the open was successful.

For example, use either

perl v5.18.2 2014-01-06 137

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

138

$child_pid = open(FROM_KID, "-|"y /I die "can't fork: $!";
or

$child_pid = open(TO_KID, =" die "can't fork: $!";
followed by

if ($child_pid) {

am the parent:
either write TO_KID or else read FROM_KID

waitpid $child_pid, O;
} else{
am the child; use STDIN/STDOUT normally

exit;
}
The filehandle belas rormally for the parent, i I/O to that filehandle is piped from/to the
STDOUT/STDIN of the child process. In the child process, the filehandl¢ apened — I/Ohappens
from/to the nev STDOUT/STDIN. Typically this is used li& the normal piped open when you want to
exeacise more controlyer just hav the pipe command getgeeuted, such as when running setuid and
you dont want to hae o scan shell commands for metacharacters.

The following blocks are more or less eglént:
open(FOO, "|tr Ta-z]' [A-Z]");

open(FOO, "|-", "tr Ta-z]' TA-Z]";
open(FOO, "|-") || exec 'tr', '[a-2]', 'TA-Z]';
open(FOO, "|-", "tr", '[a-z]', TA-Z]");
open(FOO, "cat —n '$file'|");

open(FOO, "-|", "cat —n '$file™);
open(FOO, "-|") || exec "cat", "—-n", $file;
open(FOO, "-|", "cat", "-n", $file);

The last tvo examples in each block siwahe pipe as'list form”, which is not yet supported on all
platforms. Agood rule of thumb is that if your platform has a feak() (in other words, if your
platform is Unix, including Linux and MacOS X), you can use the list foviou would want to use

the list form of the pipe so you can pass literal arguments to the command without risk of the shell
interpreting ap shell metacharacters in thentHowever, this also bars you from opening pipes to
commands that intentionally contain shell metacharacters, such as:

open(FOO, "|cat —n | expand -4 | Ipr")
/I die "Can't open pipeline to Ipr: $!";

See “Safe Pipe Openéh perlipc for more examples of this.

Perl will attempt to flush all files opened for output beforg @ueration that may do a fork, but this
may not be supported on some platforms (see perlpdd)be safe, you may need to s&|
(PAUTOFLUSH in English) or call theutoflush() method oflO::Handle on ary open
handles.

On systems that support a close-areeflag on files, the flag will be set for thewlg opened file
descriptor as determined by the valu&df . See “$"F” in perlvar.

Closing an piped filehandle causes the parent process to wait for the child to finish, then returns the
status value i$? and${"CHILD_ERROR_NATIVE} .

The filename passed to the one— and-&agument forms ofbpen()will have leading and trailing
whitespace deleted and normal redirection characters honored. This prépenm as ‘magic
open’, can often be used to goodfeft. A user could specify a filename ‘bfsh cat file |, or you
could change certain filenames as needed:

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

$filename =" s/(.*\.gz)\s*$/gzip —dc < $1}/;
open(FH, $filename) or die "Can't open $filename: $!";

Use the three-argument form to open a file with arbitrary weird characters in it,

open(FOO, "<", $file)
| die "can't open < $file: $!";

otherwise it5 necessary to protectaheading and trailing whitespace:

$file =~ s#"(\s)#./$1#;
open(FOO, "< $file\0")
|| die "open failed: $!";

(this may not work on some bizarre filesystems). One should conscientiously choose between the
magicandthree-argumentorm of open()

open(IN, $ARGVI0]) || die "can't open $ARGVI[0]: $!";

will allow the user to specify an argument of the fdreh cat file |" , but will not work on a
filename that happens tovgaa tailing space, while

open(IN, "<", $ARGV[0])
|| die "can't open < $ARGV[O]: $!";

will have exactly the opposite restrictions.

If you want a ‘real” C open (seeopen(2) on your system), then you should use slisopen
function, which iwolves no such magic (but may use subthfedént filemodes than Peoipen()
which is mapped to @pen(). Thisis another way to protect your filenames from interpretatieon.
example:

use |0::Handle;

sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
or die "sysopen $path: $!";

$oldfh = select(HANDLE); $| = 1; select($oldfh);

print HANDLE "stuff $$\n";

seek(HANDLE, 0, 0);

print "File contains: ", <HANDLE>;

Using the constructor from tH®::Handle package (or one of its subclasses, suctDagile

or lO::Socket), you can generate angnous filehandles that e the scope of the variables used

to hold them, then automatically (but silently) close once their reference counts become zero, typically
at scope exit:

use |0::File;
#...
sub read_myfile_munged {
my $ALL = shift;
or j ustleave it undef to autoviv
my $handle = |O::File->new;
open($handle, "<", "myfile") or die "myfile: $!";
$first = <$handle>

or return (); # Automatically closed here.
mung($first) or die "mung failed"; # Or here.
return (first, <$handle>) if $ALL; # Or here.
return $first; # Or here.

}

WARNING: The previous example has a bug because the automatic close that happens when the
refcount onhandle reaches zero does not properly detect and repddrds. Always close the
handle yourself and inspect the return value.

close($handle)
[| warn "close failed: $!";

See “seeK’for some details about mixing reading and writing.

perl v5.18.2 2014-01-06 139

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

140

Portability issues: “opehin perlport.

opendirDIRHANDLE,EXPR
Opens a directory namegXPR for processing byeaddir , telldir , seekdir , rewinddir
andclosedir . Returns true if successfuDIRHANDLE may be angpression whose value can be
used as an indirect dirhandle, usually the real dirhandle nEnmRHANDLE is an undefined scalar
variable (or array or hash element), the variable is assigned a referencevtarsongmnous dirhandle;
that is, its autovivified. DIRHANDLEshave their own namespace separate from FILEHANDLES.

See the example eg¢addir

ord EXPR
ord Returns the numeric value of the first characteEX#®R. If EXPRis an empty string, returns 0f
EXPRis omitted, use$_. (Notecharacter, not byte.)

For the reverse, see “chi. Seeperlunicode for more about Unicode.

our EXPR

our TYPE EXPR

ourEXPR : ATTRS

OurTYPE EXPR : ATTRS
our makes a lexical alias to a package variable of the same name in the current package for use within
the current lexical scope.

our has the same scoping rulesrag or state , but our only declares an alias, whereay or
state both declare a variable name and allocate storage for that name within the current scope.

This means that whease strict 'vars' is in efect, our lets you use a packageanable
without qualifying it with the package namaeytlonly within the lexical scope of thaur declaration.
In this way, our differs fromuse vars , which allows use of an unqualified namely within the
affected package, but across scopes.

If more than one value is listed, the list must be placed in parentheses.

our $foo;
our($bar, $baz);

An our declaration declares an alias for a package variable that will be visible across its dnéte le
scope, een across package boundaries. The package in whichatable is entered is determined at
the point of the declaration, not at the point of use. This means the following behavior holds:

package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the samiedescope are allowed if theare in
different packages. If tyehappen to be in the same package, Perl will enaitnimgs if you hee
asled for them, just lik multiple my declarations. Unli& a £condmy declaration, which will bind

the name to a fresh variable, a second declaration in the same package, in the same scope, is
merely redundant.

use warnings;

package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope

print $bar; # prints 30
our $bar; # emits warning but has no other effect
print $bar; # still prints 30

2014-01-06 perl v5.18.2

PERLFUNC(1)

PerProgrammers Reference Guide

An our declaration may also i@ a Ist of attributes associated with it.

PERLFUNC(1)

The exact semantics and interfacer¥PE andATTRS are still eolving. TYPE is currently bound to

the use of thdields

packTEMPLATE,LIST
Takes aLIST of values and comrts it into a string using the rulesvgn by the TEMPLATE. The
resulting string is the concatenation of thevented \alues. Vpically, each comerted value looks li&
its machine-leel representation. dt example, on 32—bit machines an ggemay be represented by a

sequence of 4 bytes, which will in Perl be presented as a string/4htatiracters long.

See perlpacktut for an introduction to this function.

pragma, and attributes are handled using attebutes
starting from Perl 5.8.0, also via tiAdtribute::Handlers
my(}' i n perlsub for details, and fields, attributes, and Attribute::Handlers.

pragma, aqr
module. Seé Private Variables via

The TEMPLATE is a sequence of characters thaedhe order and type of values, as follows:

perl v5.18.2

a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null-terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte,
like vec()).

A bit string (descending bit order inside each byte).
A hex string (low nybble first).

A hex string (high nybble first).

IS ™

¢ A signed char (8-bit) value.
C An unsigned char (octet) value.
W A unsigned char value (can be greater than 255).

s A signed short (16-bit) value.
S An unsigned short value.

I A signed long (32-bit) value.
L An unsigned long value.

g A signed quad (64-bit) value.
Q A unsigned quad value.
(Quads are available only if your system supports 64-bit
integer values _and__ if Perl has been compiled to support
those. Raises an exception otherwise.)

i A signed integer value.
I A unsigned integer value.
(This 'integer' is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int'.)

An unsigned short (16-bit) in "network" (big—endian) order.
An unsigned long (32-bit) in "network" (big—endian) order.
unsigned short (16-bit) in "VAX" (little—endian) order.
An unsigned long (32-hit) in "VAX" (little—endian) order.

<< zZ>
>
>

A Perl internal signed integer value (IV).
A Perl internal unsigned integer value (UV).

o —

A single—precision float in native format.
A double—precision float in native format.

o -+

A Perl internal floating—point value (NV) in native format
A float of long—double precision in native format.

O T

2014-01-06

141

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

(Long doubles are available only if your system supports
long double values _and__if Perl has been compiled to
support those. Raises an exception otherwise.)

p A pointer to a null-terminated string.
P A pointer to a structure (fixed-length string).

u A uuencoded string.

U A Unicode character number. Encodes to a character in char—
acter mode and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in
byte mode.

w A BER compressed integer (not an ASN.1 BER, see perlpacktut
for details). Its bytes represent an unsigned integer in
base 128, most significant digit first, with as few digits
as possible. Bit eight (the high bit) is set on each byte
except the last.

A null byte (a.k.a ASCII NUL, "\000", chr(0))
Back up a byte.
MII-fill or truncate to absolute position, counted from the
start of the innermost ()—group.
N ull-fill or truncate to absolute position specified by
the value.
(Startof a ()—group.

@ x>

One or more modifiers belomay optionally follav certain letters in th@EMPLATE (the second
column lists letters for which the modifier is valid):

! s SILil Forces native (short, long, int) sizes instead
of fixed (16—/32-hit) sizes.

XX Make x and X act as alignment commands.
nNvV Treat integers as signed instead of unsigned.
@. Specify position as byte offset in the internal

representation of the packed string. Efficient
but dangerous.

> sSillLqQ Force big—endian byte-order on the type.
jJIFdDpP (The "big end" touches the construct.)

< sSillLqQ Force litle—endian byte—order on the type.
jJIFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used @nh groups to force a particular byte-order on all
components in that group, including all its subgroups.

The following rules apply:

« Each letter may optionally be followed by a number indicating the repeat cAuntimeric
repeat count may optionally be enclosed in brackets, a®dk("C[80]", @arr) . The
repeat count gobbles that nyaralues from the.IST when used with all format types other than
a,A Zb,B h H@.,X,X axdP, where it means something else, describedvbeBupplying
a* for the repeat count instead of a number means to wsevéromary items are left, cept
for:

e @x,andX, where it is equident to0.
e <> where it means relag o the start of the string.

142 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

e u,where itis equident to 1 (or 45, which here is egdient).

One can replace a numeric repeat count with a template letter enclosed &tshtaclse the
packed byte length of the bracketed template for the repeat count.

For example, the templatg[L] skips as manbytes as in a packed long, and the templéte
X[$t] $t" unpacks twice whater $t (when \ariable-&panded) unpacks. If the template in
braclets contains alignment commands (sucR!ff), its packed length is calculated as if the
start of the template had the maximal possible alignment.

When used withZ, a* as the repeat count is guaranteed to add a trailing null byte, so the
resulting string is alays one byte longer than the byte length of the item itself.

When used with@) the repeat count represents an offset from the start of the inn€ymgsiup.

When used with , the repeat count determines the starting position to calculataltnee ofset
as follows:

e Ifthe repeat count i8, it's relative © the current position.
e If the repeat count i§, the offset is relatie o the start of the packed string.

« Andifit's an ntegem, the offset is relatie o the start of thath innermos{) group, or to
the start of the string ii is bigger then the groupvd.

The repeat count far is interpreted as the maximal number of bytes to encode per line of output,
with 0, 1 and 2 replaced by 45. The repeat count should not be more than 65.

e Thea, A and Z types gobble just one value, but pack it as a string of length count, padding with
nulls or spaces as needeWhen unpackingA strips trailing whitespace and nullg, strips
eveaything after the first null, and returns data with no stripping at all.

If the value to pack is too long, the result is truncatédt’ s too long and an explicit count is
provided, Z packs only$count-1 bytes, followed by a null byteThus Z always packs a
trailing null, except when the count is 0.

e Likewise, theb and B formats pack a string that'that may bits long. Each such format
generates 1 bit of the result. These are typically followed by a repeat couB likeB64.

Each result bit is based on the least-significant bit of the corresponding input chamcten
ord($char)%2 . In particular characters0" and"1" generate bits O and 1, as do characters
"\000" and™001"

Starting from the beginning of the input string, each 8-tuple of characters\ertednto 1
character of outputWith formatb, the first character of the 8-tuple determines the least-
significant bit of a character; with form@t it determines the most-significant bit of a character.

If the length of the input string is notemly divisible by 8, the remainder is packed as if the input
string were padded by null characters at the eidchilarly during unpacking,'éxtra” bits are
ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field. On unpacking, bits\aréecoto
a dring of 0s and 1s.

« Theh andHformats pack a string that manybbles (4-bit groups, representable asadecimal
digits,"0".."9"™a".."f") long.

For each such formatpack() generates 4 bits of resuliVith non-alphabetical characters, the
result is based on the 4 least-significant bits of the input charaeteonord($char)%16 . In
particular characters0" and"1" generate nybbles 0 and 1, as do b{¥@80" and"\001"

For characters'a”.."f" and"A".."F" , the result is compatible with the usuakadecimal
digits, so that'a" and"A" both generate theyhble 0xA==10. Use only these specific e
characters with this format.

Starting from the kginning of the template tpack() each pair of characters is amnted to 1
character of outputWith formath, the first character of the pair determines the least-significant
nybble of the output character; with forni4tit determines the most-significant nybble.

perl v5.18.2 2014-01-06 143

PERLFUNC(1)

144

PerProgrammers Reference Guide PERLFUNC(1)

If the length of the input string is notem, it behaes as if mdded by a null character at the end.
Similarly, “extra” nybbles are ignored during unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input fieddunpack() nybbles are corerted
to a string of hexadecimal digits.

The p format packs a pointer to a null-terminated strifpu are responsible for ensuring that
the string is not a temporarghae, as that could potentially get deallocated before you got around
to using the packed resulthe P format packs a pointer to a structure of the size indicated by the
length. Anull pointer is created if the corresponding valuegdarr P is undef ; similarly with
unpack() where a null pointer unpacks intodef .

If your system has a strange pointer sizeneaning a pointer is neither as big as an int nor as big
as a long—it may not be possible to pack or unpack pointers in big— or little-endian byte order
Attempting to do so raises an exception.

The/ template character allows packing and unpacking of a sequence of items where ¢de pack
structure contains a packed item count followed by the packed items thesns€hisis useful

when the structure you're unpacking has encoded the sizes or repeat counts for some of its fields
within the structure itself as separate fields.

For pack , you write length-itent sequence-iterend thelength-itemdescribes he the length
value is packd. Formats lilely to be of most use are igexpacking ones lign for Java drings,
wfor ASN.1or SNMP,andN for SunXDR.

For pack , sequence-itermay hae a epeat count, in which case the minimum of that and the
number of wmailable items is used as thegament forlength-item If it has no repeat count or
uses a "', the number ofvailable items is used.

For unpack , an internal stack of integer arguments unpacked &oid used. You write
/ sequence-iterand the repeat count is obtained by poppirigh## last element from the stack.
Thesequence-itemrmust not hae a epeat count.

If sequence-iterrefers to a string type'A" , "a" , or "Z"), thelength-itemis the string length,
not the number of stringdWVith an explicit repeat count for pack, the packed string is adjusted to
that length.For example:

This code: gives this result:
unpack("W/a", "\004Gurusamy") ("Guru")
unpack("a3/A A*", "007 Bond J") (" Bond","J")

unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")

pack("n/a* w/a","hello,","world") "\000\006hello,\005world"
pack("a/W2", ord("a") .. ord("z")) "2ab"

Thelength-itemis not returned explicitly fromnpack .

Supplying a count to thiength-itemformat letter is only useful witl, a, or Z. Packing with a
length-itemof a or Z may introduceé\000" characters, which Perl does nogael as lgd in
numeric strings.

The integer types, S, |, and L may be folleved by a! modifier to specify nate sorts or
longs. Asshown in the example alve, a karel means ractly 32 bits, although the negilong
as seen by the local C compiler may bgéar This is mainly an issue on 64-bit platforméou
can see whether usihgmakes an difference this way:

printf "format s is %d, s! is %d\n",
length pack("s"), length pack("s!");
printf "format | is %d, I! is %d\n",
length pack("l'), length pack("I'");

il andl! are also allowed, but only for completeness’ sake. éheeidentical td andl .

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

The actual sizes (in bytes) of naisorts, ints, longs, and long longs on the platform where Perl
was huilt are also eeilable from the command line:

$ perl =V:{short,int,long{,long}}size
shortsize="2",

intsize='4";

longsize='4',

longlongsize='8";

or programmatically via th€onfig module:

use Config;
print $Config{shortsize}, “\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";
$Config{longlongsize} is undefined on systems without long long support.
* Theinteger formats, S,i,1,1,L,j, andJ are inherently non-portable between processors and

operating systems becauseyttobey native byteorder and endiannesgor example, a 4-byte
integer 0x12345678 (305419896 decimal) would be orderedehafarranged in and handled by
theCPUregisters) into bytes as

0x12 0x34 0x56 0x78 # big—-endian
0x78 0x56 0x34 0x12 # | ittle—endian

Basically Intel andvAX CPUs are little-endian, whileverybody else, including Motorola
m68k/88k,PPC,Sparc,HP B, Power and Cray are big-endian. Alpha anBliPS can be either:

Digital/Compaq uses (well, used) them in little-endian modé,3G1/Cray uses them in big-
endian mode.

The name®dig-endianandlittle-endianare comic references to thggeeating habits of the little-
endian Lilliputians and the big-endian Blefuscudians from the classic Jonathan Swift satire,
Gulliver's Travels This entered computer lingo via the paper “On Holy Wars and a Plea for
Peace’by Danry Cohen,USC/ISI IEN 137 April 1, 1980.

Some systems may veeven weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

You can determine your system endianness with this incantation:
printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);
The byteorder on the platform where Perl was built is alaitahle via Config:

use Config;
print "$Config{byteorderj\n";

or from the command line:
$ perl -V:byteorder

Byteorders'1234" and"12345678" are little-endian;'4321" and"87654321" are big-
endian.

For portably packed integers, either use the fornrmt$\, v, and V or else use the and <
modifiers described immediately belo See also perlport.

e Starting with Perl 5.10.0, inger and floating-point formats, along with thendP formats and
() groups, may all be followed by theor < endianness modifiers to respeely enforce big-
or little-endian byte-orderThese modifiers are especially usefwlegihow n, N, v, and V don’t
cover signed integers, 64-bit integers, or floating-point values.

Here are some concerns to keep in mind when using an endianness modifier:

perl v5.18.2 2014-01-06 145

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

e Exchanging signed integers betweeredént platforms works only when all platforms store
them in the same format. Most platforms store signed integers ais-t@mplement
notation, so usually this is not an issue.

e« The > or < modifiers can only be used on floating-point formats on big— or little-endian
machines. Otherwisaftempting to use them raises an exception.

e Forcing big— or little-endian byte-order on floating-poiaiues for data exchange caorlw
only if all platforms use the same binary representation suteadloating-point. Een if
all platforms are usintEEE, there may still be subtle fifrences. Beingble to use> or <
on floating-point values can be useful, but also dangerous if yot klamv exactly what
you're doing. It is not a general way to portably store floating-point values.

< When using> or < on a() group, this affects all types inside the group that accept byte-
order modifiers, including all subgrouph.is silently ignored for all other typesrou are
not allowed to werride the byte-order within a group that already has a byte-order modifier
suffix.

« Real numbers (floats and doubles) are inveatinchine format only Due to the multiplicity of
floating-point formats and the lack of a standamdtivork” representation for them, nadility
for interchange has been made. This means that packed floating-point data written on one
machine may not be readable on angtban if both useEEE floating-point arithmetic (because
the endianness of the memory representation is not part iEftEespec). Sealso perlport.

If you know exactly what you're doing, you can use theor < modifiers to force big— or little-
endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for all numeric calculation,
converting from double into float and thence to doublaiadoses precision, ampack("f",
pack("f", $foo)) will not in general equdfoo .

« Pak and unpack can operate imtwodes: character mod€@ mode) where the paell string is
processed per charactand UTF-8 mode (JO mode) where the packed string is processed in its
UTF-8-encoded Unicode form on a byte-by-byte baSisaracter mode is the default unless the
format string starts withl. You can alays switch mode mid-format with axgicit COor UOin
the format. This mode remains in effect until the next mode change, or until the end)of the
group it (directly) applies to.

Using CO to get Unicode characters while usid@ to getnon-Unicode bytes is not necessarily
ohbvious. Probablhpnly the first of these is what you want:

$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl =CS —ne 'printf "%v04X\n", $_ for unpack("COA*", $_)'
03B1.03C9
$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl =CS —ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
CE.B1.CF.89
$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl —CO —ne 'printf "%v02X\n", $_ for unpack("COA*", $)’
CE.B1.CF.89
$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl —CO —ne 'printf "%v02X\n", $_ for unpack("UOA*", $)’
C3.8E.C2.B1.C3.8F.C2.89

Those gamples also illustrate that you should not try to paek /unpack as a substitute for
the Encode module.

« You must yourself do analignment or padding by inserting, for@nple, enoughix" es while
packing. Theras no way forpack() and unpack()to knov where characters are going to or
coming from, so thehandle their output and input as flat sequences of characters.

« A () group is a sub-TEMPLPE enclosed in parentheseA. group may tak a epeat count
either as postfix, or founpack() dso via the/ template characteiWithin each repetition of a
group, positioning with@starts eer at 0. Therefore, the result of

146 2014-01-06 perl v5.18.2

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

pack("@1A((@2A)@3A)", qw[X Y Z])
is the string\0X\0\0YZ"

x and X accept thé modifier to act as alignment commandsythemp forward or back to the
closest position aligned at a multipleazfunt characters. & example, tgack()or unpack()a
C dructure like

struct {
char ¢; [* one signed, 8-bit character */
double d;
char cc[2];

}

one may need to use the templatex![d] d c[2] . This assumes that doubles must be
aligned to the size of double.

For alignment commands, @ount of 0 is equialent to acount of 1; both are no-ops.

n, N, v andV accept thé modifier to represent signed 16—/32-hit integers in big—/little—endian
order This is portable only when all platforms sharing packed data use the same binary
representation for signed integers; for example, when all platforms uss-complement
representation.

Comments can be embedded imMEMPLATE using# through the end of line. White space can
separate pack codes from each qtbet modifiers and repeat counts must fallonmediately.
Breaking comple templates into individual line-by-line components, suitably annotated, can do
as much to impnee legbility and maintainability of pack/unpack formats &s can for
complicated pattern matches.

If TEMPLATE requires more arguments thgack() is given, pack() assumes additiondl'
arguments. IfTEMPLATE requires fewer arguments thawegi, extra arguments are ignored.

Examples:

perl v5.18.2

$foo = pack("WWWW",65,66,67,68);

f oo eq"ABCD"

$foo = pack("W4",65,66,67,68);

same thing

$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);

same thing with Unicode circled letters.

$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24h9);

same thing with Unicode circled letters. You don't get the
UTF-8 bytes because the U at the start of the format caused
a switch to UO—-mode, so the UTF-8 bytes get joined into

characters

$foo = pack("C0OU4",0x24b6,0x24b7,0x24b8,0x24b9);

f 00 eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
This is the UTF-8 encoding of the string in the

previous example

$foo = pack("ccxxcc",65,66,67,68);
f oo eq "AB\O\OCD"

NOTE: The examples above featuring "W" and "c" are true

only on ASCII and ASCII-derived systems such as ISO Latin 1
and UTF-8. On EBCDIC systems, the first example would be
$foo = pack("WWWW",193,194,195,196);

$foo = pack("s2",1,2);
"\001\000\002\000" on little—endian
"\000\001\000\002" on big—endian

$foo = pack("a4","abcd","x","y","z");

2014-01-06 147

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

148

" abcd"

$foo = pack("aaaa”,"abcd","x","y","z");
" axyz"

$foo = pack("al4","abcdefg");
" abcdefg\0\0\O\O\O\0O\O"

$foo = pack("i9pl", gmtime);
a r eal struct tm (on my system anyway)

$utmp_template ="Z8 28 Z16 L";
$utmp = pack($utmp_template, @utmp1l);
a struct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);
" @utmpl" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, —32)));
}

$foo = pack('sx2l', 12, 34);

short 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);

short 12, zero fill to position 4, long 34

$foo eq $bar

$baz = pack('s.l', 12, 4, 34);

short 12, zero fill to position 4, long 34

$foo = pack('nN', 42, 4711);

pack big—endian 16— and 32-bit unsigned integers
$foo = pack('S>L>", 42, 4711);

exactly the same

$foo = pack('s<I<’, —42, 4711);

pack little—endian 16— and 32-hit signed integers
$foo = pack('(sl)<', —42, 4711);

exactly the same

The same template may generally also be usadpack()

packageNAMESRACE
packageNAMESFACE VERSION
packageNAMESPACE BLOCK
packageNAMESRACE VERSION BLOCK

Declares th&LOCK or the rest of the compilation unit as being in thexginamespace. Thecope of
the package declaration is either the supplied &d¥CK or, in the absence of BLOCK, from the
declaration itself through the end of current scope (the enclosing block, fdgalo). Thatis, the
forms without aBLOCK are operatie through the end of the current scope, just lite my, state
andour operators. Allunqualified dynamic identifiers in this scope will be in theaginamespace,
except where werridden by anothempackage declaration or when tgge one of the special
identifiers that qualify intanain:: , like STDOUTARGVYENYV, and the punctuation variables.

A package statement affects dynamic variables, ontyuding those yowe wsedlocal on, kut not
lexically-scoped variables, which are created wityy state , or our . Typically it would be the first
declaration in a file included bhequire oruse. You can switch into a package in more than one
place, since this only determines whichaddf symbol table the compiler uses for the rest of that
block. You can refer to identifiers in other packages than the current one by prefixing the identifier
with the package name and a double colon, as $BomePack:var or
ThatPack::INPUT_HANDLE . If package name is omitted, theain package as assumedhat

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

is, $::sail is equvalent to$main::sail (as well as tdmain'sail , dill seen in ancient code,
mostly from Perl 4).

If VERSIONIs provided, package sets thebVERSIONvariable in the gien namespace to aevsion
object with theVERSION provided. VERSION must be a‘strict” style version number as defined by
the version module: a posié decimal number (intger or decimal-fraction) without exponentiation or
else a dotted-decimal v—string with a leadimgcharacter and at least three componeivtsu should
set$VERSIONonly once per package.

See “Packages’in perimod for more information about packages, modules, and classes. See perlsub
for other scoping issues.

_ _PACKAGE_ _
A special token that returns the name of the package in which it occurs.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipeslike corresponding system call. Note that if you set up a loop of
piped processes, deadlock can occur unless yoleareareful. In addition, note that Perfipes use
10 buffering, so you may need to €t to flush youWRITEHANDLE after each command, depending
on the application.

Returns true on success.

See IPC::0Open2, IPC::0pen3, and “Bidirectional Communication with Another Proicepgrlipc
for examples of such things.

On systems that support a close-areeflag on files, that flag is set on allwlg opened file
descriptors whosfileno s ae higherthan the current value of $°F (by default 2 &fDERR See
“$°F” in perlvar.

POPARRAY
POPEXPR
pop Pops and returns the last value of the agreyytening the array by one element.

Returns the undefined value if the array is ematiiough this may also happen at other tim#s.
ARRAY is omitted, pops th@ARG¥rray in the main program, but ti@ _array in subroutines, just
like shift

Starting with Perl 5.14pop can talke a €alar EXPR, which must hold a reference to an unblessed
array The argument will be dereferenced automaticallifis aspect opop is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

To avoid confusing would-be users of your code who are running eamiesions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.014; # so p ush/pop/etc work on scalars (experimental)

POSSCALAR

pos Returns the offset of where the lastlg search left dffor the variable in questio$ (is used when
the variable is not specified). Note that 0 is a valid matédefundef indicates that the search
position is reset (usually due to match failunet dan also be because no match has yet been run on
the scalar).

pos directly accesses the location used by tlyexg engine to store the offset, so assigningds

will change that offset, and so will also influence tBezero-width assertion in regularpressions.
Both of these effects talkdace for the next match, so you daafect the position withpos during
the current match, such as(i{pos() = 5}) or s/lpos() = 5/e

Setting pos also resets thenathed with zes-length flag, described under “Repeatedtferns
Matching a Zero-length Substringi perlre.

Because adiled m//gc match doesn’reset the offset, the return fropos won't change either in
this case. See perlre and perlop.

print FILEHANDLE LIST

perl v5.18.2 2014-01-06 149

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

print FILEHANDLE

print LIST

print
Prints a string or a list of strings. Returns true if successfillIEHANDLE may be a scalaraviable
containing the name of or a reference to the filehandle, thus introducingvehefléndirection.
(NOTE: If FILEHANDLE is a variable and the next token is a term, it may be misinterpreted as an
operator unless you interpose+aor put parentheses around thguaments.) IfFILEHANDLE is
omitted, prints to the last selected (sseléct’) output handle.If LIST is omitted, printss_ to the
currently selected output handl& useFILEHANDLE alone to print the content &f to it, you must
use a real filehandle BKFH, not an indirect one li& $fh . To st the default output handle to
something other tha®TDOUT, use the select operation.

The current value d, (if any) is printed between eatlsT item. Thecurrent value o\ (if any) is
printed after the entireIST has been printed. Because printeslaLIST, anything in theLIST is
evduated in list context, including grsubroutines whose return lists you paspiiot . Be careful

not to follov the print leyword with a left parenthesis unless you want the corresponding right
parenthesis to terminate the arguments to the print; put parentheses arouquhahés (or interpose
a+, but that doesn’look as good).

If you're storing handles in an array or hash, or in general wheyeu're using ay expression more
comple than a baneord handle or a plain, unsubscripted scalar variable tovetiieyou will hase 1o
use a block returning the filehandle value instead, in which casésthenay not be omitted:

print { $files[$i] } "stuffin”;
print { $OK ? STDOUT : STDERR } "stuff\n";

Printing to a closed pipe or socket will generatsl@PIPEsignal. Seeperlipc for more on signal
handling.

printf FILEHANDLE FORMAT, LIST

printf FILEHANDLE

printf FORMAT, LIST

printf
Equivalent to print FILEHANDLE sprintf(FORMAT, LIST) , except that$\ (the output
record separator) is not appenddthe FORMAT and theLIST are actually parsed as a single lishe
first argument of the list will be interpreted as prantf format. Thismeans thaprintf(@)
will use $_[0] as the format. See sprintf for ampéanation of the format gument. Ifuse
locale (includinguse locale ":not_characters') is in éfect andPOSIX::setlocale(has
been called, the character used for the decimal separator in formatted floating-point numbers is
affected by th&C_NUMERIC locale setting. See perllocale apdSIX

For historical reasons, if you omit the li§t, is used as the format; to USREHANDLE without a list,
you must use a real filehandledikH, not an indirect one li&$fh . Howeve, this will rarely do what
you want; if$_ contains formatting codes, theill be replaced with the empty string and aming
will be emitted if warnings are enabled. Justpset if you want to print the contents 8f .

Don't fall into the trap of using printf when a simplerint would do. The print is more
efficient and less error prone.

prototypeFUNCTION
Returns the prototype of a function as a string odef if the function has no prototype).
FUNCTION s a reference to, or the name of, the function whose prototype you want teeretrie

If FUNCTION is a string starting wittCORE::, the rest is taken as a name for a Pailtih. If the
builtin’s aguments cannot be adequately expressed by a prototype (ssgitas), prototype()
returnsundef , because the builtin does not really behdike aPerl function. Otherwise, the string
describing the equalent prototype is returned.

PUShARRAY,LIST

PUshEXPR,LIST
TreatsARRAY as a stack by appending thauwes ofLIST to the end oARRAY. The length 0ARRAY
increases by the length 0fST. Has the same effect as

150 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

for $value (LIST) {
$SARRAY[++$#ARRAY] = $value;

}

but is more eficient. Returnghe number of elements in the array following the complptesth .

Starting with Perl 5.14push can take a alarEXPR, which must hold a reference to an unblessed
array The argument will be dereferenced automaticaliris aspect opush is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

To avoid confusing would-be users of your code who are running eamiesions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.014; # so p ush/pop/etc work on scalars (experimental)

g/STRING/
gq/STRING/
gW/STRING/
gx/STRING/
Generalized quotes. See “Quote-tikdperators’in perlop.

gr/STRING/
Regexp-lile quote. Seé Regexp Quote-Li& Operators’in perlop.

quotemet&EXPR

guotemeta
Returns the value &XPRwith all theASCIl non—“word” characters backslashed. (That is,A8CII
characters not matchinfA-Za-z_0-9]/ will be preceded by a backslash in the returned string,
regardless of ap locale settings.) This is the internal function implementingd@hescape in double-
quoted strings. (See beldor the behavior on non-ASCII code points.)

If EXPRis omitted, use$_.

guotemeta (antQ ... \E) are useful when interpolating strings into regular expressions, because by
default an interpolated variable will be considered a mini-regufanession. Br example:

my $sentence = 'The quick brown fox jumped over the lazy dog’;

my $substring = 'quick.*?fox’;
$sentence =" s{$substring}{big bad wolf};

Will cause$sentence to becoméThe big bad wolf jumped over...'
On the other hand:

my $sentence = 'The quick brown fox jumped over the lazy dog’;
my $substring = 'quick.*?fox’;
$sentence =" s{\Q$substring\EXbig bad wolf};

Or:

my $sentence = 'The quick brown fox jumped over the lazy dog’;
my $substring = 'quick.*?fox’;

my $quoted_substring = quotemeta($substring);

$sentence =" s{$quoted_substring{big bad wolf};

Will both leave the sentence as isNormally, when accepting literal string input from the yser
quotemeta(pr\Q must be used.

In Perl v5.14, all non-ASCII characters are quoted in non-UTF-8-encoded strings, but not quoted in
UTF-8strings.

Starting in Perl v5.16, Perl adopted a Unicode-defined girdite quoting non-ASCII characters; the
quoting ofASCII characters is unchanged.

Also unchanged is the quoting of non-UTF-8 strings when outside the scopeeffaature
'unicode_strings' , Which is to quote all characters in the upper Latinl range. Thisdes
complete backards compatibility for old programs which do not use Unicode. (Note that

perl v5.18.2 2014-01-06 151

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

152

unicode_strings is automatically enabled within the scope afsa v5.12 or greater.)

Within the scope afise locale , dl non-ASCII Latinl code points are quoted whether the string is
encoded a®&JTF-8 or not. As mentioned abe, locale does not fdct the quoting of ASCIl-range
characters. Thigprotects against those locales where characters sugh aare considered to be
word characters.

Otherwise, Perl quotes non-ASCIl characters using an adaptation from Unicode (see
<http://www.unicode.ay/reports/tr31/>). Thenly code points that are quoted are those that bay

of the Unicode properties: Pdtern_Syntax, Pattern_White_Space, = White_Space,
Default_Ignorable_Code_Point, or General_Category=Control.

Of these properties, the tvimportant ones are Pattern_Syntax aattedPn_White_Space. Thdave
been set up by Unicode for exactly this purpose of deciding which characters in a negr@ssien
pattern should be quoted. No character that can be in an identifier has these properties.

Perl promises, that if wever add regular expression pattern metacharacters to the dozen already
defined(| () [{ " $ *+ 2.), that we will only use ones thatueathe Rittern_Syntax
property Perl also promises, that if wes@ add characters that are considered to be white space in
regular expressions (currently mostly affected/ky), they will all have the Rattern_White_Space

property.

Unicode promises that the set of code points thaé lteese tw properties will nger change, so
something that is not quoted in v5.16 wilveeneed to be quoted in waruture Perl release. (Not all
the code points that match Pattern_Syntasetatually had characters assigned to them; so there is
room to grev, but they are quoted whether assigned or not. Perl, of course, wowe mee an
unassigned code point as an actual metacharacter.)

Quoting characters that V& the other 3 properties is done to enhance the readability ofghkare
expression and not becausetlzetually need to be quoted forgudar expression purposes (characters
with the White_Space property aredii to be indistinguishable on the page or screen from those with
the Pattern_White_Space property; and the othepteperties contain non-printing characters).

randEXPR

Returns a random fractional number greater than or eqOadnal less than the value BXPR. (EXPR
should be posite.) If EXPRis omitted, the a&luel is used. CurrentlyEXPRwith the \alueO is also
special-cased ds (this was undocumented before Perl 5.8.0 and is subject to change in isionsg
of Perl). Automatically callsrand unlesssrand has already been called. See asnd .

Apply int() to the value returned bsand() if you want random integers instead of random
fractional numbersFor example,

int(rand(10))
returns a random integer betwe®and9, inclusie.

(Note: If your rand function consistently returns numbers that are too large or too small, then your
version of Perl was probably compiled with the wrong numb&ANDBITS.)

rand() is not cryptographically secue. You should not rely on it in security-sensitre
situations. As of this writing, a number of third-par6GPAN modules offer random number generators
intended by their authors to be cryptographically secure, including: Data::¥n@gypt::Random,
Math::Random::Secure, and Math:: TrulyRandom.

readFILEHANDLE,SCALAR,LENGTH,OFFSET
readFILEHANDLE,SCALAR,LENGTH

Attempts to read ENGTH charactersof data into @ariableSCALAR from the specifiedrILEHANDLE.
Returns the number of characters actually r@aat, end of file, or undef if there was an error (in the
latter case$! is also set).SCALAR will be grown or shrunk so that the last character actually read is
the last character of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. Anegdive OFFSETspecifies placement at that matharacters counting backwards from

the end of the stringA positive OFFSETgreater than the length BCALAR results in the string being
padded to the required size with" bytes before the result of the read is appended.

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

The call is implemented in terms of either Pedt your systens rative fread(3) library function. To
get a trueead(2) system call, see sysread.

Note thecharacters depending on the status of the filehandle, either (8-bit) bytes or characters are
read. Bydefault, all filehandles operate on bytes, but for example if the filehandle has been opened
with the :utf8 1/O layer (see ‘6pen’, and theopen pragma, open), the I/O will operate on
UTF8-encoded Unicode characters, not bytes. Similarly forgheoding pragma: in that case
pretty much ay characters can be read.

readdirDIRHANDLE
Returns the next directory entry for a directory openedgsndir . If used in list context, returns
all the rest of the entries in the directolly there are no more entries, returns the undefined value in
scalar context and the empty list in list context.

If you're planning to filetest the return values out eéaddir , you'd better prepend the directory in
guestion. Otherwisdyecause we didnihdir there, it would hae keen testing the wrong file.

opendir(my $dh, $some_dir) || die "can't opendir $some_dir: $!";
@dots = grep { '\./ && —f "$some_dir/$_" } readdir($dh);
closedir $dh;

As of Perl 5.12 you can use a bagaddir in awhile loop, which will sets_ on every iteration.

opendir(my $dh, $some_dir) || die;
while(readdir $dh) {
print "$some_dir/$_\n";
}
closedir $dh;

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious failures, put this sort of thing at the top of your file to signal that your codeovkilbaty
on Perls of a recent vintage:

use 5.012; # so readdir assigns to $_in a lone while test

readlineEXPR

readline
Reads from the filehandle whose typeglob is containeeXiPR (or from *ARGV if EXPR is not
provided). Inscalar context, each call reads and returns the next line until end-of-file is reached,
whereupon the subsequent call retunnglef . In list context, reads until end-of-file is reached and
returns a list of lines. Note that the notion‘6hé’’ used here is whater you may hae cefined with
$/ or$INPUT_RECORD_SEPARATQRSe€" $/” in perlvar.

When$/ is set toundef , whenreadline is in scalar contd (i.e., file slurp mode), and when an
empty file is read, it returris the first time, followed byndef subsequently.

This is the internal function implementing tk&XPR>operatoy but you can use it directlyThe
<EXPR>operator is discussed in more detail in “I/O Operatangerlop.

$line = <STDIN>;
$line = readline(*STDIN); # same thing

If readline encounters an operating system erfr will be set with the corresponding error
message. Itan be helpful to check when you are reading from filehandles you démist, such as

a tty or a sockt. Thefollowing example uses the operator fornreddline and dies if the result is

not defined.

while (! eof($fh)) {
defined($_ = <$fh>) or die "readline failed: $!";

}

Note that you h&e an't handlereadline errors that way with th&RGVfilehandle. Inthat case,
you have 1o open each element @ARGYourself sinceeof handlesARGWifferently.

perl v5.18.2 2014-01-06 153

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

154

foreach my $arg (@ARGV) {
open(my $fh, $arg) or warn "Can't open $arg: $!";

while (! eof($fh)) {
defined($_ = <$fh>)
or die "readline failed for $arg: $!";

}

readlinkEXPR

readlink
Returns the value of a symbolic link, if symbolic links are implemeniesiot, raises anxeeption. If
there is a system ertoeturns the undefined value and $tqerrno). IfEXPRis omitted, use$_.

Portability issues: “readlinkin perlport.

readpipeEXPR

readpipe
EXPRis executed as a system command. The collected standard output of the command is returned.
In scalar context, it comes back as a single (potentially multi-line) string. In list context, returns a list
of lines (havever you've cefined lines with$/ or SINPUT_RECORD_SEPARATQRThis is the
internal function implementing the</EXPR/ operatoy but you can use it directlyThe gx/EXPR/
operator is discussed in more detail in “I/O Operatimgerlop. IfEXPRis omitted, use$_.

recvSOCKET,SCALAR,LENGTH,FLAGS
Receves a nessage on a soek Attemptsto receve LENGTH characters of data intoaxiable
SCALAR from the specified/SOCKET filehandle. SCALAR will be grown or shrunk to the length
actually read.Takes the same flags as the system call of the same nRmieirns the address of the
sender ifSOCKETs protocol supports this; returns an empty string otherwise. If there'aror,
returns the undefinedalue. Thiscall is actually implemented in terms mfcvfrom(2) system call.
See ‘UDP: Message Passirign perlipc for examples.

Note thecharacters depending on the status of the setckeither (8-bit) bytes or characters are
receved. Bydefault all soclets operate on bytes, but for example if the socket has been changed using
binmode()to operate with theencoding(utf8) I/O layer (see thepen pragma, open), the 1/O

will operate on UTF8—encoded Unicode characters, not bytes. Similarly fenbeding pragma:

in that case pretty muchyaoharacters can be read.

redoLABEL

redoEXPR

redo
Theredo command restarts the loop block withoutlaating the conditional agn. Thecontinue
block, if ary, is not executed. Ifthe LABEL is omitted, the command refers to the innermost enclosing
loop. Theredo EXPR form, available starting in Perl 5.18.0, alls a label name to be computed at
run time, and is otherwise identicalredo LABEL . Programs that ant to lie to themselves about
what was just input normally use this command:

a simpleminded Pascal comment stripper
(\warning: assumes no { or } in strings)
LINE: while (<STDIN>) {
while (s|({.*}.5){*H$1 |) {}
s{.H |,
it (sl{.*) {
$front=9_;
while (<STDIN>) {
if () { # end of comment?
s|"|$front\{|;
redo LINE;

print;

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

}

redo cannot be used to retry a block that returns a value suslab§ ,sub{} ,ordo{} ,and
should not be used to exigeep() or map()operation.

Note that a block by itself is semantically identical to a loop tketutes once.Thusredo inside
such a block will effectiely turn it into a looping construct.

See also “continuéfor an illustration of hovast , next , andredo work.

Unlike nost named operators, this has the same precedence as assignment. Ik@ngistran the
looks-like-a-function rule, soedo (“foo")."bar" will cause ‘bar” to be part of the agument
toredo .

ref EXPR

ref Returns a non-empty string EXPR is a reference, the empty string otherwide.EXPR is not
specified,$_ will be used. The value returned depends on the type of thing the reference is a
reference to. Builtin types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
10
VSTRING
Regexp

If the referenced object has been blessed into a package, then that package name is returned instead.
You can think ofref as atypeof operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";
}

unless (ref($n)) {
print "r is not a reference at all.\n";

}
The return wlue LVALUE indicates a reference to aralue that is not aariable. You get this from
taking the reference of function calls dilpos() or substr() . VSTRING s returned if the

reference points to a version string.
The resuliRegexp indicates that the argument is a regular expression resultingyffém.
See also perlref.

renameOLDNAME,NEWNAME
Changes the name of a file; an existing iIBWNAME will be clobbered. Returns true for success,
false otherwise.

Behavior of this function waries wildly depending on your system implementatiéior example, it

will usually not work across file system boundariegnehough the systetmvcommand sometimes
compensates for thisOther restrictions include whether it works on directories, open files, or pre-
existing files. Check perlport and either temame(2) manpage or equalent system documentation

for details.

For a patform independennove function look at the File::Cgpmodule.

Portability issues: “renamien perlport.

requireVERSION
requireEXPR

perl v5.18.2 2014-01-06 155

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

156

require

Demands a version of Perl specified\BRSION, or demands some semantics specifiedE¥yR or
by $_ if EXPRis not supplied.

VERSION may be either a numeric argument such as 5.006, which will be comp&jedaoa iteral
of the form v5.6.1, which will be compared$dv (aka$PERL_VERSION. An exception is raised
if VERSIONIis greater than the version of the current Perl interpr&empare with ‘use”, which can
do a similar check at compile time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally teided, because it leads to
misleading error messages under earlier versions of Perl that do not support this 3ysax.
equiaent numeric version should be used instead.

require v5.6.1; # r un time version check

require 5.6.1; # ditto

require 5.006_001; # ditto; preferred for backwards
compatibility

Otherwiserequire demands that a library file be included if it hasiready been includedThe

file is included via the do-FILE mechanism, which is essentially juatiaty ofeval with the caeat
that lexical variables in the \oking script will be invisible to the included code. Has semantics
similar to the following subroutine:

sub require {
my ($filename) = @_;
if (exists $INC{$filename}) {
return 1 if $INC{$filename};
die "Compilation failed in require";

}
my ($realfilename,$result);
ITER: {
foreach $prefix (@INC) {
$realfilename = "$prefix/$filename”;
if (—f $realfilename) {
SINC{$filename} = $realfilename;
$result = do $realfilename;
last ITER;
}
}
die "Can't find $filename in \@INC";
}
if (@) {
$INC{$filename} = undef;
die $@;

} e Isif (I$result) {
delete $SINC{$filename};
die "$filename did not return true value";
} else{
return $result;
}
}

Note that the file will not be included twice under the same specified name.

The file must return true as the last statement to indicate successfutien of ary initialization
code, so i austomary to end such a file with unless you're sure it'll return true otherwise. Bu it’
better just to put thg; , in case you add more statements.

If EXPR is a barword, the require assumes gt extension and replaces::™ with /" in the
filename for you, to makit easy to load standard modules. This form of loading of modules does not
risk altering your namespace.

In other words, if you try this:

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

require Foo::Bar; # a splendid bareword

The require function will actually look for thé=do/Bar.pnt file in the directories specified in the
@INCarray.

But if you try this:

$class = 'Foo::Bar’;
require $class; # $class is not a bareword
#or

require "Foo::Bar"; # not a bareword because of the

The require function will look for theFbo::Bar fi le in the@INCarray and will complain about not
finding "Foo::Bar" there. Inthis case you can do:

eval "require $class";

Now that you understand tworequire looks for files with a bamord argument, there is a little
extra functionality going on behind the scen®&eforerequire looks for a "pm‘ extension, it will
first look for a similar filename with apmc extension. lfthis file is found, it will be loaded in place
of ary file ending in a “pn' extension.

You can also insert hooks into the impoacility by putting Perl code directly into th@INCarray.
There are three forms of hooks: subroutine references, array references, and blessed objects.

Subroutine references are the simplest cadben the inclusion system walks throu@NCand
encounters a subroutine, this subroutine gets called witlpavameters, the first a reference to itself,
and the second the name of the file to be included (Eap/Bar.pnm). Thesubroutine should return
either nothing or else a list of up to three values in the following order:

1. Afilehandle, from which the file will be read.

2. A reference to a subroutindf there is no filehandle (previous item), then this subroutine is
expected to generate one line of source code per call, writing the lin& inémd returning 1,
then finally at end of file returning 0f there is a filehandle, then the subroutine will be called to
act as a simple source filtgvith the line as read ifi_. Agan, return 1 for each valid line, and 0
after all lines hee been returned.

3. Optional state for the subroutin@he state is passed in®&s[1] . A reference to the subroutine
itself is passed in & [0] .

If an empty list,undef , or nothing that matches the first 3 values\ab@ returned, themequire

looks at the remaining elements@iNC Note that this filehandle must be a real filehandle (strictly a
typeglob or reference to a tyglwb, whether blessed or unblessed); tied filehandles will be ignored and
processing will stop there.

If the hook is an array reference, its first element must be a subroutine refefaigsubroutine is
called as abee, but the first parameter is the array reference. This lets you indirectly passeats
to the subroutine.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {
my ($coderef, $filename) = @_; # $coderefis \&my_sub

or:

perl v5.18.2 2014-01-06 157

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

push @INC, [\&my_sub, $x, By, ... |;
sub my_sub {
my ($arrayref, $filename) = @_;
Retrieve $x, $y, ...
my @parameters = @$arrayref[1..$#$arrayref];

}

If the hook is an object, it must pide anINC method that will be called as al®the first parameter
being the object itself. (Note that you must fully qualify the subime, as unqualifiedNC is aways
forced into packagmain .) Hereis a typical code layout:

In F oo.pm
package Foo;
subnew{...}
sub Foo::INC {
my ($self, $filename) = @_;

}

In t he main program
push @INC, Foo—>new(...);

These hooks are also permitted to setCentry corresponding to the files yhieaveloaded. See
“%INC" in perlvar.

For a yet-more-powerful import facilitysee “use’ and perimod.

resetEXPR

reset
Generally used in eontinue block at the end of a loop to clear variables and f&38etearches so
that they work again. Theexpression is interpreted as a list of single characters (hyphens allowed for
ranges). Allvariables and arrays gining with one of those letters are reset to their pristine dtate.
the expression is omitted, one-match searcBpatfern?) are reset to match ag. Onlyresets
variables or searches in the current packagevagd returns 1. Examples:

reset 'X'; # r eset all X variables
reset 'a-z'; # r eset lower case variables
reset; # just reset ?one—-time? searches

Resetting"A-Z" is not recommended because you'll wipe out y@ARGNd @INCarrays and
your %ENVhash. Resetenly package ariables; lexical variables are unaffected, buly thiean
themselves up on scope exit anyw&yyou'll probably want to use them instead. See “my”.

returnEXPR

return
Returns from a subroutineyal , or do FILE with the value gien in EXPR. Evaluation ofEXPR
may be in list, scalaor void context, depending on Wwdhe return value will be used, and the cahte
may vary from onexecution to the next (seavantarray’). If no EXPRis given, returns an empty list
in list context, the undefined value in scalar context, and (of course) nothing at all in void context.

(In the absence of anxgicit return , a subroutine, &al, or doFILE automatically returns thealue
of the last expressiorvauated.)

Unlike most named operators, this is als@mapt from the looks-like-a-function rule, seturn
("foo")."bar" will cause “bar’ to be part of the argument teeturn

reverseLIST
In list context, returns a list value consisting of the elementssafin the opposite orderin scalar
contet, concatenates the elements T and returns a string value with all characters in the opposite
order.

print join(", ", reverse "world", "Hello"); # Hello, world

print scalar reverse "dlrow ,", "olleH"; # Hello, world

158 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Used without arguments in scalar contesterse()reverses$.

$_="dIrow ,olleH";
print reverse; # No output, list context
print scalar reverse; # Hello, world

Note that reersing an array to itself (as @a = reverse @a) will presene ron-existent elements
wheneer possible; i.e., for non-magical arrays or for tied arrays ®KhSTS andDELETEmethods.

This operator is also handy forvaiting a hash, although there are someeats. If a value is
duplicated in the original hash, only one of those can be representedensnathe inverted hash.
Also, this has to unwind one hash and build a whole oree, which may ta& some time on a lge
hash, such as fromzBM file.

%by _name = reverse %by_address; # | nvert the hash

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory faretmdir routine onDIRHANDLE.

Portability issues: “rewinddirin perlport.

rindexSTR,SUBSTR,POSITION

rindexSTR,SUBSTR
Works just like index() except that it returns the position of tlest occurrence o6UBSTRIN STR. If
POSITIONIs specified, returns the last occurrence beginning at or before that position.

rmdir FILENAME

rmdir
Deletes the directory specified BLENAME if that directory is emptyIf it succeeds it returns true;
otherwise it returns false and s#ts(errno). IfFILENAME is omitted, use$_.

To remove a drectory tree recurgely (rm —rf on Unix) look at thermtree function of the
File::Path module.

s/l The substitution operatoBee “Regexp Quote-Lik Operators’in perlop.

SayFILEHANDLE LIST
sayFILEHANDLE

sayLIST
say Just like print , but implicitly appends a mdine. say LIST is simply an abbreviation fof
local $\ = "\n"; print LIST } . To useFILEHANDLE without aLIST to print the contents

of $_ to it, you must use a real filehandle likE, not an indirect one lik&§fh .

This keyword is available only when thésay" feature is enabled, or when prefixed WBDRE::;
see feature. Alternatelinclude ause v5.10 or later to the current scope.

scalarEXPR
ForcesEXPRto be interpreted in scalar context and returns the valEgRR.

@counts = (scalar @a, scalar @b, scalar @c);

There is no equélent operator to force arxgression to be interpolated in list context because in
practice, this is ner needed. Ifyou really wanted to do so, Wever, you could use the construction
@{[(some expression)]} , but usually a simpl¢some expression) suffices.

Becausescalar is a unary operatpif you accidentally use a parenthesized list forEReR, this
behaes as a salar comma expressionjatuating all but the last element in void context and returning
the final elementwaluated in scalar conté Thisis seldom what you want.

The following single statement:
print uc(scalar(&foo,$bar)),$baz;
is the moral equilent of these two:

&foo;
print(uc($bar),$baz);

See perlop for more details on unary operators and the comma operator.

perl v5.18.2 2014-01-06 159

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

160

seekFILEHANDLE,POSITION,WHENCE

Sets FILEHANDLE's position, just lile the fseek call of stdio . FILEHANDLE may be an
expression whose valuevgs the name of the filehandl& he values foWwHENCE are0 to set the ng
positionin bytesto POSITION 1 to set it to the current position ple©SITION and 2 to set it toEOF
plusPOSITION, typically negaive. For WHENCEYyou may use the constarBEEK SET SEEK_CUR
and SEEK_END(start of the file, current position, end of the file) from the Fcntl modRkturnsl
on success, false otherwise.

Note thein bytes even if the filehandle has been set to operate on characters (for example by using the
:encoding(utf8) open layer),tell() will return byte offsets, not characterfsdts (because
implementing that would rendseek(Jandtell() rather slow).

If you want to position the file fosysread or syswrite , don't use seek , because Wbffering
malkes its effect on the fils’ read-write position unpredictable and non-portablise sysseek
instead.

Due to the rules and rigors aNSI C, on some systems you\an do a gek wheneer you switch
between reading and writingAmongst other things, this may Jea te effect of calling stdig’
clearerr(3). AWHENCEof 1 (SEEK_CURis useful for not moving the file position:

seek(TEST,0,1);

This is also useful for applications emulatitagd —f . Once you hitEOF on your read and then
sleep for a while, you (probably) V&t gick in a dummyseek()to reset things.The seek doesn't
change the position, butdbesclear the end-of-file condition on the handle, so that tike<eLE>
makes Perl try again to read something.e (Wpe.)

If that doesrt work (some I/O implementations are particularly cantankerous), you might need
something lile this:

for (3;) {
for ($curpos = tell(FILE); $_ = <FILE>;
$curpos = tell(FILE)) {
search for some stuff and put it into files

sleep($for_a_while);
seek(FILE, $curpos, 0);
}

seekdirDIRHANDLE,POS

Sets the current position for theaddir routine onDIRHANDLE. POSmust be a value returned by
telldir . seekdir also has the same veats about possible directory compaction as the
corresponding system library routine.

selectFILEHANDLE
select

Returns the currently selected filehandle.FILEHANDLE is supplied, sets the wecurrent defult
filehandle for output. This has tweffects: first, avrite or aprint without a filehandle default to
thisFILEHANDLE. Second, references to variables related to output will refer to this output channel.

For example, to set the top-of-form format for more than one output channel, you might do the
following:

select(REPORTL);
$" ='"reportl_top";
select(REPORT?2);
$" ='"report2_top'";

FILEHANDLE may be an expression whose valugegithe name of the actual filehandle. Thus:
$oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write the
last example as:

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use 10::Handle;
STDERR->autoflush(1);

Portability issues: “selectin perlport.

selectRBITS,WBITS,EBITS, TIMEOUT
This calls theselect(2) syscall with the bit masks specified, which can be constructed filsimy
andvec , dong these lines:

$rin = $win = $ein = ";

vec($rin, fileno(STDIN), 1)=1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;

If you want to select on mgiilehandles, you may wish to write a subroutine ts:

sub fhbits {
my @fhlist=@_;
my $bits =",
for my $th (@fhlist) {
vec($bits, fileno($fh), 1) = 1;
}

return $bits;

}
$rin = thbits(*STDIN, *TTY, *MYSOCK);

The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this
$nfound = select($rout=%rin, $wout=$win, $eout=%ein, undef);

Most systems do not bother to return anything usefditimeleft , so alling select()in scalar
context just return$nfound .

Any of the bit masks can also be undéfhe timeout, if specified, is in seconds, which may be
fractional. Note:not all implementations are capable of returning $tieneleft . If not, they
always return$timeleft ~ equal to the suppliedtimeout

You can effect a sleep of 250 milliseconds this way:
select(undef, undef, undef, 0.25);

Note that whetheselect gets restarted after signals (sG{GALRM) is implementation-dependent.
See also perlport for notes on the portabilitgeiect

On errorselect behaes just likeselec{(2): it returns —1 and se# .

On some Unigs,selec2) may report a socket file descriptor as “ready for readewgn when no
data is mailable, and thus gnsubsequentead would block. This can bevaided if you alays use
O_NONBLOCK on the soak. Seeselec{(2) andfcntl(2) for further details.

The standardiO::Select module provides a user-friendlier interfacesédect , mostly because it
does all the bit-mask work for you.

WARNING: One should not attempt to mixifered 1/O (likeread or <FH>) with select , except as
permitted byPOSIX,and &en then only orPOSIXsystems. Wu hare © usesysread instead.

Portability issues: “selectin perlport.

semctliD,SEMNUM,CMD,ARG
Calls the System WC functionsemct(2). You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitiorl§.CMD is IPC_STRT or GETALL, then ARG must be a
variable that will hold the returned semid_ds structure or semaphore value Retayns lileioctl

perl v5.18.2 2014-01-06 161

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

162

the undefined value for errd® but true " for zero, or the actual return value otherwi$be ARG
must consist of a ector of natie dort integers, which may be created with
pack("s!",(0)x$nsem) . See also‘SysV IPC” in perlipc, IPC::SysV , IPC::Semaphore
documentation.

Portability issues: “semctlin perlport.

semgeKEY,NSEMS,FLAGS

Calls the System \fPC function semge(2). Returnsthe semaphore id, or the undefined value on
error. See also “SysMPC” in perlipc,IPC::SysV , IPC::SysV::Semaphore documentation.

Portability issues: “semgein perlport.

SemopKEY,OPSTRING
Calls the System WC function semof2) for semaphore operations such as signalling aaiting.

OPSTRINGmust be a packed array of semop structures. Each semop structure can be generated with

pack("s!3", $semnum, $semop, $semflag) . The length of OPSTRING implies the
number of semaphore operations. Returns true if successful, false an Asran eample, the
following code waits on semaphddsemnumof semaphore idsemid:

$semop = pack("s!3", $semnum, -1, 0);

die "Semaphore trouble: $\n" unless semop($semid, $semop);
To dgnal the semaphore, replaed with 1. See also ‘SysV IPC” in perlipc, IPC::SysV , and
IPC::SysV::Semaphore documentation.
Portability issues: “semopin perlport.

sendSOCKET,MSG,FLAGS, TO
sendSOCKET,MSG,FLAGS

Sends a message on a sckAttemptsto send the scalanSG to the SOCKETfilehandle. &kes the

same flags as the system call of the same name. On unconnected sockets, you must specify a

destination tosend tg in which case it does sendtq2) syscall. Returns the number of characters
sent, or the undefined value on errdhe sendmsg2) syscall is currently unimplemented. Se¢DP:
Message Passirighn perlipc for examples.

Note thecharacters depending on the status of the socket, either (8—bit) bytes or characters are sent.
By default all sockets operate on bytes, but for example if the socket has been changed using

binmode()to operate with theencoding(utf8) I/O layer (see‘bpen’, or the open pragma,
open), the 1/O will operate oTF-8 encoded Unicode characters, not bytes. Similarly for the
:encoding pragma: in that case pretty muclyaharacters can be sent.

setpgrpPID,PGRP

Sets the current process group for the speciiedO for the current process. Raises aception
when used on a machine that doesmplementPOSIX setpgid2) or BSD setpgrp2). If the
arguments are omitted, it defaultsG@® . Note that theBSD 4.2version ofsetpgrp does not accept
ary arguments, so onlgetpgrp(0,0) is portable. See alg®dOSIX::setsid()

Portability issues: “setpgrpin perlport.

setpriorityWHICH,WHO,PRIORITY

Sets the current priority for a process, a process group, or .a ($ssrsetpriority(2).) Raisesan
exception when used on a machine that daésmplementsetpriority(2).

Portability issues: “setpriorityin perlport.

setsockopSOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requestéRieturnsundef on error Use integer constants provided by the
Socket module for LEVEL and OPNAME. Values for LEVEL can also be obtained from

getprotobyname.OPTVAL might either be a packed string or an gee An integer OPTVAL is
shorthand for pack(“i”,OPTVAL).

An example disabling Nagkedgorithm on a socket:

use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

Portability issues: “setsockopth perlport.

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

shift ARRAY

shift EXPR

shift
Shifts the first value of the arrayfa@d returns it, shortening the array by 1 and movieyghing
down. If there are no elements in the arnaturns the undefinecalue. If ARRAY is omitted, shifts
the @_array within the Igical scope of subroutines and formats, and @&RG\rray outside a
subroutine and also within the lexical scopes established vHeSTRING , BEGIN {} , INIT
{} ,CHECK {} ,UNITCHECK {} ,andEND {} constructs.

Starting with Perl 5.14shift can talke a £alarEXPR, which must hold a reference to an unblessed
array The argument will be dereferenced automaticallitis aspect oshift is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.014; # so p ush/pop/etc work on scalars (experimental)

See alsaunshift , push, and pop. shift andunshift do the same thing to the left end of an
array thapop andpush do to the right end.

shmctliD,CMD,ARG
Calls the System WC function shmctl. You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitions.CMD is IPC_STAT, thenARG must be a variable that
will hold the returneghmid_ds structure. Returniike ioctl: undef for error; 'O but true" for zero;
and the actual return value otherwise. See alSgsV IPC” in perlipc and IPC::SysV
documentation.

Portability issues: “shmctlin perlport.

shmgetKEY,SIZE,FLAGS
Calls the System WC function shmget. Returns the shared memory segment ichdaf on error
See also “Sys\MPC” in perlipc andPC::SysV documentation.

Portability issues: “shmgétn perlport.

shmreadD,VAR,POS,SIZE

shmwritelD,STRING,POS,SIZE
Reads or writes the System V shared memogyneatID starting at positiorrOSfor size SIZE by
attaching to it, copying in/out, and detaching from it. When reading,must be a variable that will
hold the data readwhen writing, if STRING is too long, onlySIZE bytes are used; BTRING is too
short, nulls are written to fill ol8I1ZE bytes. Returnrue if successful, false on err@hmread(}aints
the \ariable. Seelso ‘SysV IPC” in perlipc, IPC::SysV , and thelPC::Shareable module
from CPAN.

Portability issues: “shmreadh perlport and “shmwrite’in perlport.

shutdownSOCKET,HOW
Shuts davn a socket connection in the manner indicatedi®w, which has the same interpretation as
in the syscall of the same name.

shutdown(SOCKET, 0); # | /we have stopped reading data
shutdown(SOCKET, 1); # | /we have stopped writing data
shutdown(SOCKET, 2); # | /we have stopped using this socket

This is useful with sockets when you want to tell the other side you're done writing but not done
reading, or vice ersa. It5 dso a more insistent form of close because it also disables the file
descriptor in apforked copies in other processes.

Returnsl for success; on erroreturnsundef if the first agument is not a valid filehandle, or returns
0 and set$! for ary other failure.

perl v5.18.2 2014-01-06 163

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

2:2 E)Ig?;urns the sine &XPR (expressed in radians). BXPRis omitted, returns sine &f .
For the irverse sine operation, you may use Math::Trig::asin function, or use this relation:
sub asin { atan2($_[0], sqrt(1 - $_[0] *$_[0])) }
sleepEXPR
sleep

Causes the script to sleep for (oe€) EXPR seconds, or foxer if no argument is gien. Returnghe
integer number of seconds actually slept.

May be interrupted if the process remsia sgnal such aSIGALRM

eval {
local $SIG{ALARM} = sub { die "Alarmi\n" };
sleep;

h

die $@ unless $@ eq "Alarm\n";

You probably cannot mixalarm andsleep calls, becausesleep is often implemented using
alarm .

On some older systems, it may sleep up to a full second less than what you requested, depending on
how it counts seconds. Most modern systemg&gs sleep the full amounfThey may appear to sleep

longer than that, lweever, because your process might not be scheduled riglaty an a kusy
multitasking system.

For delays of finer granularity than one second, the Time::HiRes module @raN, and starting
from Perl 5.8 part of the standard disttibn) provides usleep() You may also use Peslfour-
argument version o$elect()leaving the first three guments undefined, or you might be able to use
thesyscall interface to accessetitimen(2) if your system supports it. See perlfag8 for details.

See also theosIXmodule'spause function.

socketSOCKET,DOMAIN, TYPE,PRTOCOL
Opens a socket of the specified kind and attaches it to filehamdi&€ET DOMAIN, TYPE, and
PROTOCOL are specified the same as for the syscall of the same némmeshould use Socket
first to get the proper definitions imported. See the examples'Siockets: Client/Sersr
Communicatiori’in perlipc.

On systems that support a close-areeflag on files, the flag will be set for the newly opened file
descriptoras determined by the value of $"Bee “$°F” in perlvar.

socketpailSOCKET1,SOCKET2,DOMAIN, TYPE,PETOCOL
Creates an unnamed pair of sockets in the specified domain, of the specifieD@wp&IN, TYPE,
andPROTOCOL are specified the same as for the syscall of the same nhm@mplemented, raises
an ception. Returngrue if successful.

On systems that support a close-areeflag on files, the flag will be set for thewlg opened file
descriptors, as determined by the value of &&e “$"F” in perlvar.

Some systems defingdpe in terms ofsocketpair , in which a call topipe(Rdr, Wtr) is
essentially:

use Socket;

socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);

shutdown(Rdr, 1); # no more writing for reader

shutdown(Wtr, 0); # no more reading for writer

See perlipc for anxample of socketpair use. Perl 5.8 and later will emulate socketpair ising
sockets to localhost if your system implements sockets but not socketpair.

Portability issues: “socketpaiiin perlport.
SOrSUBNAME LIST

164 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

SOrtBLOCK LIST

SOrtLIST
In list context, this sorts thdST and returns the sorted lisalue. Inscalar context, the beliaur of
sort() is undefined.

If SUBNAME or BLOCK is omitted,sort s in gdandard string comparison ordelf SUBNAME is
specified, it gres the name of a subroutine that returns argetdess than, equal to, or greater tBan
depending on he the elements of the list are to be orderédihe <=> and cmp operators are
extremely useful in such routines§UBNAME may be a scalaraviable name (unsubscripted), in
which case the value prioles the name of (or a reference to) the actual subroutine to use. In place of
a SUBNAME, you can provide 8LOCK as an anonymous, in-line sort subroutine.

If the subroutines prototype is($$) , the elements to be compared are passed by refere@e &

for a normal subroutineThis is slower than unprototyped subroutines, where the elements to be
compared are passed into the subroutine as the package gldbbales$a and $b (see ®ample
belov). Notethat in the latter case, it is usually highly courgierductve o declare$a and$b as
lexicals.

If the subroutine is alXSUB, the elements to be compared are pushed on to the stackayhe w
arguments are usually passed to XSU8a.and$b are not set.

The values to be compared areajls passed by reference and should not be modified.

You dso cannot eit out of the sort block or subroutine usingyaof the loop control operators
described in perlsyn or withoto .

When use locale (but notuse locale 'not_characters') is in dfect, sort LIST
sortsLIST according to the current collation locale. See perllocale.

sort() returns aliases into the original list, much as a for boyulec variable aliases the list elements.
That is, modifying an element of a list returnedsoyt() (for example, in doreach , mapor grep)
actually modifies the element in the original list. This is usually something tosdided when
writing clear code.

Perl 5.6 and earlier used a quicksort algorithm to implement $bst algorithm was not stable, so
couldgo quadratic.(A stablesort preserves the input order of elements that compare efjtladugh
quicksorts run time is O(NlogN) whenveraged oer all arrays of length N, the time can be O(N**2),
quadraticbehavior for some inputs.)n 5.7, the quicksort implementation was replaced with a stable
meigesort algorithm whose worst-case behavior is O(Nlo@\ijt benchmarks indicated that for some
inputs, on some platforms, the original quicksort veedelr 5.8 has a sort pragma for limited control
of the sort. Its rather blunt control of the underlying algorithm may not persist into future Berls, b
the ability to characterize the input or output in implementation independgstquite probably will.
See the sort pragma.

Examples:
sort lexically
@articles = sort @files;

same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

now case-insensitively
@articles = sort {fc($a) cmp fc($b)} @files;

same thing in reversed order
@articles = sort {$b cmp $a} @files;

sort numerically ascending
@articles = sort {$a <=> $b} @files;

sort numerically descending
@articles = sort {$b <=> $a} @files;

perl v5.18.2 2014-01-06 165

PERLFUNC(1)

166

PerProgrammers Reference Guide PERLFUNC(1)

t his sorts the %age hash by value instead of key
using an in—line function
@eldest = sort { $age{$b} <=> $age{$a} } keys Yage;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}

@sortedclass = sort byage @class;

sub backwards { $b cmp $a }
@harry = qw(dog cat x Cain Abel);
@george = qw(gone chased yz Punished Axed);
print sort @harry;
prints AbelCaincatdogx
print sort backwards @harry;
prints xdogcatCainAbel
print sort @george, 'to’, @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

i nefficiently sort by descending numeric compare using
t he first integer after the first = sign, or the
whole record case-insensitively otherwise

my @new = sort {
($b =" /=(\d+))[0] <=> ($a =" /=(\d+)/)[0]

|
fc($a) cmp fc($b)
} @old;

same thing, but much more efficiently;

we'll build auxiliary indices instead

f or speed

my @nums = @caps = ();

for (@old) {
push @nums, (/=(\d+)/ ? $1 : undef);
push @caps, fc($);

}

my @new = @old[sort {
$nums[$b] <=> $nums[$a]

|
$caps[$a] cmp $caps[$b]
} 0 ..$#old
I;

same thing, but without any temps
@new = map { $_—->[0] }
sort { $b—>[1] <=> $a—>[1]
|
$a->[2] cmp $b—>[2]
} map {[$_, /=(\d+)/, fc($_)] } @old;

using a prototype allows you to use any comparison subroutine

as a s ort subroutine (including other package's subroutines)

package other;

sub backwards ($$) { $_[1] cmp $_[O]; } # $a and $b are
not set here

package main;

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

@new = sort other::backwards @old;

guarantee stability, regardless of algorithm
use sort 'stable’;
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

f orce use of mergesort (not portable outside Perl 5.8)
use sort'_mergesort’; # note discouraging _
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from a funétigou want to
sort the list returned by the function ditid_records(@key) , you can use:

@contact = sort { $a cmp $b } find_records @key;
@contact = sort +find_records(@key);
@contact = sort &find_records(@key);
@contact = sort(find_records(@key));

If instead you want to sort the arr@keywith the comparison routinfind_records() then you
can use:

@contact = sort { find_records() } @key;
@contact = sort find_records(@key);
@contact = sort(find_records @key);
@contact = sort(find_records (@key));

If you're using strict, younust notdeclare$a and$b as leicals. Thg are package globalsThat
means that if you're in thmain package and type

@articles = sort {$b <=> $a} @files;

then$a and$b are$main::a and$main::b (or$:a and$:b), butif you're in theFooPack
package, it the same as typing

@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behalf it returns inconsistent results (sometimes saying
$x[1] s less thar$x[2] and sometimes saying the opposite, fareple) the results are not well-
defined.

Because<=> returnsundef when either operand NaN (not-a-number), be careful when sorting
with a comparison function l&k$a <=> $b ary lists that might contain &laN The folloving
example takes advantage tiNgN != NaN to eliminate anyNaNs from the input list.

@result =sort { $a<=>$b} grep{$_==9%_} @input;

spliceARRAY or EXPR,OFFSET,LENGTH,LIST

spliceARRAY or EXPR,OFFSET,LENGTH

spliceARRAY or EXPR,OFFSET

spliceARRAY or EXPR
Remaores the elements designated OFFSETandLENGTH from an arrayand replaces them with the
elements ofLIST, if any. In list context, returns the elements reqet from the array In scalar
contet, returns the last element remed, orundef if no elements are reraed. Thearray grows or
shrinks as necessarlf OFFSETis neydive then it starts thatf from the end of the arrayf LENGTH
is omitted, remees everything from OFFSETonward. If LENGTH is negaive, removes the elements
from OFFSETonward except for —-LENGTH elements at the end of the artapoth OFFSETand
LENGTH are omitted, remas everything. If OFFSETis past the end of the arraierl issues a
warning, and splices at the end of the array.

The following equralences hold (assumiriffa >=$i)

perl v5.18.2 2014-01-06 167

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

168

push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,3y)
$a[$i] = By splice(@a,$i,1,%y)

Example, assuming array lengths are passed before arrays:

sub aeq { # compare two list values
my(@a) = splice(@_,0,shift);
my(@Db) = splice(@_,0,shift);

return O unless @a == @b; # same len?
while (@a) {
return 0 if pop(@a) ne pop(@b);
}
return 1,

}
if (&aeq($len,@foo[l..$len],0+@bar,@bar)) { ... }

Starting with Perl 5.14splice can tale salarEXPR,which must hold a reference to an unblessed
array The argument will be dereferenced automaticalllgis aspect ofplice is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.014; # so p ush/pop/etc work on scalars (experimental)

split /PATTERN/,EXPR,LIMIT

split /PATTERN/,EXPR

split /PATTERN/

split
Splits the stringeXPRinto a list of strings and returns the list in list context, or the size of the list in
scalar context.

If only PATTERN is given, EXPRdefaults tdb_.

Anything in EXPR that matchesPATTERN is taken to be a separator that separatesetkier into
substrings (calledfields’) that donot include the separatolNote that a separator may be longer than
one character owven haveno characters at all (the empty string, which is a zero-width match).

The PATTERN need not be constant; an expression may be used to specify a patterridsat
runtime.

If PATTERN matches the empty string, tlEXPR is split at the match position (between characters).
As an example, the following:

print join(":', split('b’, 'abc"), "\n";
uses the 'b’ in 'abc’ as a separator to produce the output 'a:c’. Véovikis:

print join(":', split(", 'abc")), "\n";
uses empty string matches as separators to produce the output 'a:b:c’; thus, the empty string may be
used to spliEXPRinto a list of its component characters.

As a special case faplit , the empty pattern gén in match operator syntax/() specifically
matches the empty string, which is contrary to its usual interpretation as the last successful match.

If PATTERN s /"/ , then it is treated as if it used the multiline modifiémg), since it isnt much
use otherwise.

As another special casslit emulates the default behavior of the command lineaoé when the
PATTERN is either omitted or &teral string composed of a single space character (such'asor
"\x20" , but not e.g/ /). Inthis case, anleading whitespace iIBXPRis remaed before splitting
occurs, and th@ATTERN is instead treated as if it wefes+/ ; in particular this means thaany

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

contiguous whitespace (not just a single space character) is used as a sdpavatog, this special
treatment can bevaided by specifying the pattern/ instead of the strin " , thereby allaving

only a single space character to be a sepatatearlier Perls this special case was restricted to the
use of a plaii " as the pattern argument to split, in Perl 5.18.0 and later this special case is triggered
by ary expression whichwaluates as the simple strifig" .

If omitted, PATTERN defaults to a single spacé, " , triggering the previously describeawk
emulation.

If LIMIT is specified and posit, it represents the maximum number of fields into whichEkeR
may be split; in other @rds,LIMIT is one greater than the maximum number of tiEléBR may be
split. Thus,theLIMIT value 1 means thaEXPR may be split a maximum of zero times, producing a
maximum of one field (namelthe entire value dEXPR). For instance:

print join(":', split(//, 'abc', 1)), "\n";
produces the output 'abc’, and this:

print join(":', split(//, 'abc', 2)), "\n";
produces the output 'a:bc’, and each of these:

print join(":', split(//, 'abc’, 3)), "\n";
print join(":', split(//, 'abc’, 4)), "\n";

produces the output 'a:b:c’.

If LIMIT is negdive, it is treated as if it were instead arbitrarilydar as mayfields as possible are
produced.

If LIMIT is omitted (or equivalently, zero), then it is usually treated as if it were insteagktnee tut

with the exception that trailing empty fields are stripped (empty leading fieldsaes @reserved); if

all fields are emptythen all fields are considered to be trailing (and are thus stripped in this case).
Thus, the following:

print join(":', split(',', 'a,b,c,,,), "\n";
produces the output 'a:b:c’, but the following:

print join(":', split(',', 'a,b,c,,,’, —1)), "\n";
produces the output 'a:b:c:::".

In time-critical applications, it is worthwhile tos@id splitting into more fields than necessaihus,
when assigning to a list, ifiMIT is omitted (or zero), thenIMIT is treated as though it were one
larger than the number of variables in the list; for the followimg|T is implicitly 3:

($login, $passwd) = split(/:/);

Note that splitting afEXPR that e/aluates to the empty stringvedys produces zero fields,g&dless
of theLIMIT specified.

An empty leading field is produced when there is a pesitidth match at the beginning &XPR.
For instance:

print join(":', split(/ /, * abc")), "\n";

produces the output ":abcHowever, a zro-width match at the baning of EXPR never produces an
empty field, so that:

print join(":', split(//, ' abc");
produces the output ' :a:b:c’ (rather than ’: :a:b:c’).

An empty trailing field, on the other hand, is produced when there is a match at the ©tfeRof
regardless of the length of the match (of course, unless a non-ii is given explicitly, such fields
are remged, as in the last@mple). Thus:

print join(":', split(//, ' abc', —1)), "\n";

produces the output ' :a:b:c:’.

perl v5.18.2 2014-01-06 169

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

If the PATTERN contains capturing groups, then for each separatoalditional field is produced for

each substring captured by a group (in the order in which the groups are specified, as per
backreferences); if ggroup does not match, then it capturesuthdef value instead of a substring.

Also, note that ansuch additional field is produced whemrethere is a separator (that is, whesrea

split occurs), and such an additional field donescount tavards theLIMIT. Consider the follwing
expressions\eluated in list context (each returned list is provided in the associated comment):

split(/—|,/, "1-10,20", 3)
('1,'10', 20"

split(/(-,)/, "1-10,20", 3)
('1,'-, "0, "), 20

split(/—|(,)/, "1-10,20", 3)
('1', undef, 10", '), '20')

split(/(-)|,/, "1-10,20", 3)
('L, ', '10', undef, '20)

split(/(-)I(,)/, "1-10,20", 3)
('1','-', undef, '10', undef, ',', '20"
sprintf FORMAT, LIST
Returns a string formatted by the uspiahtf ~ corventions of the C library functiogprintf . See
belov for more details and seerintf(3) or printf (3) on your system for arxglanation of the general
principles.

For example:

Format number with up to 8 leading zeroes
$result = sprintf("%608d", $number);

Round number to 3 digits after decimal point
$rounded = sprintf("%.3f", Snumber);

Perl does itswn sprintf ~ formatting: it emulates the C functiaprintf(3), but doesr’use it except
for floating-point numbers, andven then only standard modifiers are alkd. Non-standard
extensions in your locaprintf(3) are therefore urailable from Perl.

Unlike printf |, sprintf does not do what you probably mean when you pass it an array as your
first agument. Therray is gven scalar context, and instead of using the Oth element of the array as
the format, Perl will use the count of elements in the array as the format, which is aveosseatul.

Perl'ssprintf permits the following uwiersally-known comersions:

%% a percent sign

%cC a character with the given number

%s a string

%d a signed integer, in decimal

%u an unsigned integer, in decimal

%0 an unsigned integer, in octal

%X an unsigned integer, in hexadecimal

%e a floating—point number, in scientific notation

%f a floating—point number, in fixed decimal notation
%g a floating—point number, in %e or %f notation

In addition, Perl permits the following widely-supported\@sions:

170 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

%X like %X, but using upper—case letters

%E like %e, but using an upper—case "E"

%G like %g, but with an upper—case "E" (if applicable)

%b an unsigned integer, in binary

%B like %b, but using an upper—case "B" with the # flag

%p a pointer (outputs the Perl value's address in hexadecimal)

%n special: *stores* the number of characters output so far
into the next argument in the parameter list

Finally, for backward (and we do medbdckward’) compatibility, Perl permits these unnecessany b
widely-supported carersions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%0 a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation producd; BgE %gand%Gor

numbers with the modulus of the exponent less than 100 is system-dependent: it may be three or less
(zero-padded as necessary). In other words, 1.23 times ten to the 99th may bé&l &8e99° or
“1.23e099".

Between theand the format letteryou may specify sexal additional attributes controlling the
interpretation of the format. In ordehese are:

format parameter index
An explicit format parameter index, such2®. By default sprintf will format the next unused
argument in the list, but this allows you toadke arguments out of order:

printf '%2%d %1$d', 12, 34; # prints "34 12"
printf '%3%d %d %1$d', 1, 2, 3; # prints"31 1"
flags
one or more of:
space prefix non—negative number with a space
+ prefix non—negative number with a plus sign

- | eft—justify within the field

0 use zeros, not spaces, to right—justify

ensure the leading "0" for any octal,
prefix non-zero hexadecimal with "0x" or "0X",
prefix non—zero binary with "0b" or "0B"

For example:
printf '<% d>', 12; # prints "< 12>"
printf '<%-+d>", 12; # prints "<+12>"
printf '<%6s>', 12; # prints"< 12>"
printf '<%-6s>', 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#o0>", 12; # prints "<014>"
printf '<%#x>', 12; # prints "<Oxc>"
printf '<%#X>', 12; # prints "<OXC>"
printf '<%#b>", 12; # prints "<0b1100>"
printf '<%#B>', 12; # prints "<0B1100>"

When a space and a plus sign axemgas he flags at once, a plus sign is used to prefix a pesiti

number.
printf '<%+ d>', 12; # prints "<+12>"
printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision areegiin the %ocorversion, the precision is incremented isit’
necessary for the leading “0”.

perl v5.18.2 2014-01-06 171

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

printf '<%#.50>', 012; # prints "<00012>"

printf '<%#.50>', 012345; # prints "<012345>"

printf '<%#.00>', 0; # prints "<0>"
vector flag

This flag tells Perl to interpret the supplied string asaor of integers, one for each character in

the string. Perl applies the format to each integer in turn, then joins the resulting strings with a
separator (a dat by defwult). Thiscan be useful for displaying ordinal values of characters in
arbitrary strings:

printf "%vd", "AB\x{100}"; # prints "65.66.256"
printf "version is v%vd\n“, $°V; # Perl's version

Put an asterisk before thes to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # | Pv6 address
printf "bits are %0*v8b\n", " ", $bits; # r andom bitstring

You can also explicitly specify the argument number to use for the join string using something
like *2$v ; for example:

printf '%*4%vX %*4$vX %*4$vX', # 3 | Pv6 addresses
@addr[1..3], ":";

(minimum) width
Arguments are usually formatted to be only as wide as required to displaydheajue. You
can oeride the width by putting a number here, or get the width from the next argument (with
*) or from a specified argument (e.g., Wit):

printf "<%s>", "a"; # prints "<a>"

printf "<%6s>", "a"; # prints "< a>"

printf "<%*s>", 6, "a"; # prints "< a>"

printf '<%*2$s>', "a", 6; # prints "< a>"

printf "<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through is negaive, it has the same effect as theflag: left-
justification.

precision, or maximum width
You can specify a precision (for numeric eersions) or a maximum width (for string
conversions) by specifying a followed by a numberFor floating-point formats»eeptg andG
this specifies he mary places right of the decimal point to shdthe default being 6).For

example:
t hese examples are subject to system—specific variation
printf '<%f>', 1; # prints "<1.000000>"
printf '<%.1f>', 1; # prints "<1.0>"
printf '<%.0f>', 1; # prints "<1>"
printf '<%e>', 10; # prints "<1.000000e+01>"

printf '<%.1e>', 10; # prints "<1.0e+01>"

[TPRE]

For “‘g’’ and “G’’, this specifies the maximum number of digits tovghiacluding those prior to
the decimal point and those after it; for example:

These examples are subject to system—specific variation.

printf '<%g>', 1; # prints "<1>"
printf '<%.10g>", 1; # prints "<1>"
printf '<%g>', 100; # prints "<100>"
printf '<%.1g>', 100; # prints "<le+02>"

printf '<%.2g>', 100.01; # prints "<le+02>"
printf '<%.5g>', 100.01; # prints "<100.01>"
printf '<%.4g>', 100.01; # prints "<100>"

For integer cowersions, specifying a precision implies that the output of the number itself should
be zero-padded to this width, where the 0 flag is ignored:

172 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

perl v5.18.2

printf '<%.6d>", 1; # prints "<000001>"
printf '<%+.6d>', 1; # prints "<+000001>"
printf '<%-10.6d>", 1; # prints "<000001 >"
printf '<%10.6d>'", 1; # prints "< 000001>"
printf '<%010.6d>'", 1; # prints "< 000001>"
printf '<%+10.6d>", 1; # prints "< +000001>"
printf '<%.6x>', 1; # prints "<000001>"
printf '<%#.6x>', 1; # prints "<0x000001>"
printf '<%-10.6x>', 1; # prints "<000001 >"
printf '<%10.6x>', 1; # prints "< 000001>"
printf '<%010.6x>", 1; # prints "< 000001>"
printf '<%#10.6x>", 1; # prints "< 0x000001>"

For string corversions, specifying a precision truncates the string to fit the specified width:

printf '<%.5s>', "truncated"; # prints "<trunc>"
printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using

printf '<%.6x>', 1; # prints "<000001>"
printf '<%.*x>", 6, 1; # prints "<000001>"
If a precision obtained throughis negdive, it counts as having no precision at all.
printf '<%.*s>', 7, "string"; # prints "<string>"
printf '<%.*s>', 3, "string"; # prints "<str>"
printf '<%.*s>', 0, "string"; # prints "<>"
printf '<%.*s>', -1, "string"; # prints "<string>"
printf '<%.*d>', 1, 0; # prints "<0>"
printf '<%.*d>', 0, 0; # prints "<>"
printf '<%.*d>', -1, O; # prints "<0>"

You cannot currently get the precision from a specified nuntdoiit is intended that this will be
possible in the future, for example usifgs$:

printf '<%.*2$x>", 1, 6; # | NVALID, but in future will print
" <000001>"

size
For numeric comersions, you can specify the size to interpret the number aslusingv, q, L,
orll . Forinteger coversions fl u o x X biDUO), numbers are usually assumed to be
whatever the default integer size is on your platform (usually 32 or 64 bits), but yoweaide
this to use instead one of the standard C types, as supported by the compiler used to build Perl:

hh interpret integer as C type "char" or "unsigned
char" on Perl 5.14 or later
h i nterpret integer as C type "short" or

"unsigned short"

] i nterpret integer as C type "intmax_t" on Perl
5.14 or later, and only with a C99 compiler
(unportable)

| i nterpret integer as C type "long" or
"unsigned long"

q, L, or Il interpret integer as C type "long long",
"unsigned long long", or "quad" (typically
64-hit integers)

t i nterpret integer as C type "ptrdiff_t" on Perl
5.14 or later
z i nterpret integer as C type "size_t" on Perl 5.14
or later
2014-01-06 173

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

As of 5.14, none of these raises an exception if e not supported on your platform.
However, if warnings are enabled, aaming of theprintf ~ warning class is issued on an
unsupported carersion flag. Should you instead prefer an exception, do this:

use warnings FATAL => "printf";

If you would like to know about a version dependgnbefore you start running the program, put
something lile this at its top:

use 5.014; # f or hhij/t/z/ printf modifiers
You can find out whether your Perl supports quads via Config:

use Config;

if ($Config{useb4bitint} eq "define"
|| $Config{longsize} >= 8) {
print "Nice quads\n";

}

For floating-point comersions € f g E F G), numbers are usually assumed to be thaudief
floating-point size on your platform (double or long double), but you can force “long double’
with g, L, or Il if your platform supports themYou can find out whether your Perl supports
long doubles via Config:

use Config;
print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers “long doubie’be the default floating-point size to use
on your platform via Config:

use Config;

if ($Config{uselongdouble} eq "define") {
print "long doubles by default\n®;

}

It can also be that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&
print "doubles are long doubles\n";

The size specifie¥ has no effect for Perl code, but is supported for compatibility Méticode.
It means “use the standard size for a Perl integer or floating-point number”, which is the default.

order of arguments

174

Normally, sprintf() takes the next unused argument as thtier to format for each format
specification. Ifthe format specification uses to require additional arguments, these are
consumed from the argument list in the ordey thgpear in the format specificatidieforethe
value to format. Where an argument is specified by an explicixjnttdés does not affect the
normal order for the argumentsjea when the explicitly specified indevould have been the
next argument.

So:
printf "<%*.*s>", $a, $b, $c;
uses$a for the width,$b for the precision, anfic as the value to format; while:
printf '<%*1$.*s>', $a, $b;
would use$a for the width and precision, a as the value to format.

Here are some more examples; bera that when using arnxglicit index, the$ may need
escaping:

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"
If use locale (including use locale 'not_characters') is in dfect and

POSIX::setlocale(has been called, the character used for the decimal separator in formatted floating-
point numbers is affected by the_NUMERIC locale. Segerllocale andPOSIX

SQrtEXPR
sgrt Return the positie gjuare root oEXPR. If EXPRis omitted, use$. Works only for non-ngative
operands unless yoi€ loaded théviath::Complex module.

use Math::Complex;
print sqrt(-4); # prints 2i

srandeEXPR
srand
Sets and returns the random number seed fomatite operator.

The point of the function is tdseed’ the rand function so thatrand can produce a diérent
sequence each time you run your program. When called with a parasnatel uses that for the
seed; otherwise it (semi-)randomly chooses a saee@ither case, starting with Perl 5.14, it returns
the seed.To sgnal that your code will worknly on Perls of a recent vintage:

use 5.014; # so s rand returns the seed

If srand() is not called rplicitly, it is called implicitly without a parameter at the first use of the
rand operator Howevae, there are a fe situations where programs are likely to want to sedind .

One is for generating predictable results, generally for testing angdely. There,you use
srand($seed) , with the same$seed each time. Another case is that you magntvto call
srand() after afork() to avoid child processes sharing the same seed value as the parent (and
consequently each other).

Do not call srand() (i.e., without an argument) more than once per procEks. internal state of
the random number generator should contain more gntigm can be provided by warseed, so
callingsrand() again actuallyosesrandomness.

Most implementations ofrand take an hteger and will silently truncate decimal numberBhis
meanssrand(42) will usually produce the same resultssaand(42.1) . To be sfe, aays
passsrand an integer.

A typical use of the returned seed is for a test program which has tgoagrabinations to test
comprehensily in the time &ailable to it each runlt can test a random subset each time, and should
there be a failure, log the seed used for that run so that it can later be used to reproduce the same
results.

rand() is not cryptographically secue. You should not rly on it in security-sensitve
situations. As of this writing, a number of third-parGPAN modules dier random number generators
intended by their authors to be cryptographically secure, including: Data::¥n@gpt::Random,
Math::Random::Secure, and Math:: TrulyRandom.

statFILEHANDLE

statEXPR

statDIRHANDLE

stat Returns a 13—-element list giving the status info for a file, either the file openEW&H#ANDLE or
DIRHANDLE, or named byEXPR. If EXPRis omitted, it stat$ (not_!). Returnsthe empty list if
stat fails. Typically used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev, $size,
$atime,$mtime,$ctime,$blksize,$blocks)
= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of the fields:

perl v5.18.2 2014-01-06 175

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

0 dev device number of filesystem

1ino inode number

2 nmode file mode (type and permissions)

3 nlink number of (hard) links to the file

4 uid numeric user ID of file's owner

5 gid numeric group ID of file's owner

6 rdev the device identifier (special files only)

7 size total size of file, in bytes

8 atime last access time in seconds since the epoch

9 nmtime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)

11 blksize preferred I/O size in bytes for interacting with the
file (may vary from file to file)

12 blocks actual number of system-specific blocks allocated
on disk (often, but not always, 512 bytes each)

(The epoch was at 00:00 January 1, 18¥.)

(*) Not all fields are supported on all filesystem typéktably the ctime field is non-portabldn
particular you cannot gpect it to be a “creation time”; see “Files and Filesystérrsperlport for
details.

If stat is passed the special filehandle consisting of an underline, no stat is dbtiee burrent
contents of the stat structure from the Eat , Istat , or filetest are returned. Example:

if (—x $file && (($d) = stat()) && $d < 0) {
print "$file is executable NFS file\n";
}

(This works on machines only for which the device numbergstive underNFS)

Because the mode contains both the file type and its permissions, you should frilaskilef type
portion and (s)printf using'&00" if you want to see the real permissions.

$mode = (stat($filename))[2];
printf "Permissions are %040\n", $mode & 07777;

In scalar contd, stat returns a boolean value indicating success or failure, and, if successful, sets
the information associated with the special filehandle

The File::stat module provides a @enient, by-name access mechanism:

use File::stat;

$sb = stat($filename);

printf "File is %s, size is %s, perm %040, mtime %s\n",
$filename, $sb—>size, $sbh—>mode & 07777,
scalar localtime $sb—>mtime;

You can import symbolic mode constang (F*) and functions §_IS*) from the Fcntl module:
use Fentl :mode’;
$mode = (stat($filename))[2];
$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S_IRGRP) >> 3;
$other_execute = $mode & S_IXOTH,;
printf "Permissions are %040\n", S_IMODE($mode), "\n";

$is_setuid = $mode & S_ISUID;
$is_directory = S_ISDIR($mode);

You could write the last te using the—u and-d operators. CommonlgwailableS_IF* constants
are:

176 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system—-dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

File types. Not all are necessarily available on
your system.

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR
S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

The following are compatibility aliases for S_IRUSR,
S_IWUSR, and S_IXUSR.

S_IREAD S_IWRITE S_IEXEC
and theS_IF* functions are

S_IMODE($mode) the part of $mode containing the permission
bits and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit-anded with (for example)
S_IFREG or with the following functions

The operators —f, —d, I, -b, —c, —p, and -S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct —X operator counterpart, but for the first one
t he —g operator is often equivalent. The ENFMT stands for
r ecord flocking enforcement, a platform—dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your natie chmod(2) andstat(2) documentation for more details about $h¢ constants. @ get
status info for a symbolic link instead of the target file behind the link, usstéihe function.

Portability issues: “statin perlport.

stateEXPR

stateTYPE EXPR

stateEXPR : ATTRS

stateTYPE EXPR : ATTRS
state declares a lexically scoped variable, juseliky. Howeve, those variables will ner be
reinitialized, contrary to lexical ariables that are reinitialized each time their enclosing block is
entered. Se&Persistent Pviete Variables'’in perlsub for details.

state variables are enabled only when thee feature "state" pragma is in effect, unless
the keyword is written asCORE::state . See also feature.

studySCALAR

study

Takes extra time to studySCALAR ($_ if unspecified) in anticipation of doing mapattern matches
on the string before it is Remodified. This may or may notwatme, depending on the nature and

perl v5.18.2 2014-01-06 177

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

number of patterns you are searching and the distribution of character frequencies in the string to be
searched; you probably want to compare run times with and without it to see whaskers Those

loops that scan for mgrshort constant strings (including the constant parts of more campatterns)

will benefit most. (The way study works is this: a linked list ofvery character in the string to be
searched is made, so we lidor example, where all th&' characters are. From each search
string, the rarest character is selected, based on some static fyet@indes constructed from some C
programs and Englishxe Onlythose places that contain this “raréstiaracter are examined.)

For example, here is a loop that inserts ingieoducing entries before wiine containing a certain

pattern:
while (<>) {
study;
print ".IX foo\n" if A\bfoo\b/;
print ".IX bar\n" if Abbar\b/;
print ".IX blurfi\n" if Abblurfl\b/;
..
print;
}
In searching foA\bfoo\b/ , only locations in$_ that contairf will be looked at, becaudeis rarer

thano. In general, this is a big win except in pathological cases. The only question is whethes it sa
you more time than it took to build the linked list in the first place.

Note that if you hee look for strings that you donknow till runtime, you can build an entire loop

as a string andval that to aoid recompiling all your patterns all the tim&ogether with undefining

$/ to input entire files as one record, this can be quite fast, often faster than specialized programs lik
fgrep(1). Thefollowing scans a list of files@files) for a list of words @words), and prints out

the names of those files that contain a match:

$search = 'while (<>) { study;";
foreach $word (@words) {
$search .= "++\$seen{\$ARGV} if N\b$word\\b/;\n";

}
$search .="}";
@ARGV = @files;
undef $/;
eval $search; # t his screams
$/="\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {
print $file, "\n";
}

SUbNAME BLOCK

SubNAME (PROTO) BLOCK

SUbNAME : ATTRS BLOCK

SUbNAME (PROTO) : ATTRS BLOCK
This is subroutine definition, not a real functiper se Without a BLOCK it's just a forvard
declaration. WWhout aNAME, it's an aorymous function declaration, so does return a value: the
CODET ef of the closure just created.

See perlsub and perlref for details about subroutines and references; see attributes and
Attribute::Handlers for more information about attributes.

__SuB__
A special token that returns a reference to the current subroutinegdef outside of a subroutine.

The behaviour of _SUB__ within a reg& code block (such a§?{...})/) is subject to change.
This token is onlyailable undemse v5.16 or the “current_subfeature. Seéeature.
SUbstrEXPR,OFFSET,LENGTH,REPLACEMENT

178 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

SUbstrEXPR,OFFSET,LENGTH

SUbStrEXPR,OFFSET
Extracts a substring out @XPRand returns it.First character is at offset zerti. OFFSETis negaive,
starts that far back from the end of the strilfgLENGTH is omitted, returnswerything through the
end of the string. IEENGTH is negaive, leaves that man characters dfthe end of the string.

my $s = "The black cat climbed the green tree";

my $color = substr $s, 4, 5; # black

my $middle = substr $s, 4, —11; # black cat climbed the
my $end = substr $s, 14; # climbed the green tree
my S$tail = substr $s, —4; # tree

my $z = substr $s, -4, 2; #tr

You can use thesubstr()function as an Ivalue, in which caEXPR must itself be an Blue. Ifyou
assign something shorter thaBNGTH, the string will shrink, and if you assign something longer than
LENGTH, the string will grev to accommodate it.To keep the string the same length, you may need to
pad or chop your value usisgrintf

If OFFSETandLENGTH specify a substring that is partly outside the string, only the part within the
string is returned.If the substring is beyond either end of the strgystr()returns the undefined
value and produces aafning. Wherused as an Ivalue, specifying a substring that is entirely outside
the string raises arxeeption. Heres an éample showing the behavior for boundary cases:

my $name = ‘fred’;

substr($name, 4) = 'dy"; # $name is now 'freddy'

my $null = substr $name, 6, 2; # r eturns " (no warning)

my $oops = substr $name, 7; # r eturns undef, with warning
substr($name, 7) = 'gap’; # r aises an exception

An alternatve © using substr()as an Ivalue is to specify the replacement string as the gitimant.
This allows you to replace parts of thkPRand return what was there before in one operation, just as
you can withsplice()

my $s = "The black cat climbed the green tree";
my $z = substr $s, 14, 7, "jumped from"; # climbed
$s is n ow "The black cat jumped from the green tree"

Note that the Ivalue returned by the threguanent version o$ubstr()acts as a 'magic bullet’; each
time it is assigned to, it remembers which part of the original string is being modified; for example:

$x ='1234",;
for (substr($x,1,2)) {
$ ='a} print $x,"\n"; # prints 1la4
$ ='xyz'; print $x,"\n"; # prints 1xyz4
$x = '56789';
$_='pg; print $x,"\n"; # prints 5pq9
}
With negative dfsets, it remembers its position from the end of the string when the target string is
modified:
$x ='1234",;
for (substr($x, -3, 2)) {
$ ="a} print $x,"\n"; # prints 1a4, as above
$x = 'abcdefq’;
print$_,"\n"; # prints f
}

Prior to Perl version 5.10, the result of using aldg multiple times was unspecified. Prior to 5.16,
the result with ngaive dfsets was unspecified.

symlink OLDFILE,NEWFILE
Creates a ne filename symbolically linked to the old filenamReturnsl for successQ otherwise.
On systems that dansupport symbolic links, raises araeption. D check for that, useval:

perl v5.18.2 2014-01-06 179

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

180

$symlink_exists = eval { symlink("",""); 1 };

Portability issues: “symlinK'in perlport.

syscallNUMBER, LIST

Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, raisex@ption. Thearguments are interpreted as
follows: if a given agument is numeric, the argument is passed as an int. If not, the pointer to the
string value is passedYou ae responsible to maksure a string is prex¢ended long enough to
receve any esult that might be written into a strinyou can't use a string literal (or other read-only
string) as an argument ®&yscall because Perl has to assume that siring pointer might be

written through. If your integer arguments are not literals and mve been interpreted in a
numeric context, you may need to dildo them to force them to look Bkrumbers. Thiemulates
thesyswrite function (or vice versa):

require 'syscall.ph’; # may need to run h2ph
$s = "hi there\n";
syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only Huents to your syscall, which in practice should
(usually) suffice.

Syscall returns whater value returned by the system call it calléthe system calldils, syscall
returns—1 and setsp! (errno). Notethat some system calésin legitimately return—-1. The proper
way to handle such calls is to assi§t=0 before the call, then check thalwe of$! if syscall
returns-1.

Theres a poblem withsyscall(&SYS_pipe) . it returns the file number of the read end of the
pipe it creates, but there is no way to rewidhe file number of the other en&dou can aoid this
problem by usingipe instead.

Portability issues: “syscallin perlport.

sysoperrILEHANDLE,FILENAME,MODE
sysoperrILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename isvegi by FILENAME, and associates it witRILEHANDLE. If
FILEHANDLE is an &pression, its value is used as the real filehandle wanted; an undefined scalar will
be suitably autavified. Thisfunction calls the underlying operating systewpern(2) function with

the parameterBILENAME, MODE, andPERMS.

The possible values and flag bits of theDE parameter are system-dependenty tre available via
the standard modulecntl . See the documentation of your operating syssempen(2) syscall to see
which values and flag bits arealable. You may combine seral flags using th¢ —operator.

Some of the most common values @eRDONLYor opening the file in read-only mode, WRONLY
for opening the file in write-only mode, afd RDWRr opening the file in read-write mode.

For historical reasons, some values work on almestyesystem supported by Perl: 0 means read-
only, 1 means write-onlyand 2 means read/writeWe know that these values doot work under
0S/390and on the Macintosh; you probably domant to use them in mecode.

If the file named byFILENAME does not exist and thapen call creates it (typically becauséODE
includes theD_CREATag), then the value #ERMSspecifies the permissions of the newly created
file. If you omit the PERMS agument tosysopen , Perl uses the octalalue 0666. These
permission values need to be in octal, and are modified by your peozgsshtumask.

In mary systems theO_EXCLflag is aailable for opening files in>&lusive node. Thisis not
locking: eclusiveness means here that if the file alreagligts, sysopen(fails. O _EXCLmay not
work on network filesystems, and has no effect unlessSOthEREATflag is set as well.Setting
O_CREAT|O_EXClLprevents the file from being opened if it is a symbolic lirlk.does not protect
against symbolic links in the fipath.

Sometimes you may want to truncate an alreadgisting file. This can be done using t@e TRUNC
flag. Thebehavior ofO_TRUNG@vith O_RDONLYs undefined.

You should seldom if eer use 0644 as argument tgysopen , because that takesvay the usess

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

option to hae a nore permissie unask. Betteto omit it. See theerlfunc(1l) entry onumask for
more on this.

Note thatsysopen depends on thilopen()C library function. On mapUnix systemsfdopen()is
known to fail when file descriptorsxeeed a certain value, typically 255. If you need more file
descriptors than that, consider rebuilding Perl to usesti® library, or perhaps using the
POSIX::open(function.

See perlopentut for a kindgentler explanation of opening files.
Portability issues: “sysoperih perlport.

sysread-ILEHANDLE,SCALAR,LENGTH,OFFSET

sysread-ILEHANDLE,SCALAR,LENGTH
Attempts to read ENGTH bytes of data intoariableSCALAR from the specifie¢fILEHANDLE, using
theread(2). It bypassesudferediO, so mixing this with other kinds of reagsjnt , write , seek,
tell , oreof can cause confusion because the perlio or stdio layers usufitlystdata. Returns the
number of bytes actually rea@d,at end of file, or undef if there was an error (in the latter $asis
also set). SCALAR will be grown or shrunk so that the last byte actually read is the last byte of the
scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. Anegdive OFFSETspecifies placement at that matharacters counting backwards from

the end of the stringA positive OFFSETgreater than the length BCALAR results in the string being
padded to the required size with" bytes before the result of the read is appended.

There is nosyseof()function, which is ok, sinceof() doesnt work well on device files (li& tys)
anyway Usesysread()and check for a return value for 0 to decide whether you're done.

Note that if the filehandle has been markedu#f Unicode characters are read instead of bytes
(the LENGTH, OFFSET and the return alue of sysread() are in Unicode characters)The
:encoding(...) layer implicitly introduces theutf8 layer See ‘binmode’, ‘‘open’, and the
open pragma, open.

sysseelEILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE's system position in bytes usingeek(2). FILEHANDLE may be an xpression
whose alue gves the name of the filehandle. The values\WHENCE are0 to set the n& position to
POSITION 1 to set the it to the current position pROSITION and 2 to set it toEOF plus POSITION,
typically negative.

Note thein bytes even if the filehandle has been set to operate on characters (for example by using the
:encoding(utf8) I/O layer), tell() will return byte offsets, not character offsets (because
implementing that would rendsysseek(inacceptably slow).

sysseek(pypasses normallfferediO, so mixing it with reads other thaysread (for example<>
orread() print ,write ,seek,tell ,oreof may cause confusion.

For WHENCE, you may also use the constaBtSEK_SET SEEK _CURand SEEK_END(start of the
file, current position, end of the file) from the Fcntl modulkse of the constants is also more portable
than relying on 0, 1, and Zor example to define a “systellf unction:

use Fcntl 'SEEK_CUR;
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the ne position, or the undefined value aailfire. Aposition of zero is returned as the string

"0 but true" ; thussysseek returns true on success and false on failure, yet you can still easily
determine the e position.
systemLIST

SystemPROGRAM LIST
Does exactly the same thing esec LIST , except that a fork is done first and the parent process
waits for the child process toie. Note that argument processingnies depending on the number of
arguments. Ithere is more than one argumentigT, or if LIST is an array with more than onelue,
starts the programggn by the first element of the list withg@uments gien by the rest of the listIf
there is only one scalar argument, the argument is checked for shell metacharacters, and if there are
ary, the entire ggument is passed to the systemdmmand shell for parsing (thisfisin/sh —c on

perl v5.18.2 2014-01-06 181

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Unix platforms, but &ries on other platforms). If there are no shell metacharacters in the argument, it
is split into words and passed directlyeteecvp , which is more efficient.

Perl will attempt to flush all files opened for output beforg @peration that may do a fork, but this
may not be supported on some platforms (see perlpdad)be safe, you may need to s&
(PAUTOFLUSH in English) or call theutoflush() method oflO::Handle on ary open
handles.

The return value is the exit status of the program as returned lathecall. To get the actual»at
value, shift right by eight (see be&lp. Seealso ‘exec”. This is notwhat you vant to use to capture
the output from a command; for that you should use merely backtickg/or, as dscribed in

“ STRING" in perlop. Returnvalue of —1 indicates aaflure to start the program or an error of the
wait(2) system call (inspect $! for the reason).

If you'd like to makesystem (and maw other bits of Perl) die on erronavea look at the autodie
pragma.

Like exec , system allows you to lie to a program about its name if you useyséeem PROGRAM
LIST syntax. Agin, see “aec”.

Since SIGINT and SIGQUIT are ignored during thexecution of system , if you expect your
program to terminate on receipt of these signals you will need to arrange to do so yourself based on
the return value.

@args = ("command", "argl", "arg2");
system(@args) ==
or die "system @args failed: $?"

If you'd like to nanually inspectsystem ’s failure, you can check all possiblailire modes by
inspectings? like this:

if ($7 ==-1){
print "failed to execute: $!\n";

}
elsif ($? & 127) {
printf "child died with signal %d, %s coredump\n”,
($? & 127), ($? & 128) ? 'with' : 'without’;
}
else {
printf "child exited with value %d\n", $? >> 8;
}

Alternatively, you may inspect the value $"CHILD_ERROR_NATIVE} with theW*() calls from
thePOSIXmodule.

Whensystem ’'s arguments arexacuted indirectly by the shell, results and return codes are subject to
its quirks. See"STRING" in perlop and “eec” for details.

Sincesystem does dork andwait it may affect &SIGCHLDhandler See perlipc for details.
Portability issues: “systernin perlport.

syswriteFILEHANDLE,SCALAR,LENGTH,OFFSET

syswriteFILEHANDLE,SCALAR,LENGTH

syswriteFILEHANDLE,SCALAR
Attempts to writeLENGTH bytes of data fromariable SCALAR to the specifiedFILEHANDLE, using
write (2). If LENGTH is not specified, writes wholeCALAR. It bypasses uifferedIO, so mixing this
with reads (other thasysread()) , print , write , seek, tell , or eof may cause confusion
because the perlio and stdio layers usualifjelb data. Returns the number of bytes actually written,
or undef if there was an error (in this case the erragiable$! is also set). If thek ENGTH is
greater than the dat&ailable in theSCALAR after theOFFSET,only as much data as igadable will
be written.

An OFFSETmay be specified to write the data from some part of the string other thargtheirog
A negdive OFFSETspecifies writing that mancharacters counting baclands from the end of the
string. IfSCALAR s of length zero, you can only use@RFSETof 0.

182 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

WARNING: If the filehandle is madd :utf8 , Unicode characters encoded WTF-8 are written
instead of bytes, and tHeENGTH, OFFSET and return value o$yswrite()are in (UTF8-encoded
Unicode) characters.The :encoding(...) layer implicitly introduces the:utf8 layer.
Alternately if the handle is not marked with an encoding you attempt to write characters with code
points wer 255, raises anxeeption. Seé binmode”, “open”, and theopen pragma, open.

tell FILEHANDLE

tell Returns the current positian bytesfor FILEHANDLE, or —1 on errar FILEHANDLE may be an
expression whose valuevgs the name of the actual filehandlé. FILEHANDLE is omitted, assumes
the file last read.

Note thein bytes even if the filehandle has been set to operate on characters (for example by using the
:encoding(utf8) open layer)tell() will return byte offsets, not character offsets (because that
would renderseek(Jandtell() rather slow).

The return value ofell() for the standard streamsdikhe STDIN depends on the operating system: it
may return —1 or something elsell() on pipes, fifos, and sockets usually returns —1.

There is naystell function. Usesysseek(FH, 0, 1) for that.

Do not usetell() (or other liffered 1/0O operations) on a filehandle that has been manipulated by
sysread()syswrite() or sysseek() Those functions ignore the buffering, whiédl() does not.

telldir DIRHANDLE
Returns the current position of theaddir routines onDIRHANDLE. Value may be gien to
seekdir to access a particular location in a directotglidir has the same veats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds aariable to a package class that will provide the implementation foatfebie.
VARIABLE is the name of the variable to be enchant@lASSNAME is the name of a class
implementing objects of correct typeAny additional arguments are passed to the appropriate
constructor method of the class (meanii§SCALAR, TIEHANDLE TIEARRAY, or TIEHASH).
Typically these are arguments such as might be passeddbrthepen() function of C. The object
returned by the constructor is also returned bytithe function, which would be useful if you want to
access other methods@ASSNAME.

Note that functions such &sys andvalues may return huge lists when used on large objects, lik
DBM files. You may prefer to use tleach function to iterate wer such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File', 'fusr/lib/news/history', 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' ="', unpack('L',$val), "\n";
}

untie(%HIST);
A class implementing a hash shouldié#e following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this

EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this

UNTIE this

A class implementing an ordinary array shouldehtae following methods:

perl v5.18.2 2014-01-06 183

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

TIEARRAY classname, LIST
FETCH this, key

STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this

PUSH this, LIST

POP this

SHIFT this

UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DELETE this, key

EXISTS this, key

DESTROY this

UNTIE this

A class implementing a filehandle shouldiédhe following methods:

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this

GETC this

WRITE this, scalar, length, offset
PRINT this, LIST

PRINTF this, format, LIST
BINMODE this

EOF this

FILENO this

SEEK this, position, whence
TELL this

OPEN this, mode, LIST

CLOSE this

DESTROY this

UNTIE this

A class implementing a scalar shouldiddhe following methods:

TIESCALAR classname, LIST
FETCH this,

STORE this, value
DESTROY this

UNTIE this

Not all methods indicated ab® reed be implemented. See perltie, Tie::Hasé:;:Array, Tie::Scalar,
and Tie::Handle.

Unlike dbmopen, thetie function will notuse orrequire a module for you; you need to do that
explicitly yourself. See DB_File or theonfigmodule for interestingje implementations.

For further details see perltie, “tiedARIABLE" .

tied VARIABLE
Returns a reference to the object underlWARIABLE (the same value that was originally returned
by thetie call that bound the variable to a packag@eturns the undefined valueViRIABLE isn't
tied to a package.

time
Returns the number of non-leap seconds since wdraiene the system considers to be the epoch,
suitable for feeding tgmtime andlocaltime . On most systems the epoch is 00:00:00C,
January 1, 1970; a prominent exception being Maclassic which uses 00:00:00, January 1, 1904
in the current local time zone for its epoch.

For measuring time in better granularity than one second, use the Time::HiRes module from Perl 5.8

184 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

onwards (or fromCPAN before then), grif you hare gettimeofday(2), you may be able to use the
syscall interface of Perl. See perlfaq8 for detalils.

For date and time processing look at the gnaglated modules o@PAN. For a comprehensie cate
and time representation look at the DateTime module.

times
Returns a four-element listwiing the user and system times in seconds for this process yaexitad
children of this process.

($user,$system,$cuser,$csystem) = times;
In scalar contextjmes returns$user .
Children’s times are only included for terminated children.
Portability issues: “timesin perlport.
tr/ll The transliteration operatoGame agy/// . See “Quote and Quote-li&kOperators’in perlop.

truncateFILEHANDLE,LENGTH

truncateEXPR,LENGTH
Truncates the file opened GMLEHANDLE, or named byEXPR, to the specified lengthRaises an
exception if truncate ishimplemented on your system. Returns true if successfdef on error.

The behavior is undefinediENGTH is greater than the length of the file.

The position in the file ofFILEHANDLE is left unchanged.You may want to call seek before writing
to the file.

Portability issues: “truncatein perlport.

uc EXPR
uc Returns an uppercased versioregPR. This is the internal function implementing thé escape in
double-quoted strings. It does not attempt to do titlecase mapping on initial letterucsest™ f or

that.
If EXPRis omitted, use$_.
This function behees the same way under various pragma, such as in a locale, 'atots.

ucfirstEXPR

ucfirst
Returns the value dEXPR with the first character in uppercase (titlecase in Unicode). This is the
internal function implementing tha escape in double-quoted strings.

If EXPRis omitted, use$_.
This function behees the same way under various pragma, such as in a locale, 'atots.

umaskEXPR

umask
Sets the umask for the processEXXPR and returns the pveous \alue. If EXPRis omitted, merely
returns the current umask.

The Unix permissiomwxr—x——— is represented as three sets of three bits, or three octal OrHts:
(the leading O indicates octal and tsohe of the digits). The umask value is such a number
representing disabled permissions bits. The permission‘nfmdé”) values you passnkdir or
sysopen are modified by your umask, seea if you tellsysopen to create a file with permissions
0777, if your umask i€9022, then the file will actually be created with permissi®is5. If your
umask were0027 (group cart write; others car’read, write, or xecute), then passingysopen
0666 would create a file with modg640 (becaus®666 & 027 is0640).

Here’s some advice: supply a creation moded666 for regular files (irsysopen) and one of0777
for directories (inmkdir) and executable files. This gives users the freedom of choice: if thevant
protected files, themight choose process umasksQ#2, 027, or even the particularly antisocial
mask of077. Programs should rarely ifver make policy decisions better left to the usemhe
exception to this is when writing files that should kepkprivate: mail files, web browser cookies,
.rhostsfiles, and so on.

perl v5.18.2 2014-01-06 185

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

If umask?2) is not implemented on your system and you are trying to restrict accgssifeelf(i.e.,
(EXPR & 0700) >0), raises anxzeption. Ifumask?2) is not implemented and you are not trying
to restrict access for yourself, retutnsdef .

Remember that a umask is a numibsually given in octal; it isnota gring of octal digits. See also
“oct”, if all you have is a ¢ring.

Portability issues: “umaskin perlport.

undefEXPR

undef
Undefines thealue ofEXPR,which must be an blue. Useonly on a scalar value, an array (us@g
a hash (using?9, a subroutine (using), or a typglob (using*). Sayingundef $hash{$key}
will probably not do what youx@ect on most predefined variablesDBM list values, so doih’'do
that; see ‘tdelete’. Always returns the undefinedalwe. You can omit theEXPR, in which case
nothing is undefined, but you still get an undefinatlie that you could, for instance, return from a
subroutine, assign to a variable, or pass as a pararnastmnples:

undef $foo;

undef $bar{'blurfl'}; # Compare to: delete $bar{blurfl'};
undef @ary;

undef %hash;

undef &mysub;

undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;

select undef, undef, undef, 0.25;

(%a, $b, undef, $c) = &foo; # | gnore third value returned
Note that this is a unary operatoot a list operator.
unlink LIST
unlink

Deletes a list of filesOn success, it returns the number of files it successfully deleted. On failure, it
returns false and se$$ (errno):

my $unlinked = unlink 'a’, 'b', 'c';

unlink @goners;

unlink glob "*.bak";

On error unlink will not tell you which files it could not reme. If you want to kner which files
you could not reme, try them one at a time:

foreach my $file (@goners) {
unlink $file or warn "Could not unlink $file: $!";
}

Note: unlink will not attempt to delete directories unless you are superuser ancJtiiag is
supplied to Perl.Even if these conditions are met, be warned that unlinking a directory can inflict
damage on your filesystenkinally, usingunlink on directories is not supported on maperating
systems. Usemdir instead.

If LIST is omitted,unlink uses$_.

unpackTEMPLATE,EXPR

unpackTEMPLATE
unpack does the neerse ofpack : it takes a string and expands it out into a listalies. (Inscalar
context, it returns merely the first value produced.)

If EXPRis omitted, unpacks th& string. Seeerlpacktut for an introduction to this function.

The string is bro&n into chunks described by thEMPLATE. Each chunk is corerted separately to a
value. Typically, either the string is a result gfack , or the characters of the string represent a C
structure of some kind.

The TEMPLATE has the same format as in theck function. Heres a sibroutine that does substring:

186 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s
sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed ipack() you may prefix a field with a %<number> to indicate that you
want a <number>-bit checksum of the items instead of the items thexmsdbeéult is a 16-bit
checksum. Checksuim calculated by summing numeric values of expanded values (for string fields
the sum obrd($char) s taken; for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

$checksum = do {
local $/; # slurp!
unpack("%32W*",<>) % 65535;
h
The following efficiently counts the number of set bits in a bit vector:
$setbits = unpack("%32b*", $selectmask);

The p andP formats should be used with care. Since Perl has no way of checking whethaluthe v
passed taunpack() corresponds to a valid memory location, passing a pointer valus tioat’
known to be valid is likely to ha dsastrous consequences.

If there are more pack codes or if the repeat count of a field or a grougeés than what the
remainder of the input string alle, the result is not well defined: the repeat count may be decreased,
orunpack() may produce empty strings or zeros, or it may raisexaepgion. Ifthe input string is
longer than one described by tEMPLATE, the remainder of that input string is ignored.

See “pack’ for more examples and notes.

unshiftARRAY,LIST

unshiftEXPR,LIST
Does the opposite of ghift . Or the opposite of gush, depending on he you look at it.
Prepends list to the front of the array and returns thvenmenber of elements in the array.

unshiftf(@ARGV, '-e") unless $ARGV[0] =" I"-/,

Note theLIST is prepended whole, not one element at a time, so the prepended elements stay in the
same orderUsereverse to do the reerse.

Starting with Perl 5.14unshift can talke a alar EXPR, which must hold a reference to an
unblessed array The argument will be dereferenced automaticallyis aspect ofunshift is
considered highly»perimental. Thexact behaviour may change in a future version of Perl.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.014; # so p ush/pop/etc work on scalars (experimental)

untieVARIABLE
Breaks the binding between a variable and a package. (Seéltis.ho effect if the variable is not
tied.

use Module/ERSION LIST

use ModuleVERSION

use ModuleLIST

use Module

USeVERSION
Imports some semantics into the current package from the named module, generally by aliasing certain
subroutine or variable names into your package. It is exactlyabgui to

perl v5.18.2 2014-01-06 187

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

BEGIN { require Module; Module->import(LIST); }

except that Modulenustbe a bareord. Theimportation can be made conditional by using the if
module.

In the peculiaruse VERSION form, VERSION may be either a posit decimal fraction such as
5.006, which will be compared &) , or a vstring of the form v5.6.1, which will be comparedb{&/
(aka$PERL_VERSION. An exception is raised WERSIONis greater than theevsion of the current
Perl interpreter; Perl will not attempt to parse the rest of the file. Compareredhire’, which can
do a similar check at run timeSsymmetrically,no VERSION allows you to specify that you want a
version of Perl older than the specified one.

SpecifyingVERSION as a literal of the form v5.6.1 should generally teided, because it leads to
misleading error messages under earl@sions of Perl (that is, prior to 5.6.0) that do not support this
syntax. Theequivalent numeric version should be used instead.

use v5.6.1; # compile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Radion beforause ing library modules that
won't work with older versions of Perl. &y not to do this more than wevea.)

use VERSION also enables all featuresvadable in the requestedewsion as defined by the
feature pragma, disabling gnfeatures not in the requestegrsions feature kindle. Sedeature.
Similarly, if the specified Perl version is greater than or equal to 5.12.0, strictures are exatdéd le

as with use strict . Any exlicit use of use strict or no strict overrides use
VERSION even if it comes before itIn both cases, thieatue pmandstrict.pmfiles are not actually
loaded.

The BEGINforces thaequire andimport to happen at compile timélherequire makes sure
the module is loaded into memory if it hashéen yet. The import is not a builtin; it5 just an
ordinary static method call into thdodule package to tell the module to import the list of features
back into the current package. The module can implemeimjiert method ag way it likes,
though most modules just choose todeftieirimport method via inheritance from thexporter

class that is defined in thexporter module. Sedexporter If no import method can be found
then the call is skippedyen if there is almUTOLOAD method.

If you do not vant to call the packageimport method (for instance, to stop your namespace from
being altered), explicitly supply the empty list:

use Module ();
That is exactly equalent to
BEGIN { require Module }

If the VERSION agument is present between Module amgiT, then theuse will call the VERSION
method in class Module with thevgh version as an gument. Thedefault VERSION method,
inherited from theJNIVERSAL class, croaks if the gn version is larger than the value of traiable
$Module::VERSION .

Again, there is a distinction between omittintgsT (import called with no arguments) and an
explicit emptyLIST () (import not called). Note that there is no comma afteRSION

Because this is a wide-open interface, pragmas (compiler de®cére also implemented thisayw
Currently implemented pragmas are:

188 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use constant;

use diagnostics;

use integer;

use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);

use subs gw(afunc blurfl);
use warnings qw(all);
use sort gw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block scepstrigtk or
integer , unlike adinary modules, which import symbols into the current package (which are
effective through the end of the file).

Becauseuse takes effect at compile time, it doesmespect the ordinary flo control of the code
being compiled. In particulaputting ause inside the false branch of a conditional doeprevent it
from being processed. If a module or pragma only needs to be loaded condijtitbisaltgn be done
using the if pragma:

use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);

Theres a orrespondingno declaration that unimports meanings importedusg, i.e., it calls
unimport Module LIST instead ofmport . It behaves just asmport does withVERSION,an
omitted or emptyIST, or no unimport method being found.

no integer;
no strict 'refs’;
no warnings;

Care should be taken when using tlieVERSION form of no. It isonly meant to be used to assert
that the running Perl is of a earlier version than its argumemaiid undo the feature-enabling side
effects ofuse VERSION .

See perlmodlib for a list of standard modules and pragmas. See perlrunfdtahd —mcommand-
line options to Perl thatge use functionality from the command-line.

utimeLIST
Changes the access and modification times on each file of a list offfiledirst two dements of the
list must be theNUMERIC access and modification times, in that ordeeturns the number of files
successfully changed. The inode change time of each file is set to the currerdireeample, this
code has the saméfedt as the Unixouch(1) command when the filedready &istand belong to the
user running the program:

#!/usr/bin/perl
$atime = $mtime = time;
utime $atime, $mtime, @ARGV;

Since Perl 5.8.0, if the first wvdements of the list arendef , the utime(2) syscall from your C
library is called with a null secondgament. Onmost systems, this will set the fdeacess and
modification times to the current time (i.e., e@ént to the example akie) and will work even on
files you dort own provided you hae write permission:

for $file (@ARGV) {
utime(undef, undef, $file)
[| warn "couldn't touch $file: $!";

}

UnderNFSthis will use the time of thRFS server not the time of the local machine. If there is a time
synchronization problem, theFS sener and local machine will ka dfferent times. The Unix
touch(1) command will in fact normally use this form instead of the one shown in the first example.

Passing only one of the first wdements asindef is equvalent to passing a 0 and will notveathe
effect described when both aredef . This also triggers an uninitialized warning.

On systems that suppdtttimes2), you may pass filehandles among the files. On systems that don’
supportfutimeg2), passing filehandles raises aaption. Filehandlemust be passed as globs or

perl v5.18.2 2014-01-06 189

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

190

glob references to be recognized; banels are considered filenames.

Portability issues: “utimein perlport.

valuesHASH
valuesARRAY
valuesEXPR

In list context, returns a list consisting of all tredues of the named hash. In Perl 5.12 or later, only
will also return a list of the values of an array; prior to that release, attempting to use an array
argument will produce a syntax errdn scalar context, returns the number of values.

Hash entries are returned in an apparently random.ofider actual random order is specific to a
given hash; the gact same series of operations om twmshes may result in a different order for each
hash. Ary insertion into the hash may change the qraemill any deletion, with the exception that
the most recentdy returned byeach or keys may be deleted without changing the or& long as

a gven hash is unmodified you may rely émys , values andeach to repeatedly return the same
order as each othesee ‘Algorithmic Complexity Attacks'in perlsec for details on whhash order is
randomized. Aside from the guaranteesvjuted here the exact details of PeHash algorithm and the
hash traersal order are subject to change iy eglease of Perl.

As a side dect, callingvalues()resets theHASH or ARRAY'’s internal iteratqrsee ‘each’. (In
particular calling values()in void context resets the iterator with no otheerbead. Apartfrom
resetting the iteratprvalues @array in list context is the same as pla@array . (We
recommend that you use void corit&eys @array for this, but reasoned that takinmglues
@array out would require more documentation than leaving it in.)

Note that the values are not copied, which means modifying them will modify the contents of the hash:

for (values %hash) { s /foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # same

Starting with Perl 5.14/alues can tale a €alarEXPR,which must hold a reference to an unblessed
hash or array The argument will be dereferenced automaticallhis aspect ofvalues is
considered highly»perimental. Thexact behaviour may change in a future version of Perl.

for (values $hashref) { ... }
for (values $obj—>get_arrayref) { ... }

To avoid confusing would-be users of your code who are running eamiesions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your coderwill w
onlyon Perls of a recent vintage:

use 5.012; # so k eys/values/each work on arrays
use 5.014; # so k eys/values/each work on scalars (experimental)

See alskeys , each, andsort .

vec EXPR,OFFSET,BITS

Treats the string iEXPR as a bit vector made up of elements of wiglthS and returns the value of
the element specified YFFSETas an unsigned irger. BITS therefore specifies the number of bits
that are reseed for each element in the béator This must be a power of twfrom 1 to 32 (or 64, if
your platform supports that).

If BITS is 8, “elements’coincide with bytes of the input string.

If BITSis 16 or more, bytes of the input string are grouped into chunks d8I3ia#8, and each group
is corverted to a number as withack(Yunpack()with big-endian format®/N (and analogously for
BITS==64). Seé¢ pack’ for details.

If bits is 4 or less, the string is bk into bytes, then the bits of each byte are broken into 8/BITS
groups. Bitsof a byte are numbered in a little-endian-ishywas n 0x01, 0x02, 0x04 , 0x08 ,
0x10, 0x20, 0x40, 0x80. For example, breaking the single input byter(0x36) into two
groups gves a st (0x6, 0x3) ; breaking it into 4 groups gés (0x2, 0x1, 0x3, 0x0)

vec may also be assigned to, in which case parentheses are neededtie gkpression the correct
precedence as in

2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

perl v5.18.2

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, tleev/0 is returned. If an element tfe end of the
string is written to, Perl will first extend the string with sufficiently snaero bytes. It is an error to
try to write of the beginning of the string (i.e., gative OFFSET).

If the string happens to be encodediag-8internally (and thus has theTF8 flag set), this is ignored
by vec, and it operates on the internal byte string, not the conceptual character semiyeu only
have characters with values less than 256.

Strings created witlvec can also be manipulated with the logical operatqr&, *, and ™. These
operators will assume a bit vector operation is desired when both operands are strintgitwgse
String Operatorsin perlop.

The following code will build up amSCll string sayingPerlPerlPerl' . The comments sho
the string after each step. Note that this code works in the sam@mwbig-endian or little-endian
machines.

my $foo =",

vec($foo, O, 32) = 0x5065726C; # 'Perl’

$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits

print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P")
vec($foo, 2, 16) = 0x5065; # 'PerlPe'

vec($foo, 3, 16) = 0x726C; # 'PerlPerl’

0x50; # 'PerlPerlP’
0x65; # 'PerlPerlPe'

vec($foo, 8, 8)
vec($foo, 9, 8)

vec($foo, 20, 4)=2; # ' PerlPerlPe’ . "\x02"
vec($foo, 21, 4) =7, # ' PerlPerlPer

' ris "\x72"
vec($foo, 45, 2)=3; # ' PerlPerlPer' . "\x0c"
vec($foo, 93, 1) =1, # ' PerlPerlPer' . "\x2c"
vec($foo, 94, 1) =1, # ' PerlPerlPerl’

' I'is "\x6¢"

To transform a bit vector into a string or list o6@hd 1's, use these:

$hits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you knaw the exact length in bits, it can be used in place of the
Here is an example to illustratevathe bits actually fall in place:
#!/usr/bin/perl —wl
print <<'EQT",

0 1 2 3
unpack("V",$_) 01234567890123456789012345678901

EOT

for $w (0..3) {
Swidth = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {
for ($off=0; $off < 32/$width; ++$off) {

$str = pack("B*", "0"x32);
$hits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

2014-01-06 191

PERLFUNC(1)

Regardless of the machine architecture on which it runs, xaenple abae should print the follaving

}

format STDOUT =

PerProgrammers Reference Guide

vec($_,@#,@#) = @<< == @##HHHHHTHH @>>>>>>>>>>>>>5555>>>>>>>>>>>>>>

$off, $width, $bits, $val, $res

END__

table:

192

0 1 2

unpack("V",$_) 01234567890123456789012345678901

vec($_, 8,
vec($_, 9,
vec($_,10, 1)
vec($_,11, 1)
vec($_,12, 1)
vec($_,13, 1)
vec($_,14, 1)
vec($_,15, 1)
vec($_,16, 1)
vec($_,17, 1)
vec($_,18, 1)
vec($_,19, 1)
vec($_,20, 1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

RPRRPRRRRRRRR

vec($_,21,
vec($_,22,
vec($_,23,
vec($_,24,
vec($_,25,
vec($_,26,
vec($_,27,
vec($_,28,
vec($_,29,
vec($_,30,
vec($_,31,
vec($_, 0,
vec($_, 1,
vec($_, 2,
vec($_, 3,
vec($_, 4,
vec($_, 5,
vec($_, 6,
vec($_, 7,
vec($_, 8,
vec($_, 9,
vec($_,10, 2)
vec($_,11, 2)
vec($_,12, 2)

PR RPRRPRRPRPRRPRRPRPRRPRPREPREPRPRPRPRRRRRRR

RPRRPRRRRRRRR

[

== 2147483648 0000

AN

16

32

64

128

256

512

1024

2048

4096

8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912

1

4

16
64
256
1024
4096
16384
65536
262144
1048576
4194304
16777216

2014-01-06

10000000000000000000000000000000
01000000000000000000000000000000
00100000000000000000000000000000
00010000000000000000000000000000
00001000000000000000000000000000
00000100000000000000000000000000
00000010000000000000000000000000
00000001000000000000000000000000
00000000100000000000000000000000
00000000010000000000000000000000
00000000001000000000000000000000
00000000000100000000000000000000
00000000000010000000000000000000
00000000000001000000000000000000
00000000000000100000000000000000
00000000000000010000000000000000
00000000000000001000000000000000
00000000000000000100000000000000
00000000000000000010000000000000
00000000000000000001000000000000
00000000000000000000100000000000
00000000000000000000010000000000
00000000000000000000001000000000
00000000000000000000000100000000
00000000000000000000000010000000
00000000000000000000000001000000
00000000000000000000000000100000
00000000000000000000000000010000
00000000000000000000000000001000
00000000000000000000000000000100

== 1073741824 00000000000000000000000000000010
0000000000000000000000000001

10000000000000000000000000000000
00100000000000000000000000000000
00001000000000000000000000000000
00000010000000000000000000000000
00000000100000000000000000000000
00000000001000000000000000000000
00000000000010000000000000000000
00000000000000100000000000000000
00000000000000001000000000000000
00000000000000000010000000000000
00000000000000000000100000000000
00000000000000000000001000000000
00000000000000000000000010000000

perl v5.18.2

PERLFUNC(1)

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

vec($_,13,2)=1 == 67108864 00000000000000000000000000100000
vec($_,14,2)=1 == 268435456 00000000000000000000000000001000
vec($_,15,2)=1 1073741824 00000000000000000000000000000010

vec($_,0,2)=2 == 2 01000000000000000000000000000000
vec($_,1,2)=2 == 8 00010000000000000000000000000000
vec($_,2,2)=2 == 32 00000100000000000000000000000000
vec($_, 3,2)=2 == 128 00000001000000000000000000000000
vec($_,4,2)=2 == 512 00000000010000000000000000000000
vec($_,5,2)=2 == 2048 00000000000100000000000000000000
vec($_, 6,2)=2 == 8192 00000000000001000000000000000000
vec($_,7,2)=2 == 32768 00000000000000010000000000000000
vec($_, 8,2)=2 == 131072 00000000000000000100000000000000
vec($_,9,2)=2 == 524288 00000000000000000001000000000000
vec($_,10,2) =2 == 2097152 00000000000000000000010000000000
vec($_,11,2)=2 == 8388608 00000000000000000000000100000000
vec($_,12,2) =2 == 33554432 00000000000000000000000001000000
vec($_,13,2) =2 == 134217728 00000000000000000000000000010000
vec($_,14,2) =2 == 536870912 00000000000000000000000000000100
vec($_,15,2) =2 2147483648 00000000000000000000000000000001

vec($_,0,4)=1 == 1 10000000000000000000000000000000
vec($_,1,4)=1 == 16 00001000000000000000000000000000
vec($_,2,4)=1 == 256 00000000100000000000000000000000
vec($_, 3,4)=1 == 4096 00000000000010000000000000000000
vec($_,4,4)=1 == 65536 00000000000000001000000000000000
vec($_,5,4)=1 == 1048576 00000000000000000000100000000000
vec($_,6,4)=1 == 16777216 00000000000000000000000010000000
vec($_,7,4)=1 == 268435456 00000000000000000000000000001000
vec($_,0,4)=2 == 2 01000000000000000000000000000000
vec($_,1,4)=2 == 32 00000100000000000000000000000000
vec($_,2,4)=2 == 512 00000000010000000000000000000000
vec($_, 3,4)=2 == 8192 00000000000001000000000000000000
vec($_, 4,4)=2 == 131072 00000000000000000100000000000000
vec($_, 5,4)=2 == 2097152 00000000000000000000010000000000
vec($_, 6,4)=2 == 33554432 00000000000000000000000001000000
vec($_,7,4)=2 == 536870912 00000000000000000000000000000100
vec($_,0,4)=4 == 4 00100000000000000000000000000000
vec($_,1,4)=4 == 64 00000010000000000000000000000000
vec($_,2,4)=4 == 1024 00000000001000000000000000000000
vec($_, 3,4)=4 == 16384 00000000000000100000000000000000
vec($_,4,4)=4 == 262144 00000000000000000010000000000000
vec($_,5,4)=4 == 4194304 00000000000000000000001000000000
vec($_, 6,4)=4 == 67108864 00000000000000000000000000100000
vec($_,7,4)=4 == 1073741824 00000000000000000000000000000010

vec($_,0,4)=8 == 8 00010000000000000000000000000000
vec($_,1,4)=8 == 128 00000001000000000000000000000000
vec($_,2,4)=8 == 2048 00000000000100000000000000000000
vec($_, 3,4)=8 == 32768 00000000000000010000000000000000
vec($_,4,4)=8 == 524288 00000000000000000001000000000000
vec($_,5,4)=8 == 8388608 00000000000000000000000100000000
vec($_, 6,4)=8 == 134217728 00000000000000000000000000010000
vec($_,7,4)=8 2147483648 00000000000000000000000000000001

vec($_,0,8)=1 == 1 10000000000000000000000000000000
vec($_,1,8)=1 == 256 00000000100000000000000000000000
vec($_,2,8)=1 == 65536 00000000000000001000000000000000
vec($_, 3,8)=1 == 16777216 00000000000000000000000010000000
vec($_,0,8)=2 == 2 01000000000000000000000000000000
vec($_,1,8)=2 == 512 00000000010000000000000000000000
vec($_, 2,8)=2 == 131072 00000000000000000100000000000000
vec($_, 3,8)=2 == 33554432 00000000000000000000000001000000

perl v5.18.2 2014-01-06 193

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

vec($_,0,8)=4 == 4 00100000000000000000000000000000
vec($_,1,8)=4 == 1024 00000000001000000000000000000000
vec($_, 2,8)=4 == 262144 00000000000000000010000000000000
vec($_, 3,8)=4 == 67108864 00000000000000000000000000100000
vec($_,0,8)=8 == 8 00010000000000000000000000000000
vec($_,1,8)=8 == 2048 00000000000100000000000000000000
vec($_,2,8)=8 == 524288 00000000000000000001000000000000
vec($_, 3,8)=8 == 134217728 00000000000000000000000000010000
vec($_, 0,8) =16 == 16 00001000000000000000000000000000
vec($_, 1,8) =16 == 4096 00000000000010000000000000000000
vec($_, 2,8) =16 == 1048576 00000000000000000000100000000000
vec($_, 3,8) =16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) =32 == 32 00000100000000000000000000000000
vec($_, 1,8) =32 == 8192 00000000000001000000000000000000
vec($_, 2,8) =32 == 2097152 00000000000000000000010000000000
vec($_, 3,8) =32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) =64 == 64 00000010000000000000000000000000
vec($_, 1,8) =64 == 16384 00000000000000100000000000000000
vec($_, 2,8) =64 == 4194304 00000000000000000000001000000000
vec($_, 3,8) =64 ==1073741824 00000000000000000000000000000010

vec($_, 0, 8) =128 == 128 00000001000000000000000000000000

vec($_, 1,8) =128 == 32768 00000000000000010000000000000000

vec($_, 2,8) =128 == 8388608 00000000000000000000000100000000

vec($_, 3, 8) =128 == 2147483648 00000000000000000000000000000001
wait
Behaves like wait(2) on your system: it aits for a child process to terminate and returns the pid of the
deceased process, efl if there are no child processes. The status is returne#i?inand
${"CHILD_ERROR_NATIVE} . Note that a return value efl could mean that child processes are
being automatically reaped, as described in perlipc.

If you use wait in your handler f&SIG{CHLD} it may accidentally for the child created gx() or
system() See perlipc for details.

Portability issues: “wait'in perlport.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased prockss, or
there is no such child process. On some systems, a value of 0 indicates that there are processes still
running. Thestatus is returned $? and${"CHILD_ERROR_NATIVE} . If you say

use POSIX ":sys_wait_h";
#...
do {
$kid = waitpid(-1, WNOHANG);
} while $kid > 0;

then you can do a non-blockingait/for all pending zombie processes. Non-blocking waivéable

on machines supporting either tivaitpid(2) or wait4(2) syscalls.However, waiting for a particular
pid with FLAGS of 0 is implemented\erywhere. (Peremulates the system call by remembering the
status values of processes thatehevited but hae rot been harvested by the Perl script yet.)

Note that on some systems, a return value-df could mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.
Portability issues: “waitpid’in perlport.

wantarray
Returns true if the context of the currentkeeuting subroutine oeval is looking for a list alue.
Returns false if the context is looking for a scalReturns the undefined value if the codtés
looking for no value (void context).

194 2014-01-06 perl v5.18.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

wantarray() ’s result is unspecified in the topvé of a file, in aBEGIN, UNITCHECK CHECK
INIT or ENDblock, or in aDESTROYnethod.

This function should he keen namedvantlist()instead.

warn LIST
Prints the value ofIST to STDERR. If the last element afIST does not end in a newline, it appends
the same file/line number textdi® does.

If the output is empty anfi@already contains a value (typically from a previoud)ethat value is

used after appendintt...caught” to $@ This is useful for staying almost, but not entirely
similar todie .
If $@is empty then the strintyVarning: Something's wrong" is used.

No message is printed if there is$IG{_WARN__} handler installed. It is the handler
responsibility to deal with the message as it sees fit (like, for instansertawgit into adie). Most
handlers must therefore arrange to actually display the warnings thadr¢heot prepared to deal
with, by callingwarn again in the handlerNote that this is quite safe and will not produce an endless
loop, since__ WARN__hooks are not called from inside one.

You will find this behavior is slightly different from that 65IG{_DIE_ } handlers (which dot’
suppress the error text, but can insteaddiall again to change it).

Using a__ WARN__ handler provides a powerful way to silence all warningenghe so-called
mandatory ones). An example:

wipe out *all* compile—time warnings

BEGIN {$SIG{_ _WARN_} = sub{warn$_[0] if SDOWARN }}
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!
no compile—time or run—time warnings before here
$DOWARN = 1;

r un—time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on settif@SIGentries and for morexamples. Sethe Carp module for other
kinds of warnings using itsarp() andcluck() functions.

write FILEHANDLE

write EXPR

write
Writes a formatted record (possibly multi-line) to the speciffldcdEHANDLE, using the format
associated with that file. By default the format for a file is the one¢pghe same name as the
filehandle, ot the format for the current output channel (seedhlect function) may be set
explicitly by assigning the name of the format to #ievariable.

Top of form processing is handled automaticalifythere is insufficient room on the current page for

the formatted record, the page is adeed by writing a form feed, a special top-of-page format is used
to format the ne& page header before the record is written. By default, the top-of-page format is the
name of the filehandle with' TOP” appended. Thiswould be a problem with awified
filehandles, but it may be dynamically set to the format of your choice by assigning the nan$ to the
variable while that filehandle is selected. The number of lines remaining on the current page is in
variable $—, which can be set t0 to force a ne page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts out as
STDOUT but may be changed by theelect operator If the FILEHANDLE is anEXPR, then the
expression iseluated and the resulting string is used to look up the name BfitBEANDLE at run

time. For more on formats, see perlform.

perl v5.18.2 2014-01-06 195

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Note that write is1otthe opposite ofead . Unfortunately.
y/ll The transliteration operatoGame adr/// . See “Quote and Quote-l&kOperators’in perlop.

Non-function Keywords by Cross-reference

196

perldata

_ _DATA__
__END__
These kywords are documented in “Special Literalg’ perldata.

perimod

BEGIN

CHECK

END

INIT

UNITCHECK
These compile phaseywords are documented IPBEGIN, UNITCHECK, CHECK, INITandEND” in
perimod.

perlobj

DESTROY
This method kyword is documented in “Destructotr# perlobj.

perlop

and
cmp
eq
ge
gt

if

le

It
ne
not
or

X
xor These operators are documented in perlop.

perisub

AUTOLOAD
This keyword is documented irA utoloading’ in perlsub.

perlsyn

else
elseif
elsif
for
foreach
unless
until
while
These flow-control &éywords are documented in “Compound Statemémtgerlsyn.

default

given

when
These flow-control &words related to the experimental switch feature are documenté&iiiich
Statementsin perlsyn .

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

NAME
perlvar — Perl predefined variables

DESCRIPTION
The Syntax of Variable Names
Variable names in Perl can\ves®veaal formats. Usually they must begin with a letter or underscore, in
which case thecan be arbitrarily long (up to an internal limit of 251 characters) and may contain letters,
digits, underscores, or the special sequencer' . In this case, the part before the lastor' is taken to
be apackaye qualifier; see perlmod.

Perl \ariable names may also be a sequence of digits or a single punctuation or control chiEtaster

names are all reserved for special uses by Perl;x@mple, the all-digits names are used to hold data
captured by backreferences after a regular expression match. Perl has a special syntax for the single-
control-character names: It understaf¥s(caretX) to mean the controlx character For example, the
notation$"W (dollar-sign careW is the scalar variable whose name is the single character cafvtrohis

is better than typing a literal contrénto your program.

Since Perl v5.6.0, Perlkviable names may be alphanumeric strings that begin with control characters (or
better yet, a caret). Thesariables must be written in the for8§"Foo} ; the braces are not optional.
${"Foo} denotes the scalaakiable whose name is a contrBlfollowed by two 0’s. These variables are
resened for future special uses by Perl, except for the ones that begih w{ttontrol-underscore or caret-
underscore). Naontrol-character name that begins with will acquire a special meaning inyafuture
version of Perl; such names may therefore be used safely in progtamstself, howeer, is reserved.

Perl identifiers that begin with digits, control characters, or punctuation charactersram om the
effects of thepackage declaration and arewdys forced to be in packageain ; they are also gempt

from strict 'vars' errors. Afew other names are alsaanpt in these ways:
ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT
SIG

In particular the speciall{”"_XYZ} variables are alays taken to be in packageain , regadless of ap
package declarations presently in scope.

SPECIAL VARIABLES
The following names h& gecial meaning to Perl. Most punctuation names heasonable mnemonics,
or analogs in the shells. Natheless, if you wish to use long variable names, you need only say:

use English;

at the top of your program. This aliases all the short names to the long names in the current package.
Some gen havemedium names, generally borrowed framvk. To avoid a performance hit, if you dan’
need th&PREMATCHPMATCHor $POSTMATCH' s best to use thEnglish module without them:

use English '-no_match_vars’

Before you continue, note the sort order fariables. Ingeneral, we first list the variables in case-
insensitve, dmost-lexigraphical order (ignoring th¢ or © preceding words, as ii{"UNICODE} or
$°T), although$_ and@_move wp to the top of the pile.For variables with the same identifieve list it

in order of scalararray, hash, and baveord.

General Variables
$ARG
$_ The default input and pattern-searching space. The following pairs avelequi

while (<>) {...} # equivalent only in while!
while (defined($_=<>)) {...}

["Subject:/
$_="/"Subject:/

trla—z/A-Z/
$ ="trla-z/A-Z/

perl v5.18.2 2014-01-06 197

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

198

chomp
chomp($))

Here are the places where Perl will assdmeven if you dont use it:
e The following functions us$_ as a default argument:

abs, alarm, chomp, chop, clehroot, cos, definedyvel, evalbytes, exp, fc, glob, hex, int, Ic,
Icfirst, length, log, Istat, mkdioct, ord, pos, print, printf, quotemeta, readlink, readpipe, ref,
require, reerse (in scalar con¢ only), rmdir, say, sin, split (for its second argument), sqrt,
stat, studyuc, ucfirst, unlink, unpack.

e Allfile tests (f , —d) except for—t , which defaults t&TDIN. See “~X" in perlfunc

e The pattern matching operatioms/ , s/// andtr/// (akay/ll) when used without an
=" operator.

« The default iterator variable infareach loop if no other variable is supplied.
< The implicit iterator variable in thgrep() andmap() functions.
e The implicit variable ofjiven()

e The default place to put thextesalue or input record when<dH>, readline , readdir
or each operations result is tested by itself as the sole criterion offéle test. Outside
while test, this will not happen.

$_is by defult a global ariable. Havever, as of perl v5.10.0, you can use a lexical version of
$ by declaring it in a file or in a block withny. Moreover, declaringour $_ restores the
global $_ in the current scope. Though this seemee lik gpod idea at the time it &g
introduced, Igical $_ actually causes more problems than it sslvifyou call a function that
expects to be passed information $ia, it may or may not work, depending onvihthe function

is written, there not being wreasy way to sole this. Justavad lexical $, unless you are
feeling particularly masochistid-or this reason becal $_ is still experimental and will produce
a warning unless warnings Y& been disabled. As with other experimental features, theviwha
of lexical$_ is subject to change without notice, including change into a fatal error.

Mnemonic: underline is understood in certain operations.

@ARG

@_ Within a subroutine the arra@_contains the parameters passed to that subroutine. Inside a
subroutine@ is the default array for the array operatoush , pop, shift , and unshift
See perlsub.

$LIST_SEPARATOR

$" When an array or an array slice is interpolated into a double-quoted string or a similat conte
such ad.../ ,its elements are separated by thilg. Debult is a spaceFor example, this:

print "The array is: @array\n";
is equvalent to this:
print "The array is: " . join($", @array) . "\n";

Mnemonic: works in double-quoted context.

$PROCESS_ID
$PID
$$ The process number of the Perl running this sciiiough youcanset this variable, doing so is

generally discouraged, although it can bedlumable for some testing purposes. It will be reset
automatically acrostork() calls.

Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl would emulate
POSIX semantics on Linux systems using LinuxThreads, a partial implementatie@SiK
Threads that has since been superseded by theeRatsIX Thread Library PTL).

LinuxThreads is n@ obsolete on Linux, and cachimgetpid() like this made embedding perl
unnecessarily compte(since youd haveto manually update thealue of $$), so ne $$ and

2014-01-06 perl v5.18.2

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

getppid() will always return the same values as the underlying C library.

Debian GNU/kFreeBSD systems also used LinuxThreads up until and including the 6.0 release,
but after that meed to FeeBSD thread semantics, which are POSIX-like.

To e if your system is affected by this discregancheck if getconf
GNU_LIBPTHREAD_VERSION | grep —q NPTL returns a false alue. NTPL threads
presere the POSIX semantics.

Mnemonic: same as shells.

$PROGRAM_NAME

$0

Contains the name of the program beirecated.

On some (but not all) operating systems assignirgdtanodifies the argument area that tie
program sees. On some platforms you mayeha use speciaps options or a dferentps to

see the changes. Modifying t$® is more useful as a way of indicating the current program
state than it is for hiding the program you'’re running.

Note that there are platform-specific limitations on the maximum leng®0ofin the most
extreme case it may be limited to the space occupied by the oginal

In some platforms there may be arbitrary amount of padding, for example space characters, after
the modified name as sho by ps. In some platforms this padding may extend all the way to

the original length of the argument area, no matter what you do (this is the case for example with
Linux 2.2).

Note forBSD users: setting0 does not completely reme “perl” from theps(1) output. For

example, settings0 to "foobar" may result in'perl: foobar (perl)" (whether both
the"perl: " prefix and the'‘(perl)” suffix are shown depends on yowaetBSD variant and
version). Thisis an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so thétr@ad may modify its cgpof the
$0 and the change becomes visiblgpgfl) (assuming the operating system plays alomNpte
that the viev of $0 the other threads i@ will not change since tlyehavetheir own copies of it.

If the program has beenvgh to perl via the switchese or —E, $0 will contain the string—e" .

On Linux as of perl v5.14.0 thedacy process name will be set wigirctl(2) , in addition to
altering thePOSIX name viaargv[0] as perl has done since version 4.000w system
utilities that read the ¢gcy process name such as ps, top and killall will recognize the name you
set when assigning 0. The string you supply will be cutfofit 16 bytes, this is a limitation
imposed by Linux.

Mnemonic: same ash andksh.

$REAL_GROUP_ID

$GID
$(

The real gid of this procesdf you are on a machine that supports membership in multiple
groups simultaneouslgives a pace separated list of groups you are in. The first number is the
one returned bgetgid() , and the subsequent ones ¢pgtgroups() , one of which may be

the same as the first number.

However, a \alue assigned t(must be a single number used to set the real gid. Scathe v
given by $(shouldnotbe assigned back &(without being forced numeric, such as by adding
zero. Notehat this is different to the effecé gd ($)) which does taé a Ist.

You can change both the real gid and thdedive ¢gd at the same time by using
POSIX::setgid() . Changes tdh(require a check t8! to detect ay possible errors after
an attempted change.

Mnemonic: parentheses are usedytoup things. Thereal gid is the group yoleft, if you're
running setgid.

$EFFECTIVE_GROUP_ID

$EGID

perl v5.18.2

2014-01-06 199

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

200

$) The efective gd of this processlf you are on a machine that supports membership in multiple
groups simultaneouslgives a pace separated list of groups you are in. The first number is the
one returned bygetegid() , and the subsequent onesdmtgroups() , one of which may be
the same as the first number.

Similarly, a value assigned t§) must also be a space-separated list of humbers. The first
number sets the fettive gd, and the rest (if any) are passedstdgroups() . To get the
effect of an empty list fosetgroups() , just repeat the meeffective gd; that is, to force an
effective gd of 5 and an effeately emptysetgroups() list, say $)="55"

You can change both the fe€tive gd and the real gid at the same time by using
POSIX::setgid() (use only a single numericgument). Change® $) require a check to
$! to detect ay possible errors after an attempted change.

$<, $>, $(and$) can be set only on machines that support the corresposelifrg]lug]id()
routine. $(and$) can be swapped only on machines supporeigegid()

Mnemonic: parentheses are usedjtoup things. Theeffective gd is the group that'right for
you, if you're running setgid.

$REAL_USER_ID

$UID

$< The real uid of this processlou can change both the real uid and thieative ud at the same
time by usingPOSIX::setuid() . Since changes t8< require a system call, chegk after a
change attempt to detectygmossible errors.

Mnemonic: its the uid you camé&om, if you're running setuid.
$EFFECTIVE_USER_ID

$EUID

$> The effectre ud of this processFor example:
$< = $>; # set real to effective uid
($<,%>) = ($>,9<); # swap real and effective uids

You can change both the fe€tive ud and the real uid at the same time by using
POSIX::setuid() . Changes td> require a check t8! to detect ay possible errors after
an attempted change.

$< and$> can be swapped only on machines suppodetgeuid()

Mnemonic: its the uid you wento, if you're running setuid.

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multidimensional array emulation. If you refer to a hash element as

$foo{%a,$b,Sc}
it really means

$foofjoin($;, $a, $b, $c)}
But dont put

@foo{%a,$b,$c} # a slice-—note the @
which means

($foo{$a},Sfoo{$b},Sfoo{$c})

Default is \034”, the same aSUBSEPIn awk. If your keys contain binary data there might not
be awy safe value foi$; .

Consider using “realmultidimensional arrays as described in perllol.

Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

$a
$b Special package variables when usisgrt() , see ‘sort” in perlfunc. Becauseof this
specialnes$a and$b don't need to be declared (usinge vars , or our()) even when using

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

the strict 'vars' pragma. Dort'lexicalize them withmy $a or my $b if you want to be
able to use them in thewrt() comparison block or function.

%ENV The hash%ENVcontains your current gmonment. Settinga value in ENV changes the
environment for aychild processes you subsequeritigk() off.

$SYSTEM_FD_MAX

$F The maximum system file descriptaordinarily 2. System file descriptors are passed to
exec() ed processes, while higher file descriptors are not. Also, durioger() , system file
descriptors are preserveder if theopen() fails (ordinary file descriptors are closed before the
open() is attempted). The close-onee gatus of a file descriptor will be decided according to
the value of$"F when the corresponding file, pipe, or socket was opened, not the time of the
exec()

@F The array@Fcontains the fields of each line read in when autosplit mode is turne&em.
perlrun for the-a switch. Thisarray is package-specific, and must be declaredven gi full
package name if not in package main when running widert 'vars'

@INC The array@INCcontains the list of places that the EXPR, require , or use constructs look
for their library files. It initially consists of the arguments to at command-line switches,

followed by the defult Perl library probably/usr/local/lib/per| followed by *.” , to represent the
current directory (“.” will not be appended if taint checks are enabled, eitherTogr by -t .)
If you need to modify this at runtime, you should useuse lib pragma to get the machine-

dependent library properly loaded also:

use lib ‘/mypath/libdir/";
use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code direct(@IMG
Those hooks may be subroutine references, array references or blessed Sbgttquire” in
perlfunc for details.

%INC The hash%INC contains entries for each filename included via dbe require , or use
operators. Théey is the filename you specified (with module namesvedead to pathnames),
and the value is the location of the file fouritherequire operator uses this hash to determine
whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference;regeire” in perlfunc for a
description of these hooks), this hook is byaddf inserted intdINCin place of a filename.
Note, havever, that the hook may a %t the%INCentry by itself to preide some more specific

info.
$INPLACE_EDIT
$l The current value of the inplace-editension. Useindef to disable inplace editing.

Mnemonic: value ofi switch.

™M By default, running out of memory is an untrappable, fatal .etiowevae, if suitably built, Perl
can use the contents $fM as an emgeny memory pool aftedie() ing. Supposéhat your
Perl were compiled withkDPERL_EMERGENCY_SBR#Kd used Ped'malloc. Then
$M="a'x (1 << 16);

would allocate a 64K ffer for use in an emgeng. See theNSTALLfile in the Perl distribtion
for information on hw to add custom C compilation flags when compiling péib dscourage
casual use of this advanced feature, there is no English long name for this variable.

This variable was added in Perl 5.004.

$OSNAME
$0 The name of the operating system under which thig oberl was hilt, as determined during
the configuration proces$:or examples see PLATFORMS” in perlport.

The value is identical t8Config{'osname'} . See also Config and theV command-line
switch documented in perlrun.

In Windows platforms$"O is not very helpful: since it is abys MSWin32, it doesnt tell the
difference between 95/98/ME/NT/2000/XP/CE/.NETUse Win32::GetOSName() or

perl v5.18.2 2014-01-06 201

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

Win32::GetOSVersion(jsee Win32 and perlport) to distinguish between the variants.
This variable was added in Perl 5.003.
%SIG The has®SIGcontains signal handlers for signalsor example:

sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig—-shutting down\n";
close(LOG);
exit(0);
}
$SIG{INT?} = \&handler;
$SIG{'QUIT'} = \&handler;
$SIG{INT?} = 'DEFAULT'; # restore default action
$SIG{'QUIT'} = 'IGNORE; # i gnore SIGQUIT

Using a value oflGNORE' usually has the effect of ignoring the signal, except forGh&D
signal. Seeerlipc for more about this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not
r ecommended)
$SIG{"PIPE"} = \&Plumber; # | ust fine; assume current
Plumber
$SIG{"PIPE"} = *Plumber; # somewhat esoteric
$SIG{"PIPE"} = Plumber(); # oops, what did Plumber()
return??

Be sure not to use a bamrd as the name of a signal hanglest you inadvertently call it.

If your system has thgigaction() function then signal handlers are installed usingrhis
means you get reliable signal handling.

The default deliery policy of signals changed in Perl v5.8.0 from immediate (also known as
“unsafe”) to deferred, also known as “safe signalSeeperlipc for more information.

Certain internal hooks can be also set using %®IG hash. Theroutine indicated by
$SIG{_WARN__} s called when a warning message is about to be priritad. warning
message is passed as the firguarent. Theresence of a_ WARN__hook causes the ordinary
printing of warnings toSTDERRto be suppressedYou can use this to sa warnings in a
variable, or turn warnings into fatal errors,ditis:

local $SIG{_. _WARN_} = sub{die$ [0] }
eval $proggie;

As the'IGNORE' hook is not supported by WARN_, you can disable warnings using the
empty subroutine:

local $SIG{_ _WARN_} = sub {};

The routine indicated b$SIG{ DIE_} is called when a fatal exception is about to be

throvn. Theerror message is passed as the figirmaent. Whera __ DIE__ hook routine

returns, the exception processing continues as it wowklihghe absence of the hook, unless the

hook routine itself @ts via agoto &sub , a loop exit, or adie() . The__DIE__ handler is

explicitly disabled during the call, so that you can die from @IE__ handler Similarly for
WARN_.

Due to an implementation glitch, t88I1G{ DIE_ } hook is called een inside areval()

Do not use this to werite a pending exception i@ or as a krarre substitute forwerriding
CORE::GLOBAL:die() . This strange action at a distance may be fixed in a future release so
that$SIG{_DIE_ } is only called if your program is about to exit, as was the original intent.
Any other use is deprecated.

202 2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

__DIE__/__WARN__handlers are very special in one respecty tihay be called to report
(probable) errors found by the parsémn such a case the parser may be in inconsistent state, so
ary attempt to ®aluate Perl code from such a handler will probably result ingéasl. This
means that warnings or errors that result from parsing Perl should be usegtseitheecaution,

like this:

require Carp if defined $°S;
Carp::confess("Something wrong") if defined &Carp::confess;
die "Something wrong, but could not load Carp to give "

. " backtrace...\n\t"

. " To see backtrace try starting Perl with —MCarp switch";

Here the first line will loacCarp unlessit is the parser who called the handl&he second line
will print backtrace and die i€arp was available. Thethird line will be eecuted only ifCarp
was ot available.

Having to even think about the$’S variable in your exception handlers is simply wrong.
$SIG{_DIE_} as currently implemented invites grieis and difficult to track down errors.
Avoid it and use aEND{} or CORE::GLOBAL::die @erride instead.

See ‘die” in perlfunc, ‘warn” in perlfunc, ‘eva’’ in perlfunc, and warnings for additional
information.

$BASETIME
$T The time at which the programdse running, in seconds since the epoch (beginning of 1970).
The values returned by thé, —A, and —C filetests are based on this value.

$PERL_VERSION
Vv The revision, version, and stdssion of the Perl interpretenrepresented aswersion object.

This variable first appeared in perl v5.6.0; earliersions of perl will see an undefinediue.
Before perl v5.10.8"V was represented as a v-string.

$°V can be used to determine whether the Perl interpne¢euting a script is in the right range
of versions. Br example:

warn "Hashes not randomized\n" if I$"V or $7V It v5.8.1

To corvert $°V into its string representation usgrintf() s "%vd" corversion:

printf "version is v%vd\n“, $°V; # Perl's version

See the documentation w$e VERSION andrequire VERSION for a comwenient way to &il
if the running Perl interpreter is too old.

See als@®] for an older representation of the Perl version.
This variable was added in Perl v5.6.0.
Mnemonic: use "V for Version Control.

${"WIN32_SLOPPY_SAT}
If this variable is set to a true value, theat() on Windows will not try to open the fileThis
means that the link count cannot be determined and file attributes may be out of date if additional
hardlinks to the file xast. On the other hand, not opening the file is considerabbtef,
especially for files on network dgs.

This variable could be set in tleitecustomize.dile to configure the local Perl installation to use
“sloppy” stat() by default. Seethe documentation forf in perlrun for more information
about site customization.

This variable was added in Perl v5.10.0.

$EXECUTABLE_NAME
$X The name used taxecute the current cgpof Perl, from Cs argv[0] or (where supported)
/proc/selflexe

Depending on the host operating system, the valu&™xf may be a relate a absolute
pathname of the perl program file, or may be the string useddkeimerl but not the pathname

perl v5.18.2 2014-01-06 203

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

of the perl program file Also, most operating systems permidking programs that are not in
the PATH ervironment variable, so there is no guarantee that the val§eXofs in PATH. For
VMS, the value may or may not include a version number.

You usually can use the value $fX to re-invoke an independent cgpof the same perl that is
currently running, e.g.,

@first_run = "$°X —le "print int rand 100 for 1..100";

But recall that not all operating systems support forking or capturing of the output of commands,
so this compbe statement may not be portable.

It is not safe to use the value®¥X as a path name of a file, as some operating systems teat ha
a mandatory suffix onxecutable files do not require use of thefiguivhen irvoking a command.
To corvert the value o™X to a path name, use the following statements:

Build up a set of file names (not command names).
use Config;
my $this_perl = $°X;
if ($°0O ne 'VMS") {
$this_perl .= $Config{_exe}
unless $this_perl =~ m/$Config{_exe}$/i;

}

Because manoperating systems permit anyone with read access to the Perl program fileeto mak
a aopy of it, patch the cop and then gecute the cop the security-conscious Perl programmer
should tak care to ivoke the installed cop of perl, not the cop referenced by$"X. The
following statements accomplish this goal, and produce a pathname that caokied as a
command or referenced as a file.

use Config;
my $secure_perl_path = $Config{perlpath};
if ($°0 ne 'VMS") {
$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =~ m/$Config{_exe}$/i;

}

Variables related to regular expressions
Most of the special variables related to regular expressions arefsitts.ePerkets these variables when it
has a successful match, so you should check the match result before usingahierstance:

if(/P(A)TT(ER)N/) {

print "I found $1 and $2\n";
}

These variables are read-only and dynamically-scoped, unless we note otherwise.

The dynamic nature of thegelar expression variables means that their value is limited to the block that
they are in, as demonstrated by this bit of code:

204

my $outer = 'Wallace and Grommit’;
my $inner = 'Mutt and Jeff';

my $pattern = qr/(\S+) and (\S+)/;

sub show_n { print "\$1 is $1; \$2 is $2\n" }

OUTER:

show_n() if $outer =~ m/$pattern/;
INNER: {
show_n() if $inner =~ m/$pattern/;
}

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

show_n();
}
The output shes that while in theOUTERblock, the values o$1 and$2 are from the match agnst
$outer . Inside thdNNER block, the values df1 and$2 are from the match agnst$inner , but only

until the end of the block (i.e. the dynamic scop&fter the INNER block completes, the values $f and
$2 return to the values for the match agafbmiiter even though we hee rot made another match:

$1 is Walllace; $2 is Grommit
$1 is Mutt; $2 is Jeff
$1 is Walllace; $2 is Grommit

Due to an unfortunate accident of Perimplementation,use English imposes a considerable
performance penalty on allgelar expression matches in a program because it us&s {i$&, and $' ,
regardless of whether tlyeoccur in the scope afse English . For that reason, sayingse English

in libraries is strongly discouraged unless you import it without the match variables:

use English '-no_match_vars'

The Devel::NYTProf and Devel::FindAmpersand modules can help you find uses of these
problematic match variables in your code.

Since Perl v5.10.0, you can use the match operator flag and t$"PREMATCH}, ${"MATCH}, and
${"POSTMATCH} variables instead so you only suffer the performance penalties.
$<digits> ($1,%$2, ...)
Contains the subpattern from the corresponding set of capturing parentheses from the last
successful pattern match, not counting patterns matched in nested blocks/¢hbtemagited
already.

These variables are read-only and dynamically-scoped.
Mnemonic: like \digits.

$MATCH
$& The string matched by the last successful pattern match (not countingatrhes hidden within
aBLOCK oreval() enclosed by the curreBLOCK).

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matcheBo avoid this penaltyyou can extract the same substring by using
“@-". Startingwith Perl v5.10.0, you can use tlhee match flag and th&{"MATCH} variable

to do the same thing for particular match operations.

This variable is read-only and dynamically-scoped.

Mnemonic: like& in some editors.

${"MATCH}
This is similar to$& ($MATCH except that it does not incur the performance penalty associated
with that variable, and is only guaranteed to return a defiale@ when the pattern was compiled
or executed with thép modifier.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$PREMATCH
$ The string preceding whater was matched by the last successful pattern match, not counting
ary matches hidden within BLOCK or eval enclosed by the curreBt OCK.

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matchebo avoid this penaltyyou can extract the same substring by using
“@-". Startingwith Perl v5.10.0, you can use tlg@ match flag and th&{"PREMATCH}
variable to do the same thing for particular match operations.

This variable is read-only and dynamically-scoped.

Mnemonic:” often precedes a quoted string.

perl v5.18.2 2014-01-06 205

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

206

${"PREMATCH}
This is similar to$™ ($PREMATCH) except that it does not incur the performance penalty
associated with that variable, and is only guaranteed to return a dedinedwhen the pattern
was compiled or gecuted with thép maodifier.

This variable was added in Perl v5.10.0

This variable is read-only and dynamically-scoped.

$POSTMATCH
$ The string following whateer was matched by the last successful pattern match (not counting
ary matches hidden within BLOCK oreval() enclosed by the curreBLOCK). Example:

local $_ = 'abcdefghi';
/def};
print "$":$&:$"\n"; # prints abc:def:ghi

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matchebo avoid this penaltyyou can extract the same substring by using
“@-". Startingwith Perl v5.10.0, you can use tlg match flag and th&{"POSTMATCH}
variable to do the same thing for particular match operations.

This variable is read-only and dynamically-scoped.
Mnemonic:' often follows a quoted string.

${"POSTMATCH}
This is similar to$' ($POSTMATCHexcept that it does not incur the performance penalty
associated with that variable, and is only guaranteed to return a dedinedwhen the pattern
was compiled or gecuted with thép maodifier.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST_PAREN_MATCH
$+ The text matched by the last bracket of the last successful search pattern. This is useful if you
don't know which one of a set of alternedi patterns matchedi-or example:

[Version: (.*)|Revision: (.*)/ && ($rev = $+);
This variable is read-only and dynamically-scoped.
Mnemonic: be posite and forward looking.

$LAST_SUBMATCH_RESULT
$N The text matched by the used group most-recently closed (i.e. the group with the rightmost
closing parenthesis) of the last successful search pattern.

This is primarily used insid€?{...}) blocks for examining text recently matcheéor
example, to effectiely capture text to a variable (in addition®, $2, etc.), replacd...) with

(2:(..)(?{ $var=$'N})

By setting and then usingvar in this way religes you from having to worry aboutxactly
which numbered set of parenthesey tire.

This variable was added in Perl v5.8.0.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

@LAST_MATCH_END

@+ This array holds the offsets of the ends of the last successful submatches in the curreatly acti
dynamic scope $+[0] is the ofset into the string of the end of the entire match. This is the
same value as what tipos function returns when called on the variable that was matched
against. Thenth element of this array holds the offset of tiie submatch, s@+[1] is the
offset past wher81 ends $+[2] the offset past whei®2 ends, and so onYou can useb#+ to
determine hav mary subgroups were in the last successful matgbe the examplesvgh for the
@-variable.

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

This variable was added in Perl v5.6.0.

%LAST_PAREN_MATCH
%+ Similar to @+ the %+hash allows access to the named captufiets, should theg exist, in the
last successful match in the currently aetilynamic scope.

For example, $+{foo} is equvalent to$1 after the following match:
'foo' =" /(?<foo>foo)/;

The leys of the %+hash list only the names ofiffers that hee aptured (and that are thus
associated to defined values).

The underlying behaviour 8b+is provided by the Tie::Hash::NamedCapture module.

Note: %—and%-+are tied views into a common internal hash associated with the last successful
regular pression. Thereformixing iterative acess to them vieach may hae wnpredictable
results. Lilewise, if the last successful match changes, then the results may be surprising.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

@LAST_MATCH_START
@- $-[0] is the ofset of the start of the last successful matsh[n] is the offset of the start of
the substring matched lmyth subpattern, or undef if the subpattern did not match.

Thus, after a match amst$_, $& coincides withsubstr $_, $-[0], $+[0] — $-[0] .
Similarly, $n coincides withsubstr $_, $-[n], $+[n] — $-[n] if $—[n] is defined,
and $+ coincides witsubstr $_, $—-[$#-], $+[$#-] — $-[$#-] . One can us&#-
to find the last matched subgroup in the last successful matattrast with$#+, the number of
subgroups in the regulaxgression. Compangith @+

This array holds the offsets of the beginnings of the last successful submatches in the currently
active dynamic scope.$-[0] is the offset into the string of the beginning of the entire match.
Thenth element of this array holds the offset of titie submatch, s&—[1] is the offset where

$1 begins$-[2] the offset wher&2 begins, and so on.

After a match against some variaBhar :

$" is the same asubstr($var, 0, $-[0])

$& is the same asubstr($var, $-[0], $+[0] — $-[0])
$' is the same asubstr($var, $+[0])

$1 is the same asubstr($var, $—[1], $+[1] - $-[1])
$2 is the same asubstr($var, $-[2], $+[2] - $-[2])
$3 is the same asubstr($var, $—[3], $+[3] — $-[3])

This variable was added in Perl v5.6.0.

%LAST_MATCH_START

%-— Similar to %+ this variable allows access to the named capture groups in the last successful
match in the currently ag® dynamic scope.To each capture group name found in thgular
expression, it associates a reference to an array containing the list of values captured by all
buffers with that name (should there beesal of them), in the order where thappear.

Heres an gample:

perl v5.18.2 2014-01-06 207

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

if (1234' =" /(?<A>1)(?2)(?<A>3)(?4)/) {
foreach my $bufname (sort keys %-) {
my $ary = $—{$bufname};
foreach my $idx (0..$#$ary) {
print "\$—{$bufname}[$idx] : ",
(defined($ary—>[$idx])
? " '$Sary—>[$idx]"
" undef"),
“\n";

}

would print out:

$—{A}[0] : 'L
$-{A)[1] : '3
$-{B}[0] : "2
$-{B)[1] : ‘4

The leys of the %—hash correspond to all buffer names found in the regular expression.
The behaviour o%—is implemented via the Tie::Hash::NamedCapture module.

Note: %—and%-+are tied views into a common internal hash associated with the last successful
regular pression. Thereformixing iterative acess to them vieach may hae wnpredictable
results. Lilewise, if the last successful match changes, then the results may be surprising.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST_REGEXP_CODE_RESULT
$R The result of eduation of the last successf(#{ code }) regular expression assertion (see
perlre). Maybe written to.

This variable was added in Perl 5.005.

${"RE_DEBUG_FLAGS}
The current value of the gex detugging flags. Set to 0 for no debug outputrewhen there
'‘debug’ module is loaded. See re for details.

This variable was added in Perl v5.10.0.

${"RE_TRIE_MAXBUF}
Controls hav certain rgex optimisations are applied andwanuch memory the utilize. This
value by deéult is 65536 which corresponds to a 512kB temporary cache. Set this to a higher
value to trade memory for speed when matching large alternations. Set itweravidue if you
want the optimisations to be as consgixe d memory as possible but still oc¢and set it to a
negaive \alue to preent the optimisation and conserihe most memory Under normal
situations this variable should be of no interest to you.

This variable was added in Perl v5.10.0.

Variables related to filehandles

208

Variables that depend on the currently selected filehandle may be set by calling an appropriate object
method on théO::Handle object, although this is less efficient than using the regular builiriables.
(Summary lines bele for this contain the worHANDLE.) First you must say

use |0::Handle;
after which you may use either
method HANDLE EXPR
or more safely,
HANDLE->method(EXPR)
Each method returns the old value of tike:Handle attribute. Themethods each tekan gtional

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

EXPR, which, if supplied, specifies the wevalue for thelO::Handle attribute in question. If not
supplied, most methods do nothing to the currahtes— ecept forautoflush() , Which will assume a
1 for you, just to be different.

Because loading in th::Handle class is anxpensve @eration, you should learn Wwato use the
regular built-in variables.

A few d these variables are considergddd-only’. This means that if you try to assign to thiariable,
either directly or indirectly through a reference, you'll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in this
document. ImMmost cases youamt to localize these variables before changing them, since if you don't, the
change may &fct other modules which rely on the default values of the special variables thatwou ha
changed. Thiss one of the correct ways to read the whole file at once:

open my $fh, "<", "foo" or die $!;

local $/; # enable localized slurp mode
my $content = <$fh>;

close $fh;

But the following code is quite bad:

open my $fh, "<", "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;

close $fh;

since some other module, may want to read data from some file in the default “line mode”, so if the code
we hae just presented has beereeuted, the global value &/ is nav changed for ay other code
running inside the same Perl interpreter.

Usually when a variable is localized you want to makre that this change fatts the shortest scope
possible. Saunless you are already inside some sHKprtblock, you should create one yourseFor
example:

my $content = ";
open my $fh, "<", "foo" or die $!;

{

local $/;

$content = <$th>;
}
close $fh;

Here is an example of hoyour own code can go broken:

for (1..3)1
$\ ="\r\n";
nasty break();
print "$_";

}

sub nasty_break {
B\ ="\
do something with $_

}
You probably expect this code to print the aglént of
"1\r\n2\n\n3\r\n"
but instead you get:
"L\F2\F3\"
Why? Becausenasty break() modifies $\ without localizing it first. The value you set in

nasty break() is still there when you returriThe fix is to addocal() so the value doesreak out
of nasty_break()

perl v5.18.2 2014-01-06 209

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

210

local $\ = "\f";

It's easy to notice the problem in such a short example, but in more complicated code you are looking for
trouble if you dort localize changes to the special variables.

$ARGV Contains the name of the current file when reading f#om

@ARGV The array@ARG\ontains the command-line arguments intended for the scB#ARGVis
generally the number of arguments minus one, bec®AR&V[0] is the first agument,not the
programs command name itself. See “$@or the command name.

ARGV The special filehandle that iterategsocommand-line filenames iI@ARGVUsually written as
the null filehandle in the angle operator. Note that currenth ARGVonly has its magical ffct
within the<> operator; elsewhere it is just a plain filehandle corresponding to the last file opened
by <>. In particular passing*ARGV as a parameter to a function that expects a filehandle may
not cause your function to automatically read the contents of all the fl@ARGV

ARGVOUT
The special filehandle that points to the currently open output file when doing edit-in-place
processing with-i. Useful when you hae to do a bt of inserting and dob'want to leep
modifying$_. See perlrun for thei switch.

10::Handle—>output_field_separat@XPR)
$OUTPUT_FIELD_SEPARATOR

$OFS

$, The output field separator for the print operatérdefined, this alue is printed between each of
print's aguments. Dedult isundef .
You cannot calloutput_field_separator() on a handle, only as a static methdgke
10::Handle.

Mnemonic: what is printed when there is &i“n your print statement.

HANDLE->input_line_numberExXPR)
SINPUT_LINE_NUMBER

SNR

$. Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that been read from it. (Depending on the
vaue of $/ , Perl’s idea of what constitutes a line may not match youvghen a line is read
from a filehandle (viaeadline() or <>), or whentell() or seek() is called on it$.
becomes an alias to the line counter for that filehandle.

You can adjust the counter by assigningdto, but this will not actually mee the seek pointer
Localizing$. will not localize the filehandle’line count Instead, it will localize ped' notion of
which filehandleb. is currently aliased to.

$. is reset when the filehandle is closedt, tiot when an open filehandle is reopened without an
interveningclose() . For more details, see “I/O Operatdrisi perlop. Becaus&> never does

an explicit close, line numbers increase acrAgGVfiles (but see examples iredf” in
perlfunc).

You can also usé¢HANDLE—>input_line_number(EXPR) to access the line counter for a
given filehandle without having to worry about which handle you last accessed.

Mnemonic: mag programs use “.t 0 mean the current line number.

I0::Handle—>input_record_separat@XPR)

$INPUT_RECORD_SEPARATOR

$RS

$/ The input record separatorewline by deéult. Thisinfluences Perd idea of what a'line’ is.
Works like awk’s RS variable, including treating empty lines as a terminator if set to the null
string (an empty line cannot containyagpaces or tabs)You may set it to a multi-character
string to match a multi-character terminatmrto undef to read through the end of fil&etting
it to "\n\n" means something slightly different than setting"to, if the file contains
consecutie enpty lines. Setting t¢" will treat two or nore consecuwie enpty lines as a single
empty line. Setting td\n\n" will blindly assume that the next input character belongs to the

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

next paragraphyen if it's a rewline.

local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
sA\n[\t]+/ /g;

Remember: the value &f is a string, not a regexawk has to be better for something. :-)

Setting$/ to a reference to an irger, scalar containing an inger, or scalar thats convertible to
an integer will attempt to read records instead of lines, with the maximum record size being the
referenced integer number of characters. So this:

local $/ =\32768; # or \"32768", or \$var_containing_32768
open my $fh, "<", $myfile or die $!;
local $_ = <$fh>;

will read a record of no more than 32768 characters fém. If you're not reading from a
record-oriented file (or youdS doesnt haverecord-oriented files), then you'll likely get a full
chunk of data with\eery read. If a record is larger than the record sizewot, you'll get the
record back in piecesIrying to set the record size to zero or less will cause reading in the (rest
of the) whole file.

On VMS only, record reads bypass PerllO layers ang associated bffering, so you must not
mix record and non-record reads on the same fileharRibeord mode mixes with line mode
only when the same buffering layer is in use for both modes.

You cannot callinput_record_separator() on a handle, only as a static methdgke
10::Handle.

See also “Newlinesin perlport. Alsosee “$. .

Mnemonic: / delimits line boundaries when quoting poetry.

I0::Handle—>output_record_separatBXPR)
$OUTPUT_RECORD_SEPARATOR

$ORS

$\ The output record separator for the print operalfodefined, this alue is printed after the last of
print's aguments. Dedult isundef .
You cannot calloutput_record_separator() on a handle, only as a static meth@&ke
10::Handle.

Mnemonic: you se$\ instead of adding\n’’ at the end of the print. Also, #'just like $/ , but
it's what you get “back’from Perl.

HANDLE->autoflushEXPR)

$OUTPUT_AUTOFLUSH

$ If set to nonzero, forces a flush rightay and after gery write or print on the currently selected
output channelDefault is O (rgardless of whether the channel is reallyffered by the system or
not; $| tells you only whether youé asked Perl explicitly to flush after each write3TDOUT
will typically be line huffered if output is to the terminal and blockffered otherwise.Setting
this variable is useful primarily when you are outputting to a pipe oesoglkch as when you are
running a Perl program undesh and want to see the output as lappening. Thikas no dect
on input luffering. See' getc’ in perlfunc for that. See “select’ in perlfunc on hav to slect the
output channel. See also 10::Handle.

Mnemonic: when you want your pipes to be piping hot.

${"LAST_FH}
This read-only ariable contains a reference to the last-read filehandle. This is set by
<HANDLE>readline ,tell ,eof andseek. This is the same handle ttat andtell and
eof without arguments use. It is also the handle used when Perl apper®EDIN> line 1’ to
an error or warning message.

This variable was added in Perl v5.18.0.
Variables related to formats

perl v5.18.2 2014-01-06 211

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

The special variables for formats are a subset of those for filehatfg#esperlform for more information
about Perk formats.

$ACCUMULATOR

$A The current value of thevrite() accumulator forformat() lines. A format contains
formline() calls that put their result int8"A . After calling its formatwrite() prints out
the contents o$"A and empties. So you v really see the contents 8fA unless you call
formline() yourself and then look at it. See perlform affdrmline PICTURE,LIST” in
perlfunc.

|0::Handle->format_formfee&XPR)
$FORMAT_FORMFEED
$L What formats output as a form feed. The defadkt is

You cannot calfformat_formfeed() on a handle, only as a static method. See 10::Handle.

HANDLE->format_page numbefkPR)
$FORMAT_PAGE_NUMBER
$% The current page number of the currently selected output channel.

Mnemonic:%is page number inroff.

HANDLE->format_lines_leffEXPR)
$FORMAT_LINES_LEFT
$- The number of lines left on the page of the currently selected output channel.

Mnemonic: lines_on_page - lines_printed.

I0::Handle->format_line_break charactedPR

$FORMAT_LINE_BREAK_CHARACTERS

$: The current set of characters after which a string may beebrtk fill continuation fields
(starting with™) in a format. Thedefault is “\n-", to break on a space, newline, or a hyphen.

You cannot call format_line_break characters() on a handle, only as a static
method. SeéO::Handle.

Mnemonic: a “colon”in poetry is a part of a line.

HANDLE->format_lines_per_pageXPR)

$FORMAT_LINES PER_PAGE

$= The current page length (printable lines) of the currently selected output channel. The default is
60.

Mnemonic: = has horizontal lines.

HANDLE->format_top_nam&XPR)

$FORMAT_TOP_NAME

$ The name of the current top-of-page format for the currently selected output chEmaelefult
is the name of the filehandle witifOPappended. & example, the default format top name for
the STDOUTilehandle isSSTDOUT_TOP

Mnemonic: points to top of page.

HANDLE->format_namefXPR)

$FORMAT_NAME

$ The name of the current report format for the currently selected output channel. &bk def
format name is the same as the filehandle nafoe.example, the default format name for the
STDOUTilehandle is jusETDOUT

Mnemonic: brother t&” .

Error Variables

212

The \ariables$@ $! , $°E , and $? contain information about different types of error conditions that may
appear during»cution of a Perl program. Theawables are shown ordered by tlistance’ between the
subsystem which reported the error and the Perl proddssy. correspond to errors detected by the Perl
interpretey C library, operating system, or an external program, resgegti

To illustrate the differences between these variables, consider theifigll®erl expression, which uses a
single-quoted string. Afterxecution of this statement, perl mayeast all four special error variables:

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

eval q{
open my $pipe, "/cdrom/install |* or die $!;
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";
2
When perl gecutes theeval() expression, it translates tlopen() , <PIPE>, andclose calls inthe C
run-time library and thence to the operating systeméd. perlsets$! to the C libraryserrno if one of
these calls fails.

$@is set if the string to beval —ed did not compile (this may happerojfen or close were imported
with bad prototypes), or if Perl codeeeuted during edluationdie() d. Inthese cases thalie of$@is
the compile errqror the argument tdie (which will interpolate$! and$?). (Seealso Fatal, though.)

Under a fev operating systemsf"E may contain a more verbose error indicasoch as in this case,
“ CDROM tray not closed. Systems that do not support extended error messagesfiga the same as
$! .

Finally, $? may be set to non-Calue if the external prograedrom/installfails. Theupper eight bits
reflect specific error conditions encountered by the program (the pregeaitf) value). Thelower
eight bits reflect mode of failure, kdgnal death and core dump informatioBeewait(2) for details. In
contrast ta$! and$°E, which are set only if error condition is detected, theable$? is set on each
wait or pipeclose , overwriting the old \alue. Thisis more like $@ which on @ery eval() is aways
set on failure and cleared on success.

For more details, see the individual description$@t$! , $°E , and $?.

${"CHILD_ERROR_MATIVE}
The natve gatus returned by the last pipe close, backtick) (command, successful call to
wait() orwaitpid() , or from thesystem() operator On POSIX-like g/stems this alue
can be decoded with thewIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSI@ndWIFCONTINUED functions provided by theOSIXmodule.

UnderVMS this reflects the actu&iMs exit status; i.e. it is the same $8 when the pragmase
vmsish 'status' is in effect.

This variable was added in Perl v5.10.0.
$EXTENDED _OS ERROR

$E Error information specific to the current operating systéinthe moment, this differs frors!
under onlywMS, 0S/2,and Win32 (and for MacPerl). On all other platfori®¥; is always just
the same a$! .

UndervMs, $°E provides thevMsS status value from the last system errohis is more specific
information about the last system error than that provide#l! byThis is particularly important
when$! is set toEVMSERR.

Under0S/2,$°E is set to the error code of the last calldg/2 APleither viaCRT, or directly
from perl.

Under Wn32, $E always returns the last error information reported by the Win32 call
GetlLastError() which describes the last error from within thein®2 API. Most
Win32-specific code will report errors VAE . ANSI C and Unix-like aalls seterrno and so
most portable Perl code will report errors $la.

Caveats mentioned in the description®f generally apply t&°E , aso.
This variable was added in Perl 5.003.

Mnemonic: Extra error explanation.

$EXCEPTIONS_BEING_CAUGHT
$'S Current state of the interpreter.

perl v5.18.2 2014-01-06 213

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

$'S State
undef Parsing module, eval, or main program
true (1) Executing an eval

false (0) Otherwise
The first state may happen$8IG{ DIE_} and$SIG{ WARN_1} handlers.

The English nam8EXCEPTIONS_BEING_CAUGHS slightly misleading, because thedef
value does not indicate whethexceptions are being caught, since compilation of the main
program does not catch exceptions.

This variable was added in Perl 5.004.

SWARNING
W The current value of the warning switch, initially true—-ifv was wsed, false otherwise,ub
directly modifiable.

See also warnings.
Mnemonic: related to thew switch.

${"WARNING_BITS}
The current set of arning checks enabled by thise warnings pragma. lIthas the same
scoping as th&H and% Hvariables. Theexact values are considered internal to tteenings
pragma and may change between versions of Perl.

This variable was added in Perl v5.6.0.

$0S_ERROR

$ERRNO

$! When referenced$! retrieves the current value of the @rrno integer \ariable. If$! is
assigned a numerical value, thalue is stored irerrno . When referenced as a strir),
yields the system error string correspondingrtmo .

Many system or library calls setrrno if they fail, to indicate the cause ddifure. Theg usually
do not seterrno to zero if thg succeed. Thisneanserrno , hence$! , is meaningful only
immediatelyafter afailure:

if (open my $fh, "<", $filename) {
Here $! is meaningless.

}
else {

ONLY here is $! meaningful.

Already here $! might be meaningless.
}

Since here we might have either success or failure,
$! is m eaningless.

Here, meaninglessneans that! may be unrelated to the outcome of tyen() operator.
Assignment téh! is similarly ephemerallt can be used immediately beforeaking thedie()
operatorto st the exit value, or to inspect the system error string corresponding to,esrdo
restore$! to a meaningful state.

Mnemonic: What just went bang?

%0S_ERROR

%ERRNO

%! Each element d¥o! has a true value only §! is set to thatalue. For example, ${ENOENT}
is true if and only if the current value $f is ENOENTthat is, if the most recent erroas ‘No
such file or directory'(or its moral equialent: not all operating systemsvgithat exact errorand
certainly not all languages)To check if a particular &y is meaningful on your system, use
exists $!{the_key} ; for a list of lgd keys, usekeys %! . See Errno for more
information, and also see “$!".

214 2014-01-06 perl v5.18.2

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

This variable was added in Perl 5.005.

$CHILD_ERROR

$?

The status returned by the last pipe close, backtick ¢ommand, successful call teait() or
waitpid() , or from thesystem() operator This is just the 16—bit status word returned by
the traditional Unixwait() system call (or else is made up to lookeli®. Thus,the exit alue

of the subprocess is reall$q >> 8), and$? & 127 gives which signal, if ay, the process
died from, andb? & 128 reports whether there was a core dump.

Additionally, if the h_errno variable is supported in C, its value is returned $® if any
gethost*() function fails.

If you have installed a signal handler f@IGCHLD the value of$? will usually be wrong
outside that handler.

Inside anENDsubroutine$? contains the &lue that is going to begn to exit() . You can
modify $? in anENDsubroutine to change the exit status of your prograon.example:

END {
$? =1if $? == 255; # die would make it 255
}

UndervMS, the pragmaise vmsish 'status’ makes$? reflect the actualMs exit status,
instead of the default emulation®SIX status; see “$?in perlvms for detalils.

Mnemonic: similar tash andksh.

$EVAL_ERROR

$@

The Perl syntax error message from the dastl() operator If $@is the null string, the last
eval() parsed andxecuted correctly (although the operations youked may have failed in
the normal fashion).

Warning messages are not collected in thésiable. Yu can, hwever, st up a routine to
process warnings by setti$$IG{ WARN__} as described in “%SIG”.

Mnemonic: Where was the syntax error “at”?

Variables related to the interpreter state
These variables provide information about the current interpreter state.

$COMPILING

$C

The current value of the flag associated with-tbewitch. Mainlyof use with-MO=... to allow
code to alter its bek@r when being compiled, such as for examplétdrOLOARt compile
time rather than normal, deferred loading. Setfif@ =1 is similar to callingB::minus_c

This variable was added in Perl v5.6.0.

$DEBUGGING

$D

The current value of the debugging flags. May be read oiLéed. its command-line equélent,
you can use numeric or symbolic values$dg =10 or$D ="st"

Mnemonic: value ofD switch.

${"ENCODING}

The object eferenceto theEncode object that is used to ceart the source code to Unicode.
Thanks to this variable your Perl script does notha be witten in UTF-8. Default isundef
The direct manipulation of this variable is highly discouraged.

This variable was added in Perl 5.8.2.

${"GLOBAL_PHASE}

perl v5.18.2

The current phase of the perl interpreter.
Possible values are:

CONSTRUCT
The Perlinterpreter* is being constructed vigerl_construct . This wvalue
is mostly there for completeness and for use via the underlyiragi@blePL_phase .
It's not really possible for Perl code to beeeuted unless construction of the interpreter

2014-01-06 215

PERLVAR(1)

216

PerlProgrammers Reference Guide PERR(1)

is finished.

START This is the global compile-timeThat includes, basicallgvery BEGIN block executed
directly or indirectly from during the compile-time of the topdeprogram.
This phase is not calledBEGIN” to avoid confusion withBEGIN-blocks, as those are
executed during compile-time of grcompilation unit, not just the topael program.
A new, localised compile-time entered at run-time, fearaple by constructs aval
"use SomeModule" are not global interpreter phases, and thereforetaedtécted
by ${"GLOBAL_PHASE}.

CHECK Execution of anyCHECKblocks.

INIT Similar to “CHECK”, but for INIT -blocks, notCHECKblocks.

RUN The main run-time, i.e. thexecution of PL_main_root

END Execution of anfENDblocks.

DESTRUCT

Global destruction.

Also note that there’no \alue for UNITCHECK-blocks.That's because those are run for each
compilation unit individuallyand therefore is not a global interpreter phase.

Not every program has to go through each of the possible phasgesabsition from one phase to
another can only happen in the order described in theedist

An example of all of the phases Perl code can see:
BEGIN { print "compile-time: ${"GLOBAL_PHASE}n" }

INIT { print "init-time: ${"GLOBAL_PHASE}n" }

CHECK { print "check-time: ${"GLOBAL_PHASE}n" }

{

}

package Print::Phase;

sub new {
my ($class, $time) = @_;
return bless \$time, $class;

}

sub DESTROY {
my $self = shift;
print "$$self: ${"GLOBAL_PHASENN";

print "run—time: ${"GLOBAL_PHASE}n";

my $runtime = Print::Phase->new(

);

"lexical variables are garbage collected before END"

END { print "end-time: ${"GLOBAL_PHASE}n" }

our $destruct = Print::Phase—>new(

);

"package variables are garbage collected after END"

This will print out

2014-01-06 perl v5.18.2

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

compile-time: START

check-time: CHECK

init-time: INIT

run-time: RUN

lexical variables are garbage collected before END: RUN
end-time: END

package variables are garbage collected after END: DESTRUCT

This variable was added in Perl 5.14.0.

$H WARNING: This variable is strictly for internal use onlits availability, behavior and contents
are subject to change without notice.
This variable contains compile-time hints for the Perl interpre&¢the end of compilation of a
BLOCK the value of this variable is restored to tladue when the interpreter started to compile
the BLOCK.
When perl begins to parseyablock construct that provides a lexical scope (e.gd body,
required file, subroutine bodjoop body or conditional block), the existing value &H is
saved, but its value is left unchanged. When the compilation of the block is completegirnisre
the s&ed value. Betweerthe points where its value isved and restored, code thakexzutes
within BEGIN blocks is free to change the value$of .
This behavior provides the semantic ofit@l scoping, and is used in, for instance, tise
strict pragma.
The contents should be an igeg; different bits of it are used for different pragmatic flags.
Heres an gample:
sub add_100 { $"H |= 0x100 }
sub foo {
BEGIN { add_100() }
bar->baz($boon);
}
Consider what happens duringeeution of theBEGIN block. Atthis point theBEGIN block has
already been compiled, but the bodyfed() is still being compiled.The nev value of$'H
will therefore be visible only while the body fafo() is being compiled.
Substitution oBEGIN { add_100() } block with:
BEGIN { require strict; strict—>import(‘'vars') }
demonstrates ouse strict 'vars' is implemented.Heres a onditional \ersion of the
same lexical pragma:
BEGIN {
require strict; strict—>import(‘'vars') if $condition
}
This variable was added in Perl 5.003.
%"H The %°H hash provides the same scoping semantic$as. This makes it useful for
implementation of lexically scoped pragmas. See perlpragma.
When putting items int®"H, in order to &oid conflicting with other users of the hash there is a
convention regarding which leys to ise. Amodule should use onlyels that begin with the
modules name (the name of its main package) and’acharacter For example, a module
Foo::Bar should use &ys such as-o0::Bar/baz
This variable was added in Perl v5.6.0.
${"OPEN}

perl v5.18.2

An internal variable used by Perll@\ string in two parts, separated by\@ byte, the first part
describes the input layers, the second part describes the output layers.

This variable was added in Perl v5.8.0.

2014-01-06 217

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

$PERLDB

$P

The internal variable for debugging support. The meanings of the various bits are subject to
change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-line deligging. Cause®B::DB() subroutine to be called for each statement
executed. Alsocauses saving source code linese(lik400).

0x04 Switch of optimizations.

0x08 Presenry nore data for future interagé inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single-step on.

0x40 Use subroutine address instead of name when reporting.

0x80 Reporgoto &subroutine as well.

0x100 Provide informate “file’’ names for eads based on the place thevere compiled.

0x200 Preide informatve nrames to angmous subroutines based on the placey there
compiled.

0x400 Sae urce code lines int@{"_<$filename"}

Some bits may be ralant at compile-time onlysome at run-time onlyThis is a n&v mechanism
and the details may change. See also perldebguts.

${TAINT}

Reflects if taint mode is on orfofl for on (the program was run withr), O for off, =1 when
only taint warnings are enabled (i.e. withor —TU).

This variable is read-only.

This variable was added in Perl v5.8.0.

${"UNICODE}

Reflects certain Unicode settings of Perl. See perlrun documentation fe€ gwitch for more
information about the possible values.

This variable is set during Perl startup and is thereafter read-only.

This variable was added in Perl v5.8.2.

${"UTF8CACHE}

This variable controls the state of the interb@F-8 offset caching codel for on (the default), 0
for off, =1 to delig the caching code by checking all its results against linear scans, and
panicking on apdiscrepang.

This variable vas added in Perl v5.8.9. It is subject to change or vamdgthout notice, but is
currently used towid recalculating the boundaries of multi-byte UTF-8-encoded characters.

${"UTFSLOCALE}

This variable indicates whethet & F-8 locale was detected by perl at startup. This information
is used by perl when & in ajust-utf8ness—to—locale mode (as when run with Hgi
command-line switch); see perlrun for more info on this.

This variable was added in Perl v5.8.8.

Deprecated and remwoed variables

218

Deprecating a variable announces the intent of the perl maintainemntaadly remwoe the variable from
the language. It may still bevalable despite its status. Using a deprecated variable triggers a warning.

Once a variable is remaed, its use triggers an error telling you the variable is unsupported.
See perldiag for details about error messages.

$OFMT
$#

$# was a \ariable that could be used to format printed numbéAfter a deprecation cycle, its
magic was remed in Perl v5.10.0 and using it motriggers a varning: $# is no longer
supported

2014-01-06 perl v5.18.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

This is not the sigil you use in front of an array name to get the last ind=®#bkray . That's
still how you get the last indeof an aray in Perl. The tw havenothing to do with each other.

Deprecated in Perl 5.
Remawed in Perl v5.10.0.

$* $* was a \ariable that you could use to enable multiline matchisfier a deprecation cycle, its
magic was remeed in Perl v5.10.0. Using it nav triggers a varning: $* is no longer
supported . You should use this and/m regexp modifiers instead.

Deprecated in Perl 5.

Remawed in Perl v5.10.0.

$ARRAY_BASE

$[This variable stores the ileof the first element in an arragnd of the first character in a
substring. Thelefault is 0, but you could theoretically set it to 1 to m&krl behae nore like
awk (or Fortran) when subscripting and whemleating theindex()andsubstr()functions.

As of release 5 of Perl, assignmentfois treated as a compiler diraatj and cannot influence
the behavior of another file. (That's why you can only assign compile-time constants tolis)
use is highly discouraged.

Prior to Perl v5.10.0, assignment®p could be seen from outer lexical scopes in the same file,
unlike aher compile-time direates (such as strict).Using local() on it would bind its alue
strictly to a lexical block. Nw it is aways lexically scoped.

As of Perl v5.16.0, it is implemented by the arybase modbée arybase for more details on its
behaviour.

Underuse v5.16 , or no feature "array_base" , $[no longer has aneffect, and
always contains 0. Assigning O to it is permitted, but ather value will produce an error.

Mnemonic: [begins subscripts.

Deprecated in Perl v5.12.0.

$OLD_PERL_VERSION
$] See ‘$°V'’ for a more modern representation of the Perl version that allows accurate string
comparisons.

The version + patchlel / 1000 of the Perl interpreterThis variable can be used to determine
whether the Perl interpretexeeuting a script is in the right range of versions:

warn "No checksumming\n" if $] < 3.019;
The floating point representation can sometimes lead to inaccurate numeric comparisons.

See also the documentationusfe VERSION andrequire VERSION for a cowenient way
to fail if the running Perl interpreter is too old.

Mnemonic: Is this version of perl in the right bracket?

perl v5.18.2 2014-01-06 219

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

NAME
perlrun — hev to execute the Perl interpreter
SYNOPSIS
perl [=sTtuUWX] [=hv][=V[:configvai]
[—ew] [—d[t][:debuger]] [-D[number/lis}]
[-pna][—Fpattern] [—I[octal]] [—O[octal/hexadecimal
[=Idir][=m[-]module] [-M[-]'module../][—f] [=C [number/list]] [-S]
[=x[dir]] [—i[exension]
[[-€]-E] 'command’] [——] [programfile] [argumen]...
DESCRIPTION

220

The normal way to run a Perl program is by making it directég@able, or else by passing the name of
the source file as an gument on the command line. (An intergeti Rerl environment is also
possible — segerldelug for details on he to do that.) Uponstartup, Perl looks for your program in one
of the following places:

1. Specified line by line viae or —E switches on the command line.

2. Contained in the file specified by the first flename on the command line. (Note that systems

supporting the#! notation ivoke interpreters this waysee “Location of Perl”.)

3. Passed in implicitly via standard input. This works only if there are no filenaguerents — tgass
arguments to a STDIN-read program you must explicitly specify ‘& br'the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless pegified a—x
switch, in which case it scans for the first line starting #ithand containing the wordperl”, and starts
there instead. This is useful for running a program embedded igex laessage. (In this case yoauld
indicate the end of the program using theEND__ token.)

The#! line is alvays examined for switches as the line is being par3éds, if you're on a machine that
allows only one argument with tH8 line, or worse, doeshéven recognize thet! line, you still can get
consistent switch behaviourga&dless of hav Perl was ivoked, even if —x was used to find the lggnning
of the program.

Because historically some operating systems silently choppé&eérofe! interpretation of th#! line after

32 characters, some switches may be passed in on the command line, and some may not; yaan could e

get a ="’ without its letter if you're not careful.You probably want to madk aure that all your switches
fall either before or after that 32—character boundaost switches domt’actually care if thg're
processed redundantlgut getting a‘~"’ instead of a complete switch could cause Perl to trxeoute
standard input instead of your program. And a parfiawitch could also cause odd results.

Some switches do care if there processed twice, for instance combinationslaind—-0. Either put all
the switches after the 32—character boundary (if applicable), or replace the-Qskigas by BEGIN{ $/

= "\Odigits"; }

Pasing of the#! switches starts wherer “‘perl” is mentioned in the line. The sequence$’” and “~ "’
are specifically ignored so that you could, if you were so inclined, say

#!/bin/sh
—*—perl-*—
eval 'exec perl =x —wS $0 ${1+"$@"}
if 0;
to let Perl see thep switch.
A similar trick involves theenvprogram, if you hee it.
#!/usr/bin/env perl

The examples alve wse a relatie path to the perl interpretegetting whatger version is first in the usex’
path. Ifyou want a specific version of Perl, spgrl5.14.1, you should place that directly in tHeline's
path.

If the #! line does not contain the worghérl” nor the word ‘indir’’ the program named after thé is
executed instead of the Perl interpretdihis is slightly bizarre, but it helps people on machines that don’
do #! , because thecan tell a program that theBHELL is /usr/bin/per| and Perl will then dispatch the
program to the correct interpreter for them.

2014-01-06 perl v5.18.2

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

After locating your program, Perl compiles the entire program to an internal form. If thereyare an
compilation errors,»ecution of the program is not attempted. (This is wniile typical shell script, which
might run part-way through before finding a syntax error.)

If the program is syntactically correct, it igseeuted. Ifthe program runs bthe end without hitting an
ext() or die() operatoran mplicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems
Unix’s #! technique can be simulated on other systems:

0s/2
Put

extproc perl =S —your_switches

as the first line if.cmd file (-Sdue to a bug in cmdke's ‘extproc’ handling).
MS-DOS

Create a batch file to run your program, and codify RifERNATE_SHEBAN(Gee thalosish.Hile
in the source distribution for more information).

Win95/NT

The Win95/NT installation, when using the Agbtate installer for Perl, will modify the Registry to

associate thepl extension with the perl interpretetf you install Perl by other means (including

building from the sources), you mayveato modify the Registry yourself. Note that this means you
can no longer tell the difference between xecetable Perl program and a Perl library file.

VMS
Put

$ perl -mysw 'f$env("procedure”)' 'pl' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7' 'p8' !
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, whergnysw are ay command line switches youant to pass to Perl.
You can nav invcke the program directlyby saying perl program , or as aDCL procedure, by
saying@program (or implicitly via DCL$PATH by just using the name of the program).

This incantation is a bit much to remembbut Perl will display it for you if you sayerl
"-V:startperl!"

Command-interpreters on non-Unix systemeehather different ideas on quoting than Unix she¥eu'll
need to learn the special characters in your command-interpgreterand" are common) and oto
protect whitespace and these characters to run one-liners (see —e below).

On some systems, you mayhdao change single-quotes to double ones, which you matsto on Unix or
Plan 9 systemsYou might also hae o change a single % to a %%.

For example:

Unix
perl —e 'print "Hello world\n™

MS-DOS, etc.
perl —e "print \"Hello world\n\""

VMS
perl —e "print ""Hello world\n""

The problem is that none of this is reliable: it depends on the command and it is entirely possible neither
works. If4DOSwere the command shell, this would probably work better:

perl —e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

CMD.EXE in WindowsNT slipped a lot of standard Unix functionality in when nobody was looking, b
just try to find documentation for its quoting rules.

There is no general solution to all of this.s|jtist a mess.

perl v5.18.2 2014-01-06 221

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

Location of Perl
It may seem obvious to sayut Perl is useful only when users can easily find it. When possilsigpad
for both /usr/bin/perl and /usr/local/bin/perlto be symlinks to the actual binaryf that cant be dne,
system administrators are strongly encouraged to put (symlinks to) perl and its accompanying utilities into
a drectory typically found along a uselPg&TH, or in some other obvious and eenient place.

In this documentationg!/usr/bin/perl on the first line of the program will stand in for whae
method works on your systenYou are advised to use a specific path if you care about a specific version.

#!/usr/local/bin/perl5.14
or if you just want to be running at least version, place a statemettitlat the top of your program:
use 5.014;

Command Switches
As with all standard commands, a single-character switch may be clustered with the following switch, if
ary.
#!/usr/bin/perl —spi.orig # same as —s —p —i.orig
Switches include:

—Q[octal/hexadecimal
specifies the input record separatdt X as an atal or h&adecimal numberlf there are no digits,
the null character is the separat@ther switches may precede or follthe digits. For example, if
you have a vesion of find which can print filenames terminated by the null charagtar can say
this:

find . —name "*.orig' —print0 | perl —nOe unlink

The special value 00 will cause Perl to slurp files in paragraph nfgevalue 0400 or aba will
cause Perl to slurp files wholeythby cowention the value 0777 is the one normally used for this
purpose.

You can also specify the separator character using hexadecimal not&@bistHH..., where theH are
valid hexadecimal digits.Unlike the octal form, this one may be used to specify dnicode
charactereven those beyond OxFFSo if you really want a record separator of 0777, specify it as
—0x1FF. (This means that you cannot use the option with a directory name that consists of
hexadecimal digits, or else Perl will think yowhapecified a he number to-0.)

—a turns on autosplit mode when used withraor —p. An implicit split command to th@Farray is
done as the first thing inside the implicit while loop produced by-thar —p.

perl —ane 'print pop(@F), "\n";'
is equvaent to

while (<>) {
@F = split("’);
print pop(@F), "\n",

An alternate delimiter may be specified ustitg

—C [number/list]
The-C flag controls some of the Perl Unicode features.

As of 5.8.1, the-C can be folleved either by a number or a list of option letters. The letters, their
numeric values, and effects are as follows; listing the letters is equal to summing the numbers.

222 2014-01-06 perl v5.18.2

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

I 1 STDIN is assumed to be in UTF-8

0] 2 STDOUT will be in UTF-8

E 4 STDERR will be in UTF-8

S 7 1+0+E

i 8 UTF-8 is the default PerllO layer for input streams

o} 16 UTF-8 is the default PerllO layer for output streams

D 24 i +o0

A 32 t he @ARGYV elements are expected to be strings encoded
in UTF-8

L 64 normally the "IOEioA" are unconditional, the L makes

them conditional on the locale environment variables
(the LC_ALL, LC_TYPE, and LANG, in the order of
decreasing precedence) —- if the variables indicate
UTF-8, then the selected "IOEioA" are in effect

a 256 Set ${'UTFB8CACHE]}to -1, to run the UTF-8 caching
code in debugging mode.

For example, —-COE and —C6 will both turn on UTF-8-ness on botsTDOUT and STDERR.
Repeating letters is just redundant, not cumedator toggling.

Theio options mean that grsubsequenbpen()(or similar I/O operations) in the current file scope
will have the:utf8 PerllO layer implicitly applied to them, in otheowds,UTF-8is expected from
ary input stream, andTF-8is produced to gnoutput stream. This is just the default, witkpkcit
layers inopen()and withbinmode(Jone can manipulate streams as usual.

—C on its own (not followed by annumber or option list), or the empty strif for the
PERL_UNICODEernvironment variable, has the saméef as-CSDL. In other words, the standard
I/O handles and the drflt open() layer are UTF-8-fiecbut only if the locale ewironment
variables indicate aJTF-8 locale. Thisbehaiour follows theimplicit (and problematicluTF-8
behaviour of Perl 5.8.0. (Se&TF-8no longer default undesTF-8locales’ in perl581delta.)

You can use-CO0 (or"0" for PERL_UNICODIto explicitly disable all the abge Unicode features.

The read-only magic ariable ${"UNICODE} reflects the numericalue of this setting.This
variable is set during Perl startup and is thereafter read-dhlyou want runtime effects, use the
three-argopen()(see ‘open” in perlfunc), the tw-argbinmode()(see ‘binmode’ in perlfunc), and
theopen pragma (see open).

(In Perls earlier than 5.8.1 th€C switch was a Wi32—-only switch that enabled the use of Unicode-
awae “wide system call' Win32 APIs. This feature was practically unusedwéer, and the
command line switch was therefore “recycled”.)

Note: Since perl 5.10.1, if theC option is used on th#! line, it must be specified on the command
line as well, since the standard streams are already set up at this pointectit®me of the perl
interpreter You can also useinmode()o set the encoding of an I/O stream.

—c causes Perl to check the syntax of the program and Kiewithout executing it. Actually, it will
execute andBEGIN, UNITCHECK or CHECKblocks and apuse statements: these are considered
as occurring outside thexezution of your program.INIT and END blocks, hevever, will be
skipped.

—-d

—dt runs the program under the Perl dgger See perldebg. If t is specified, it indicates to the
debugger that threads will be used in the code being debugged.

—d:MOD[=bar,baz]

—dt: MOD[=bar,baz]
runs the program under the control of a debugging, profiling, or tracing module installed as
Devel:: MOD. E.g., —d:DProf executes the program using tievel::DProf profiler. As with
the-M flag, options may be passed to tevel:: MOD package where tlewill be receved and
interpreted by theDevel:: MOD::import routine. Agin, like -M, use —d:-MOD to call
Devel:: MOD::unimport instead of import.The comma-separated list of options must felt
= character If t is specified, it indicates to the debugger that threads will be used in the code being
delugged. Seeerldebug.

perl v5.18.2 2014-01-06 223

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

-Dletters

—Dnumber
sets debugging flagsTo watch hev it executes your program, useDtls. (This works only if
dehugging is compiled into your PerlAnother nice value isDx, which lists your compiled syntax
tree. And-Dr displays compiled regularxpressions; the format of the output is explained in
perldebguts.

As an alternatie, specify a number instead of list of letters (e-P14is equvalent to—Dtls):

1 p Tokenizing and parsing (with v, displays parse stack)
2 s Stack snapshots (with v, displays all stacks)
4 | C ontext (loop) stack processing
8 t T race execution
0 Method and overloading resolution
32 ¢ String/numeric conversions
P

64 Print profiling info, source file input state
128 m Memory and SV allocation
256 f Format processing
512 r Regular expression parsing and execution
1024 x Syntax tree dump
2048 u Tainting checks
4096 U Unofficial, User hacking (reserved for private,

unreleased use)

8192 H Hash dump —— usurps values()
16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Op slab allocation
131072 T Tokenizing
262144 R Include reference counts of dumped variables (eg when
using —Ds)
524288 J show s,t,P-debug (don't Jump over) on opcodes within
package DB
1048576 v Verbose: use in conjunction with other flags
2097152 C Copy On Write
4194304 A Consistency checks on internal structures
8388608 q quiet — currently only suppresses the "EXECUTING"
message
16777216 M trace smart match resolution
33554432 B dump suBroutine definitions, including special Blocks

like BEGIN

All these flags requireDDEBUGGING when you compile the Perkecutable (but seeopd in
Devel::Peek or “debug’ mode’ in re which may change this). See th¢STALL file in the Perl
source distribution for hw to do this. Thisflag is automatically set if you includey option when
Configure asks you about optimizer/debugger flags.

If you're just trying to get a print out of each line of Perl code agetwdes, the way thatsh —x
provides for shell scripts, you canise Perl's-D switch. Insteadio this

If y ou have "env" utility
env PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl —-dS program

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl —dS program

csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl —-dS program)

See perldebug for details and variations.

224 2014-01-06 perl v5.18.2

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

—ecommandline
may be used to enter one line of prograifn—e is given, Perl will not look for a filename in the
argument list. Multiple —e commands may begin to kuild up a multi-line script.Make sure to use
semicolons where you would in a normal program.

—-E commandline
behaes just like —e, except that it implicitly enables all optional features (in the main compilation
unit). See feature.

—-f Disable eecuting$Conf i g{sitelib}/sitecustomize.pt startup.

Perl can be built so that it by default will try teeeute$Conf i g{sitelib}/sitecustomize.pt startup
(in aBEGIN block). Thisis a hook that all@s the sysadmin to customizewh®erl behaes. Itcan
for instance be used to add entries to @ENCarray to mak Rerl find modules in non-standard
locations.

Perl actually inserts the following code:

BEGIN {
do { local $!; —f "$Config{sitelib}/sitecustomize.pl"; }
&& do "$Config{sitelib}/sitecustomize.pl”;
}

Since it is an actualo (not arequire), sitecustomize.pfloesnt need to return a true value. The
code is run in packag®main , in its own lexical scope. Hower, if the script diest@will not be set.

The value ofsConfig{sitelib} is also determined in C code and not read fonfig.pm
which is not loaded.

The code isxecutedvery early For example, anchanges made t@INCwill show up in the output
of ‘perl =V*. Of course ENDblocks will be likewise executed very late.

To determine at runtime if this capability has been compiled in your perl, you can check the value of
$Config{usesitecustomize}

—Fpattern
specifies the pattern to split on-Hé is also in eflect. Thepattern may be surrounded By,
", otherwise it will be put in single quotes. You dause literal whitespace in the pattern.

, or

—h prints a summary of the options.

—i[extension
specifies that files processed by #f¥econstruct are to be edited in-place. It does this by renaming
the input file, opening the output file by the original name, and selecting that output file astiite def
for print() statements. Thextension, if supplied, is used to modify the name of the old file teraak
backup cop, following these rules:

If no extension is supplied, and your system supports it, the orfgee kept open without a name
while the output is redirected to améle with the originafilename When perl gits, cleanly or not,
the originalfile is unlinked.

If the extension doesintontain a*, then it is appended to the end of the current filename afida suf
If the extension does contain one or mdreharacters, then eac¢his replaced with the current
filename. InPerl terms, you could think of this as:

($backup = $extension) =~ s/*/$file_name/q;
This allows you to add a prefix to the backup file, instead of (or in addition to) a sulffix:

$ perl —pi‘orig_* —e 's/bar/baz/' fileA # backup to
' orig_fileA'

Or even to pace backup copies of the original files into another directory (provided the directory
already exists):

$ perl —pi‘old/*.orig' —e 's/bar/baz/' fileA # backup to
' old/fileA.orig'

These sets of one-liners are eglént:

perl v5.18.2 2014-01-06 225

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

$ perl —pi —e 's/bar/baz/' fileA # overwrite current file
$ perl —pi*' —e 's/bar/baz/' fileA # overwrite current file
$ perl —pi'.orig' —e 's/bar/baz/' fileA # backup to 'fileA.orig'
$ perl —pi*.orig' —e 's/bar/baz/' fileA # backup to 'fileA.orig'

From the shell, saying
$ perl —p —i.orig —e "s/foo/bar/; ... "
is the same as using the program:

#!/usr/bin/perl —pi.orig
s/foo/bar/;

which is equialent to

#!/usr/bin/perl
$extension = ".orig";
LINE: while (<>) {
if (FARGV ne $oldargv) {
if ($extension I */) {
$backup = $ARGV . $extension;
}

else {
($backup = $extension) =~ s*/$ARGV/g;
}

rename($ARGV, $backup);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;

}

s/foo/bar/;

}

continue {

print; # this prints to original filename
}
select(STDOUT);

except that the-i form doesrt need to compar8ARGVto $oldargv to knowv when the filename
has changed. It does, wever, use ARGVOUT for the selected filehandle. Note tH&IDOUT is
restored as the default output filehandle after the loop.

As shown abwee, Perl creates the backup file whether or nat antput is actually changed. So this
is just a fang way to copy files:

$ perl —p —i'/someffile/path/*' —e 1 filel file2 file3...
or
$ perl —p —i'.orig' —e 1 filel file2 file3...

You can usezof without parentheses to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see exampledfi’* in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified ixtireseon then it will skip
that file and continue on with the next one (if it exists).

For a dscussion of issues surrounding file permissions dndee ‘Why does Perl let me delete
read-only files? Wi does —i clobber protected files? Istiiis a bug in Perl?in perlfag5.

You cannot use-i to create directories or to strip extensions from files.
Perl does not exparidin filenames, which is good, since some folks use it for their backup files:
$ perl —pi” —e 's/foo/bar/ filel file2 file3...

Note that becausel renames or deletes the original file before creating\efite of the same name,
Unix-style soft and hard links will not be preserved.

226 2014-01-06 perl v5.18.2

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

Finally, the —i switch does not impedexecution when no files areg@n on he command lineln
this case, no backup is made (the original file cannot, of course, be determined) and processing
proceeds fronsTDIN to STDOUT as might be expected.

—ldirectory
Directories specified byl are prepended to the search path for mod@sli(Q.

—Il[octnun}
enables automatic line-ending processitichas two separate décts. Firstjt automatically chomps
$/ (the input record separator) when used withor —p. Second, it assign$\ (the output record
separator) to he te value ofoctnumso that ap print statements will hae tat separator added
back on. If octnumis omitted, set$\ to the current value &/ . For instance, to trim lines to 80
columns:

perl —Ipe 'substr($_, 80) =""

Note that the assignmeft = $/ is done when the switch is processed, so the input record
separator can be different than the output record separator-if shdtch is followed by a0 switch:

gnufind / —print0 | perl =InOe 'print "found $_" if —p'
This setsb\ to newline and then se$é to the null character.

—m[—]module
—M[-]module
-M[-]'module ...
—[mM] [-]module=arg|[,arg]...
—-mmoduleexecutesuse module(); before &ecuting your program.

—Mmoduleexecutesuse module; before &ecuting your program.You can use quotes to addtea
code after the module name, e'glVl MODULE qgw(foo bar)'

If the first character after theM or -m is a dash~) then the 'use’ is replaced with 'no’.

A little builtin syntactic sugar means you can also samMODULE=foo,bar or
—MMODULE=foo,bar as a shortcut fo-M MODULE qw(foo bar)’. This avoids the need to use
guotes when importing symbols. The actual code generatedMiyODULE=foo,bar is use
module split(/,/,q{foo,bar}) . Note that the= form remaes the distinction betweerm
and-M.

A consequence of this is thatMMODULE=number never does a version check, unless
MODULE::import() itself is set up to do aevsion check, which could happen for example if
MODULE inherits from Exporter.

-n causes Perl to assume the following loop around your program, which makes it iterdiemame
arguments somewhat lilsed —nor awk

LINE:
while (<>) {

}

Note that the lines are not printed byaldf. See' —p” to havelines printed. If a file named by an
argument cannot be opened for some reason, Perl warns you about ivesdmio he next file.

your program goes here

Also note thak> passes command linegaments to‘bpen” in perlfunc, which doesm’necessarily
interpret them as file nameSee perlogor possible security implications.

Here is an efficient way to delete all files thatdmat been modified for at least a week:
find . -mtime +7 —print | perl —nle unlink

This is faster than using theexecswitch offind because you dohhaveto start a process owesy
filename found. It does suffer from thegoof mishandling newlines in pathnames, which you can fix
if you follow the example undetO.

BEGIN andENDblocks may be used to capture control before or after the implicit program loop, just
as inawk

perl v5.18.2 2014-01-06 227

PERLRUN(1)

228

-p

PerlProgrammers Reference Guide PERLRUN(2)

causes Perl to assume the following loop around your program, which makes it ierdilemame
arguments somewhat lilsed

LINE:
while (<>) {
your program goes here
} ¢ ontinue {
print or die "—p destination: $\n";
}

If a file named by an gument cannot be opened for some reason, Perl warns you about it,\aasd mo
on to the next file Note that the lines are printed automaticalyn error occurring during printing is
treated asdtal. o suppress printing use tha switch. A—p overides a—n switch.

BEGIN and ENDblocks may be used to capture control before or after the implicit loop, just as in
awk

enables rudimentary switch parsing for switches on the command line after the progranuname b
before ag filename arguments (or before an argument-9f Any switch found there is renved

from @ARGYnNd sets the correspondingriable in the Perl program. The following program prints
“1" if t he program is woked with a—xyz switch, and “abc’if it is i nvoked with —xyz=abc

#!/usr/bin/perl —s
if ($xyz) { print "$xyz\n" }

Do note that a switch li&k——help creates theariable${-help} , which is not compliant witluse
strict "refs" . Also, when using this option on a script witlrwings enabled you may get a
lot of spurious “used only oncelarnings.

makes Perl use theATH ervironment variable to search for the program unless the name of the
program contains path separators.

On some platforms, this also makes Perl apperfikssfto the filename while searching for kor
example, on Win32 platforms, thébat” and “.cmd” suffixes are appended if a lookup for the
original name fails, and if the name does not already end in one of théigessuffyour Perl vas
compiled with DEBUGGINGUrned on, using the-Dp switch to Perl shows ho the search
progresses.

Typically this is used to emulat8 startup on platforms that ddrsupport#! . It's dso comwenient
when debugging a script that us#ls, and is thus normally found by the shelBPATH search
mechanism.

This example works on mgplatforms that hae a $iell compatible with Bourne shell:

#!/usr/bin/perl
eval 'exec /usr/bin/perl -wS $0 ${1+"$@"}'
if $running_under_some_shell;

The system ignores the first line and feeds the prograbirtsh which proceeds to try toxecute

the Perl program as a shell script. The shaltetes the second line as a normal shell command, and
thus starts up the Perl interpret@n some system$0 doesnt always contain the full pathname, so
the—-Stells Perl to search for the program if necesséfger Perl locates the program, it parses the
lines and ignores them because thgable$running_under_some_shell is never true. Ifthe
program will be interpreted by csh, you will need to rep{de-"$@"} with $*, even though that
doesnt understand embedded spaces (and such) in the argumeroligart upshrather tharcsh
some systems may V& o replace the#! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems datontrol that, and need a totallywi@us construct that

will work under aiy of csh sh or Perl, such as the following:

eval '(exit $70)' && eval 'exec perl -wS $0 ${1+"$@"}
& eval 'exec /usr/bin/perl —wS $0 $argv:q'
if $running_under_some_shell;

If the filename supplied contains directory separators (and so is an absolute & patatiame),
and if that file is not found, platforms that append fiteeesions will do so and try to look for the file
with those extensions added, one by one.

2014-01-06 perl v5.18.2

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

On DOS-like datforms, if the program does not contain directory separators, it will first be searched
for in the current directory before being searched for orPAlnel. On Unix platforms, the program
will be searched for strictly on tH&TH.

-t Like —T, but taint checks will issue avnings rather than fatal errors. These warnings canhbeo
controlled normally witmo warnings qw(taint)

Note: This is not a substitute ér —T! This is meant to be usedhly as a temporary gelopment aid
while securing lgacy code: for real production code and fomnsecure code written from scratch,
always use the reaiT.

=T turns on ‘taint” so you can test themOrdinarily these checks are done only when running setuid or
setgid. It5 a good idea to turn them on explicitly for programs that run on behalf of someone else
whom you might not necessarily trust, suchCas programs or aninternet servers you might write
in Perl. See perlsec for detailfor security reasons, this option must be seen by Perl quite early;
usually this means it must appear early on the command line or #l thine for systems which
support that construct.

—u This switch causes Perl to dump core after compiling your prog¥am.can then in theory taktis
core dump and turn it into arxeeutable file by using thendumpprogram (not supplied).This
speeds startup at the expense of some disk space (which you can minimize by stripping the
executable). (Still,a “hello world” executable comes out to about 200K on my machingyou
want to execute a portion of your program before dumping, usedtimap()operator insteadNote:
awailability of undumpis platform specific and may not beagable for a specific port of Perl.

-U allows Perl to do unsafe operatiorSurrently the only‘insafe’ operations are attempting to unlink
directories while running as superuser and running setuid programs with fatal taint checks turned into
warnings. Notethat warnings must be enabled along with this option to actggdtgratethe taint-
check warnings.

—-v prints the version and patcli of your perl eecutable.
-V prints summary of the major perl configuration values and the current val@i$IQr

-V: configvar
Prints to STDOUT the value of the named configuratioariable(s), with multiples when your
confi gvar argument looks lig a egex (has non-letters)For example:

$ perl -V:libc
libc="/lib/libc-2.2.4.s0";
$ perl -Vilib.
libs="-Insl —lgdbm -Idb —Idl —Im -Icrypt —lutil —Ic';
libc="/lib/libc-2.2.4.s0";
$ perl -Vlib.*
libpth="usr/local/lib /lib /usr/lib';
libs="-Insl —lgdbm -Idb —Idl —Im -Icrypt —lutil —Ic';

lib_ext="a’;
libc="/lib/libc-2.2.4.s0'";

libperl='libperl.a’;

Additionally, extra colons can be used to control formattirgtrailing colon suppresses the linefeed
and terminator ‘"', allowing you to embed queries into shell commandsinemonic: PATH
separator “:".)

$ echo "compression-vars: " “perl =V:z.*: * " are here !"
compression-vars: zcat=" zip='zip' are here !

A leading colon remas the ‘name=" part of the response, this alle you to map to the name you
need. (mnemoni@mpty label)

$ echo "goodvfork=""./perl =llib —V::usevfork®
goodvfork=false;

Leading and trailing colons can be used together if you need positional parameter values without the
names. Not¢hat in the case belg the PERL_API params are returned in alphabetical order.

perl v5.18.2 2014-01-06 229

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

$ echo building_on “perl -V::oshame: -V::PERL_API_.*:" now
building_on 'linux' '5' '1' '9"' now
-w prints warnings about dubious constructs, such as variable names mentioned only once and scalar
variables used before being set; redefined subroutines; references to undefined filehandles;
filehandles opened read-only that you are attempting to write on; values used as a numbet that don’
look like numbers; using an array as though it were a scalar; if your subroutines recurse more than
100 deep; and innumerable other things.

This switch really just enables the globBlW variable; normally the lexically scopeduse
warnings pragma is preferred. You can disable or promote i@ £rrors specific warnings using
__WARN__hooks, as described in perlvar atwiarn” in perlfunc. Seealso perldiag and perltrap.
A fine-grained warning facility is alswalable if you want to manipulate entire classes afmings;
see warnings or perllexwarn.

-W Enables all warnings gerdless ofno warnings or $W. See perllexwarn.
—X Disables all warnings gerdless ofuse warnings or $W. See perllexwarn.

—xdirectory
tells Perl that the program is embedded in gdachunk of unrelated text, such as in a mail message.
Leading garbage will be discarded until the first line that starts #ittand contains the string
“perl”. Any meaningful switches on that line will be applied.

All references to line numbers by the prograrargvings, errors, ...) will treat th# line as the first
line. Thusa warning on the 2nd line of the program, which is on the 100th line in the file will be
reported as line 2, not as line 100. This can berimden by using thefline directve. (See

“ Plain Old Comments (Not!)in perlsyn)

If a directory name is specified, Perl will switch to that directory before running the proghemx
switch controls only the disposal of leadingriopage. Theprogram must be terminated with
__END__ if there is trailing garbage to be ignored; the program can procgserad of the
trailing garbage via thBATAfilehandle if desired.

The directory if specified, must appear immediately following the with no intenening

ENVIRONMENT

230

whitespace.
HOME Used ifchdir has no argument.
LOGDIR Used ifchdir has no argument amtOME is not set.
PATH Used in g&ecuting subprocesses, and in finding the progran$if used.

PERL5LIB A list of directories in which to look for Perl library files before looking in the standard
library and the current directonAny achitecture-specific andevsion-specific directories,
such asversion/achname/ version/ or archname/ under the specified locations are
automatically included if theexist, with this lookup done at interpreter startup tinte.
addition, ay directories matching the entries $Config{inc_version_list} are
added. (Thesgypically would be for older compatible perl versions installed in the same
directory tree.)

If PERLSLIB is not definedPERLLIB is used. Directories are separatedg(lik PATH) by a
colon on Unixish platforms and by a semicolon omdwvs (the proper path separator
being gven by the commangberl -V: pat h_sep).

When running taint checks, either because the prograsnrwnning setuid or setgid, or the
—=T or -t switch was specified, neith®ERL5LIB nor PERLLIB is consulted. The program
should instead say:

use lib "/my/directory";

PERL5OPT Command-line options (switchesgwitches in this variable are treated as ifythhere on
evay Perl command line. Only the[CDIMUdmtwW] switches are allsed. When
running taint checks (either because the progra®s minning setuid or setgid, or because
the =T or -t switch was used), this variable is ignoretf. PERL50PTbegins with T,
tainting will be enabled and subsequent options ignoted?ERL50PT begins with —t,

2014-01-06 perl v5.18.2

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

tainting will be enabled, a writable dot remad from @INC and subsequent options
honored.

PERLIO A space (or colon) separated list of PerllO layers. If perl is built to use PerllO syst&m for
(the default) these layers affect Perts

It is corventional to start layer names with a colon (faaeple,:perlio) to emphasize
their similarity to variable‘attributes’. But the code that parses layer specification strings,
which is also used to decode tRERLIO ervironment variable, treats the colon as a
separator.

An unset or emptPERLIO is equvaent to the default set of layers for your platform; for
example,:unix:perlio on Unix-like systems andunix:crlf on Windows and other
DOS-like g/stems.

The list becomes the default falt Perl’'slO. Consequently only built-in layers can appear in
this list, as external layers (such :ascoding()) needIO in order to load them!See
“ open pragmafor hav to add external encodings as defaults.

Layers it maks sense to include in tRERLIO ervironment variable are briefly summarized
below. For more details see PerllO.

:bytes A pseudolayer that turns thatf8 flag off for the layer bela; unlikely to be
useful on its own in the glob&ERLIO ervironment \ariable. You perhaps were
thinking of :crlf:bytes or :perlio:bytes

.crif A layer which doe€RLFto "\n" translation distinguishingtext”” and “binary”
files in the manner of MS-DOS and similar operating systems. (It currently does
notmimic MS-DOS as far as treating of Control-Z as being an end-of-file marker.)

:mmap A layer that implementsréading’ of files by usingnmag2) to male an entire
file appear in the processddress space, and then using that as Perftaiffer”.

:perlio This is a re-implementation of stdio4ikwuffering written as a PerllO layerAs
such it will call whateer layer is belw it for its operations, typicallyunix

:pop An experimental pseudolayer that reremthe topmost layerUse with the same
care as is reserved for nitroglycerine.

raw A pseudolayer that manipulates other layers. Applying tasv layer is
equivadent to callingbinmode($fh) . It makes the stream pass each byte as-is
without translation.In particular both CRLF translation and intuitingutf8 from
the locale are disabled.

Unlike in earlier versions of Pertraw is not just the iverse of:crlf : other
layers which would affect the binary nature of the stream are alsovegnop
disabled.

:stdio This layer provides a PerllO intade by wrapping systeB1ANSI C “stdio”
library calls. The layer prades both bffering andiO. Note that thestdio
layer doeshot do CRLF translation gen if that is the platforng normal behsiour.
You will need a:crlf layer abee it to do hat.

:unix Low-level layer that callsead , write , Iseek , etc.

:utfg8 A pseudolayer that enables a flag in the layerniédotell Perl that output should
be in utf8 and that input should begsaled as already inalid utf8 form.
WARNING: It does not check for validity and as such should be handled with
extreme caution for input, because security violations can occur with non-
shortest UTF-8 encodings, etc.Generally :encoding(utf8) is the best
option when readingTF-8 encoded data.

:win32 On Win32 platforms thigxperimentallayer uses nate “handle” 10 rather than a
Unix-like numeric file descriptor layeKnown to be buggy in this release (5.14).

The default set of layers shouldrgiacceptable results on all platforms

For Unix platforms that will be the equalent of “unix perlio” or ‘‘stdio”. Configureis set
up to prefer the'stdio” i mplementation if the systemlibrary provides for fast access to the

perl v5.18.2 2014-01-06 231

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

buffer; otherwise, it uses the “unix perliomplementation.

On Win32 the default in this release (5.14) is “unix ‘trifVin32’'s “stdio” has a nhumber of
bugs/mis—features for Pei® which are somewhat depending on the version and vendor of
the C compilerUsing our evn crlf layer as the lffer avoids those issues and neak
things more uniform. Therlf layer providesCRLF corversion as well as buffering.

This release (5.14) usesix as the bottom layer on Win32, and so still uses the C
compilers numeric file descriptor routines. There is an experimentaVeatin32 layer,
which is expected to be enhanced and shorddteally become the default under Win32.

ThePERLIOenvironment variable is completely ignored when Perl is run in taint mode.

PERLIO_DEBUG
If set to the name of a file orwdee, certain operations of PerllO subsystem will be logged
to that file, which is opened in append modgpical uses are in Unix:

% env PERLIO_DEBUG=/devi/tty perl script ...
and under Win32, the approximately eglent:

> set PERLIO_DEBUG=CON
perl script ...

This functionality is disabled for setuid scripts and for scripts run wiith

PERLLIB A list of directories in which to look for Perl library files before looking in the standard
library and the current directoryf PERL5LIB is defined PERLLIB is not used.

ThePERLLIB environment variable is completely ignored when Perl is run in taint mode.
PERL5DB The command used to load the debugger code. The default is:
BEGIN { require "perl5db.pl" }
The PERL5DBenvironment variable is only used when Perl is started with a-oleswitch.

PERL5DB_THREADED
If set to a true value, indicates to the debugger that the code being debugged uses threads.

PERL5SHELL(specific to the Win32 port)
On Win32 ports onlymay be set to an alternati iell that Perl must use internally for
executing ‘backtick” commands orsystem() Default is cmd.exe /x/d/c on
WindonvsNT andcommand.com /c on Windows95. Thevaue is considered space-
separated. Precedey character that needs to be protecteds llspace or backslash, with
another backslash.

Note that Perl doeshtise COMSPECfor this purpose becausEOMSPEChas a high dgree

of variability among users, leading to portability concerm@esides, Perl can use a shell that
may not be fit for interacte wse, and settin@OMSPECto such a shell may interfere with
the proper functioning of other programs (which usually look@MSPECto find a shell fit
for interactve wse).

Before Perl 5.10.0 and 5.8.BERL5SHELL was ot taint checkd when running>aernal
commands. lis recommended that you explicitly set (or del&8ENV{PERL5SHELL}
when running in taint mode under Windows.

PERL_ALLOW_NON_IFS_LSHspecific to the Win32 port)
Set to 1 to allv the use of non-IFS compatible LSPs (Layered Servicgidns). Perl
normally searches for an IFS-compatiheP because this is required for its emulation of
Windows sockets as real filehandleblowever, this may cause problems if youveaa
firewall such asMcAfee Guadian, which requires that all applications useLig&P but which
is not IFS-compatible, because clearly Perl will normaltyichusing such anSP.

Setting this evironment variable to 1 means that Perl will simply use the first suitsitle
enumerated in the catalog, whichépsMcAfee Guadian hapy —and in that particular
case Perl still works too becaugieAfee Guadian's LSP actually plays other games which
allow applications requiringFS compatibility to work.

232 2014-01-06 perl v5.18.2

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

PERL_DEBUG_MSATS
Relevant only if Perl is compiled with thealloc included with the Perl distrition; that
is, if perl =V:d_mymalloc is “define”.

If set, this dumps out memory statistics aftezcaition. If set to an intger greater than one,
also dumps out memory statistics after compilation.

PERL_DESTRUCT_LEVEL
Relevant only if your Perl gecutable was built with-DDEBUGGING, this controls the
behaiour of global destruction of objects and other referenceSee
“ PERL_DESTRUCT_LEVEL in perlhacktips for more information.

PERL_DL_NONLAZY
Set to"1" to have Rerl resole all undefined symbols when it loads a dynamic librarke
default behaviour is to resa@vg/mbols when the are used. Setting this variable is useful
during testing of extensions, as it ensures that you get an error on misspelled function names
evan if the test suite doedrcall them.

PERL_ENCODING
If using the use encoding pragma without an xlicit encoding name, the
PERL_ENCODINGenvironment variable is consulted for an encoding name.

PERL_HASH_SEED
(Since Perl 5.8.1, me semantics in Perl 5.18.0) Used teexide the randomization of
Perl’s internal hash function. Thealue is expressed in hexadecimal, and may include a
leading Ox. Truncated patterns are treated as thoughatbesufixed with sufficient & &
required.

If the option is provided, an®PERL_PERTURB_KEY® NOT set, then a alue of '0’
implies PERL_PERTURB_KEYS=0 and ary other value implies
PERL_PERTURB_KEYS=2

PLEASE NOTE: The hash seed is sensit information. Hashes are randomized to protect
against local and remote attacks against Perl code. By manually setting a seed, this
protection may be partially or completely lost.

See ‘Algorithmic Complexity Attacks’ in perlsec and ‘PERL_PERTURB_KEYS®
“ PERL_HASH_SEED_DEBUG'for more information.

PERL_PERTURB_KEYS
(Since Perl 5.18.0) Set t6" or"NO" then traersing keys will be repeatable from run to
run for the sam@ERL_HASH_SEED.Insertion into a hash will not change the ordrcept
to provide for more space in the hash. When combined with seiRg_HASH_SEEDthis
mode is as close to pre 5.18 behavior as you can get.

When set td1" or"RANDOM'then traersing keys will be randomized.Every time a hash

is inserted into the dy ader will change in a random fashion. The order may not be
repeatable in a following program rumea if the PERL_HASH_SEEDhas been specified.
This is the default mode for perl.

When set td2" or "DETERMINISTIC" then inserting &ys into a hash will cause thek
order to change, but in a way that is repeatable from program run to program run.

NOTE: Use of this option is considered insecure, and is intended only for debugging non-
deterministic behavior in Peslhash function. Do not use it in production.

See ‘Algorithmic Complexity Attacks’ in perlsec and ‘PERL_HASH_SEED” and
“ PERL_HASH_SEED_DEBUG™for more information. ¥u can get and set theytaversal
mask for a specific hash by using thash_traversal_mask() function from
Hash::Util.

PERL_HASH_SEED_ DEBUG
(Since Perl 5.8.1.) Settd" to display (toSTDERR information about the hash function,
seed, and what type oék traversal randomization is in fefct at the beginning ofxecution.
This, combined with'PERL_HASH_SEED"and ‘PERL_PERTURB_KEYS'is intended to aid
in debugging nondeterministic behaviour caused by hash randomization.

perl v5.18.2 2014-01-06 233

PERLRJN(1) PerlProgrammers Reference Guide PERLRUN(2)

Note that aly information about the hash function, especially the hash sesehsitve
information : by knowing it, one can craft a denial-of-service attackiagt Perl code,ven
remotely; see'Algorithmic Complexity Attacks’in perlsec for more informatiorDo not
disclose the hash seet people who dob’need to knw it. See alsdash_seed() and
key_traversal_mask() in Hash::Util.

An example output might be:
HASH_FUNCTION = ONE_AT_A_TIME_HARD HASH_SEED = 0x652e9b9349a7a032 PE

PERL_MEM_LOG
If your Perl was configured with-Accflags=—DPERL_MEM_LOG, setting the
ervironment \ariablePERL_MEM_LO@nables logging debug messages. The value has the
form <nunber >[m][s][t] , Wwherenunber is the file descriptor number you want to
write to (2 is default), and the combination of letters specifies that you want information
about (m)emory and/or (s)v optionally with (t)imestamps. For xample,
PERL_MEM_LOG=1mslogs all information to stdout.o can write to other opened file
descriptors in a variety of ways:

$ 3>fo03 PERL_MEM_LOG=3m perl ...

PERL_ROOT(specific to th&/MS port)
A translation-concealed rooted logical name that contains Perl and the logical fde the
@INCpath onvMS only. Cther logical names that affect Perl @NIS include PERLSHR,
PERL_ENV_TABLES,and SYS$TIMEZONE_DIFFERENTIAL,but are optional and discussed
further in perlvms and iREADMEvVmsin the Perl source distribution.

PERL_SIGNALS
Available in Perls 5.8.1 and latelf set to"unsafe" |, the pre—Perl-5.8.0 signal betaur
(which is immediate but unsafe) is restored. If sedafe , then safe (but deferred) signals
are used. See “Deferred Signals (Safe Sigriatsperlipc.

PERL_UNICODE
Equivaent to the-C command-line switchNote that this is not a boolean variable. Setting
this to"1" is not the right way to “enable Unicodéwhatever that would mean).You can
use"0" to “disable Unicode”, though (or alternaély unsetPERL_UNICODEIn your shell
before starting Perl). See the description oftBeswitch for more information.

SYS$LOGIN(specific to the/MS port)
Used if chdir has no argument an@ME andLOGDIR are not set.

Perl also has eironment variables that control WwoPerl handles data specific to particular natural
languages; see perllocale.

Perl and its various modules and components, including its testvitekse may sometimes makse of
certain other environmentriables. Somef these are specific to a particular platform. Please consult the
appropriate module documentation ang documentation for your platform (kkperlsolaris, perllinux,
perlmacosx, perlwin32, etc) for variables peculiar to those specific situations.

Perl makes all environment variablesitable to the program beingecuted, and passes these along o an
child processes it startddlowever, programs running setuid would do well teeeute the following lines
before doing anything else, just to keep people honest:

$ENV{PATH} = "/bin:/usr/bin”; # or whatever you need
SENV{SHELL} = "/bin/sh" if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

234 2014-01-06 perl v5.18.2

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

NAME
perlreftut — Marks very short tutorial about references

DESCRIPTION
One of the most important wefeatures in Perl 5 as the capability to manage complicated data structures
like multidimensional arrays and nested hash&e. enable these, Perl 5 introduced a feature called
references’, and using references is they Ko managing complicated, structured data in Perl.
Unfortunately theres a bt of funry syntax to learn, and the main manual page can be hard tw.follbe
manual is quite complete, and sometimes people find that a problem, because it can be hard to tell what is
important and what isn't.

Fortunately you only need to kne 10% of whats in the main page to get 90% of the benefit. This page
will show you that 10%.

Who Needs Complicated Data Structures?
One problem that comes up all the time is needing a hash walogs are lists. Perl has hashes, of course,
but the values hee © be €alars; thg can't be lists.

Why would you want a hash of listsRet's take a $mple example: You hee a fle of city and country
names, lile this:

Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA

and you want to produce an outputlitiis, with each country mentioned once, and then an alphabetical
list of the cities in that country:

Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.

The natural way to do this is to\eaa lash whose d&ys ae country names. Associated with each country
name ley is a ist of the cities in that countryEach time you read a line of input, split it into a country and
a dty, look up the list of cities already known to be in that coyrang append the mecity to the list.
When youte done reading the input, iterateeothe hash as usual, sorting each list of cities before you
print it out.

If hash values couldhbe lists, you lose.You'd probably hae to combine all the cities into a single string
somehw, and then when time came to write the output, gdwveto break the string into a list, sort the
list, and turn it back into a string. This is messy and grone. Andit's frustrating, because Perl already
has perfectly good lists that would selthe problem if only you could use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this design: Hash values must beTualars.
solution to this is references.

A reference is a scalar value thefiers to an entire array or an entire hash (or to just about anything else).
Names are one kind of reference that you're already familiar Wittink of the President of the United
States: a messyncorvenient bag of blood and bone&ut to talk about him, or to represent him in a
computer program, all you need is the easgvenient scalar string “Barack Obama”.

References in Perl are éklames for arrays and hashéhey're Perls private, internal names, so you can
be sure thgre unambiguous.Unlike “Barack Obama”, a reference only refers to one thing, and you
always knawv what it refers to. If you ha a eference to an arrayou can receer the entire array from it.

If you have a eference to a hash, you can mneothe entire hash. But the reference is still an easy
compact scalar value.

You can't havea hash whose values are arrays; hash values can only be stséams.guck with that. But
a dngle reference can refer to an entire griand references are scalars, so you care b fash of
references to arrays, and it'll act a loglix Fash of arrays, and it'll be just as useful as a hash of arrays.

WEe'll come back to this city-country problem latditer weve sen some syntax for managing references.

perl v5.18.2 2013-11-04 235

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

Syntax

236

There are just tarways to mak a eference, and just twvays to use it once you V&it.

Making References

Make Rule 1

If you put a\ in front of a variable, you get a reference to that variable.
$aref = \@array; # $aref now holds a reference to @array
$href = \Y%hash; # $href now holds a reference to %hash
$sref = \$scalar; # $sref now holds a reference to $scalar

Once the reference is stored in a variable $firef or $href , you can cop it or store it just the same as
ary other scalar value:

$xy = $aref; # $xy now holds a reference to @array
$p[3] = $href; # 3$p[3] now holds a reference to %hash
$z = $p[3]; # $z now holds a reference to %hash

These examples skvchow to make references to variables with names. Sometimes you want te anak
array or a hash that doeshavea nrame. Thiss analogous to the way you diko be &le to use the string
“\n" or the number 80 without having to store it in a named variable first.

Make Rule 2

[I TEMS] makes a ne, anorymous arrayand returns a reference to that arrfdyl TEMS } males a
new, anonymous hash, and returns a reference to that hash.

$aref =[1, "foo", undef, 13];

$aref now holds a reference to an array

$href = { APR =>4, AUG =>8 };
$href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule 1:

This:
Saref=[1,2,3];

Does the same as this:
@array = (1, 2, 3);
$aref = \@array;

The first line is an abbvation for the following tve lines, except that it doesrereate the superfluous
array variable@array .

If you write just[] , you get a n&, empty anonymous arraylf you write just{} , you get a n&, empty
anonymous hash.

Using References

What can you do with a reference once yoweht? It's a €alar value, and weé ®en that you can store it
as a scalar and get it back again just Bty scalar There are just tavymore ways to use it:

UseRulel

You can alvays use an array reference, in curly braces, in place of the name of anFaraample,
@{$aref} instead of@array .

Here are some examples of that:

Arrays:
@a @{%aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are twexpressions that do the same thing. The left-hardions operate on the arr@a
The right-hand &rsions operate on the array that is referred t®dogf . Once thg find the array thgre
operating on, both versions do the same things to the arrays.

2013-11-04 perl v5.18.2

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

Using a hash referencedsgactly the same:

%h %{$href} A hash
keys %h keys %{$href} Get the keys from the hash
$h{'red’} ${$href{'red'} An element of the hash

$h{red} =17 ${Shref{'red} =17 Assigning an element

Whatever you want to do with a referenddse Rule 1tells you hev to do it. You just write the Perl code
that you would hee written for doing the same thing to agtdar array or hash, and then replace the array
or hash name witfreference} . “How do | loop over an array when all | hae is a eference? Well,

to loop aver an aray, you would write

for my $element (@array) {

}

so replace the array nan@array , with the reference:
for my $element (@{$aref}) {

}

“How do | print out the contents of a hash when all vén& a eference?’ First write the code for printing
out a hash:

for my $key (keys %hash) {
print "$key => $hash{$key}n";
}

And then replace the hash name with the reference:
for my $key (keys %{$href}) {
print "$key => ${$href{Skeyhn";
}
UseRule2
Use Rule 1is all you really need, because it tells yowho do dsolutely @erything you @er need to do

with references. But the most common thing to do with an array or a hash is to extract a single element,
and theUse Rule Inotation is cumbersome. So there is an abbreviation.

${$aref}[3] is too hard to read, so you can wig@ef->[3] instead.
${$hrefH{red} is too hard to read, so you can witeref—>{red} instead.

If $aref holds a reference to an arralien $aref—>[3] is the fourth element of the arrajpon’t
confuse this with$aref(3] , which is the fourth element of a totally different arrage deceptiely
named@aref . $aref and@aref are unrelated the same way thaem and@item are.

Similarly, $href->{'red'} is part of the hash referred to by the scaliable$href , perhaps een

one with no names$href{'red’} is part of the deceptly named%href hash. It5 easy to forget to

leave aut the—>, and if you do, youl get bizarre results when your program gets array and hash elements
out of totally unexpected hashes and arrays that wehenbnes you wanted to use.

An Example
Let's £e a quick example of hwall this is useful.

First, remember thdt, 2, 3] malkes an anonymous array containifig 2, 3) , and gives you a
reference to that array.

Now think about
@a=([1,2,3],

[4,5, 6],

[7,8,9]

);

@ais an array with three elements, and each one is a reference to another array.

$a[l] is one of these references. It refers to an ath@yarray containin4, 5, 6) , and because it is
a reference to an arrayse Rule 2says that we can writa[1]->[2] to get the third element from that

perl v5.18.2 2013-11-04 237

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

array. $a[1]->[2] is the 6. Similarly, $a[0]->[1] is the 2. What we hge tere is like a two-
dimensional array; you can wriga[ROW]->[COLUMN] to get or set the element inyarow and ary
column of the array.

The notation still looks a little cumbersome, so theeocee more abbreviation:

Arr ow Rule
In between twaubscripts, the arrov is optional.

Instead offa[1]->[2] , we @an write$a[1][2] ; it means the same thing. Insteadbaf0]->[1] =
23, we @an write$a[0][1] = 23 ; it means the same thing.

Now it really looks like two-dimensional arrays!
You can see wi the arrows are importaniVithout them, we would va had to write${$a[1]}[2]

instead of$a[l][2] . For three-dimensional arrays, théet us write $x[2][3][5] instead of the
unreadabl&{${$x[2]}[3]}[5]
Solution
Here’s the answer to the problem | posed earliéreformatting a file of city and country names.
1 nmy %able;
2 while (<>) {
3 chomp;
4 my ($city, $country) = split/, /;
5 $table{$Scountry} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7}
8 f oreach $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join', ', sort @cities;
12 print "An";
13 }

The program has twpieces: Lines 2——7 read the input andldb a data structure, and lines 8-13 analyze
the data and print out the repoW/e’re going to hae a lash,%table , whose leys ae country names, and
whose values are references to arrays of city names. The data structure willddiis:lik

%table
| I |+ :
|Germany| *~———>| Frankfurt | Berlin |
| I |+ :
| I +
|Finland| *————>| Helsinki |
| I +
| | | + f f
| USA | *—-—>| Chicago | Washington | New York |
| | | + f f

WE'll look at output first. Supposing we alreadyéthis structure, ho do we pint it out?
8 f oreach $country (sort keys %table) {

9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join', ', sort @cities;
12 print "\n";
13 }

%table is an ordinary hash, and we get a list efkfrom it, sort the &ys, and loop eer the leys &

238 2013-11-04 perl v5.18.2

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

usual. Theonly use of references is in line 18table{$country} looks up the &y $country in the
hash and gets thelue, which is a reference to an array of cities in that caubtsg Rule 1says that we
can recwer the array by sayin@{$table{$country}} . Line 10 is just like

@cities = @array;

except that the namarray has been replaced by the referef@ble{$country}} . The @tells
Perl to get the entire arrajdaving gotten the list of cities, we sort it, join it, and print it out as usual.

Lines 2-7 are responsible for building the structure in the first place. Hgrar¢hagain:

while (<>) {
chomp;
nmy ($city, $country) = split/, /;
$table{$country} = [] unless exists $table{$country};
push @{$table{$country}}, $city;
}
Lines 2-4 acquire a city and country name. Line 5 looks to see if the country is already presegtias a k

the hash. If it mot, the program uses tH¢ notation Make Rule 2) to manufacture a ne, empty
anonymous array of cities, and installs a reference to it into the hash under the appm@priate k

~No o~ WN

Line 6 installs the city name into the appropriate ar&table{$country} now holds a reference to
the array of cities seen in that country so fane 6 is exactly like

push @array, $city;

except that the namarray has been replaced by the referefS@ble{$country}} . The push
adds a city name to the end of the referred-to array.

Theres ane fine point | skipped. Line 5 is unnecessang we can get rid of it.

2 while (<>) {

3 chomp;

4 nmy ($city, $country) = split /, /;

5 #### $table{$country} = [] u nless exists $table{$country};

6 push @{$table{$country}}, $city;

7}
If there's dready an entry ifotable for the currentbcountry , then nothing is dférent. Line6 will
locate the value it$table{$country} , Which is a reference to an arrand push$city into the

array But what does it do wheBcountry holds a ley, say Greece , that is not yet i®otable ?

This is Perl, so it does the exact right thing. It sees that you want toApishs onto an array that
doesnt exist, so it helpfully makes a me empty, anorymous array for you, installs it int%table , and
then pusheéthens onto it. This is called 'autavification’——bringing things to life automaticallyPerl

sav that the ey wasnt in the hash, so it created ambash entry automaticallyPerl sav that you vanted

to use the hash value as an greayit aeated a ng empty array and installed a reference to it in the hash
automatically And as usual, Perl made the array one element longer to holdittotyneame.

The Rest
| promised to gie you 90% of the benefit with 10% of the details, and that means | left out 90% of the
details. Nev that you hae an overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:
* You can male references to anything, including scalars, functions, and other references.

* In Use Rule 1 you can omit the curly brackets whgeethe thing inside them is an atomic scalar
variable like $aref . For example,@$aref is the same a@{$aref} , and $$aref[1l] is the same
as ${$aref}[1] . If you're just starting out, you may want to adopt the habitwéad including
the curly brackets.

e This doesrt copy the underlying array:
$aref2 = $arefl;

You get two references to the same arralf you modify $arefl->[23] and then look at
$aref2—>[23] you'll see the change.

perl v5.18.2 2013-11-04 239

PERLREFTUT(1) PerProgrammers Reference Guide PERLREFTUT(1)

To ocopy the arrayuse
$aref2 = [@{$arefl}];

This useq...] notation to create a weanorymous arrayand $aref2 is assigned a reference to
the nev array. The nev array is initialized with the contents of the array referred t@dmgfl

Similarly, to copy an anonymous hash, you can use
$href2 = {%{$hrefl}};

« To e if a variable contains a reference, useréfie function. Itreturns true if its gument is a
reference. Actuallyt's a ittle better than that: It returtdASHfor hash references amkRRAYfor
array references.

» If you try to use a reference éika $ring, you get strings like
ARRAY(0x80f5dec) or HASH(0x826afc0)
If you ever see a string that looks kkthis, you'll know you printed out a reference by mistake.

A side effect of this representation is that you canecsdo see if tvo references refer to the same
thing. (Butyou should usually use= instead becausestimuch faster.)

* You can use a string as if it were a referentfeyou use the stringfoo" as an array reference sit’
taken to be a reference to the ar@yoo. This is called aoft referenceor symbolic eference The
declarationuse strict 'refs' disables this feature, which can cause all sorts of trouble if you
use it by accident.

You might prefer to go on to perllol instead of perlref; it discusses lists of lists and multidimensional arrays
in detail. After that, you should mie o to perldsc; its a Data Structure Cookbook that shows recipes for
using and printing out arrays of hashes, hashes of arrays, and other kinds of data.

Summary

Credits

Everyone needs compound data structures, and in Perl the way you get them is with refélesrecare
four important rules for managing referencesoTor making references and dvwior using them.Once
you knaw these rules you can do most of the important things you need to do with references.

Author: Mark Jason Dominus, Rier Systems knjd—perl-ref+@plover.com)

This article originally appeared ifhe Perl durnal (http://www.tpj.com/) wlume 3, #2. Reprinted with
permission.

The original title wasJnderstand References Today

Distribution Conditions

240

Copyright 1998 The Perl Journal.
This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespectve d its distribution, all code examples in these files are hereby placed into the public domain.
You are permitted and encouraged to use this code in wenmpoograms for fun or for profit as you see fit.
A simple comment in the code giving credit would be courteous but is not required.

2013-11-04 perl v5.18.2

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

NAME
perldsc — Perl Data Structures Cookbook

DESCRIPTION
Perl lets us hae mmplex data structuresYou can write something lik this and all of a sudden, yauhave
an array with three dimensions!

for $x (1 .. 10) {
for y (1 .. 10) {
for $z (1 .. 10) {
SACA[SX][$Y][$z] =
$x ** By + $z;

}
Alas, howeer simple this may appeaunderneath is a nuch more elaborate construct than meets the eye!

How do you print it out? Why can't you say jusprint @AoA ? How do you sort it? How can you pass
it to a function or get one of these back from a functithft an object? Can youwait to disk to read
back later?How do you access whole rows or columns of that matrix? Do all the values thae
numeric?

As you see, is quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementatios,réally more due to a lack okisting documentation
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of yhdiffeaent sorts of data
structures you might want toviop. It should also seevas a ookbook of @amples. Thatvay, when you
need to create one of these complata structures, you can just pinch, pilf@rpurloin a drop-in gample
from here.

Let's look at each of these possible constructs in detail. There are separate sections on each of the
following:

. arrays of arrays

. hashes of arrays

. arrays of hashes

. hashes of hashes

. more elaborate constructs

But for naw, let’s look at general issues common to all these types of data structures.

REFERENCES
The most important thing to understand about all data structures in-Rerluding multidimensional
arrays — isthat even though thg might appear otherwise, PE@ARRASand %HASHEs are all internally
one-dimensional. Tlyecan hold only scalar values (meaning a string, nhumtrea eference). The
cannot directly contain other arrays or hashes, but instead crefea@ncedo other arrays or hashes.

You can't use a reference to an array or hash in quite the same way that you would a real arraykarhash.
C or G+ programmers unused to distinguishing between arrays and pointers to the same, this can be
confusing. Ifso, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references in peBmiéfly, references are rather dikointers that
know what the point to. (Objects are also a kind of reference, but vem'tvbe reeding them right
away —if ever.) This means that when youveaomething which looks to you likan &cess to a toror-
more-dimensional array and/or hash, whatally going on is that the base type is merely a one-
dimensional entity that contains references to the nesit |&t’s just that you canseit as though it were a
two-dimensional one. This is actually the way almost all C multidimensional arrays work as well.

$array[7][12] # array of arrays
$array[7}{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{'another string'} # hash of hashes

perl v5.18.2 2013-11-04 241

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

Now, because the top Vel contains only references, if you try to print out your array in with a simple
print() function, you'll get something that doestook very nice, like this:

@AoA = ([2, 3], [4,5,7],10]);
print $A0A[1][2];
7
print @AOA;
ARRAY(0x83c38)ARRAY (0x8b194)ARRAY (0x8b1d0)

That's because Perl doesr(eve) implicitly dereference yourariables. Ifyou want to get at the thing a
reference is referring to, then youvkatob do tis yourself using either prefix typing indicators,elik
${sblah} , @{$blah} , @{$blah[$i]} , or dse postfix pointer arrows, B&a—>[3] , $h—>{fred}
or even $ob—>method()—>[3]

COMMON MISTAKES

242

The two most common mistakes made in constructing something dik aray of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly Heres the case where you just get the count instead of a nested array:

for $i (1..10) {

@array = somefunc($i);

$A0A[$i] = @array; # WRONG!
}

That's just the simple case of assigning an array to a scalar and getting its element couns. wh#tatou
really and truly want, then you might do well to consider being a tad more explicit abowt tjdik

for $i (1..10) {
@array = somefunc($i);
$counts[$i] = scalar @array;

}

Here’s the case of taking a reference to the same memory location again and again:

for $i (1..10) {

@array = somefunc($i);

$A0A[$I] = \@array; # WRONG!
}

So, whats the big problem with that? It looks right, doesit? Afterall, | just told you that you need an
array of references, so by golfyou’ve made me one!

Unfortunately while this is true, i gill broken. All the references i@AoAefer to thevery same plage
and thg will therefore all hold whateer was last in@array ! It's smilar to the problem demonstrated in
the following C program:

#include <pwd.h>

main() {
struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam('root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp—>pw_name, rp—>pw_name);
}
Which will print

daemon name is daemon
root name is daemon

The problem is that bottp anddp are pointers to the same location in memory! In C, gdaiveto
remember tanalloc() yourself some ne memory In Perl, you'll want to use the array construcfpr or
the hash construct§y instead. Here'the right way to do the preceding broken code fragments:

2013-11-04 perl v5.18.2

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

for $i (1..10) {
@array = somefunc($i);
$A0A[$I] = [@array |;

The square brackets n&ahk eference to a mearray with acopyof what's in @array at the time of the
assignment. This what you want.

Note that this will produce something simjlawt it's much harder to read:

for $i (1..10) {
@array =0 .. $i;
@{$A0A[$i]} = @array;
}

Is it the same2WVell, maybe so—and maybe not. The subtle flifence is that when you assign something
in square brackets, you kndor sure its dways a brand ne reference with a me copy of the data.
Something else could be going on in thisvrease with the@{$A0A[$i]} dereference on the left-hand-
side of the assignmentt all depends on wheth&AoA[$i] had been undefined to start with, or whether
it already contained a reference. If you had already popu@tkoAwith references, as in

$A0A[3] = \@another_array;

Then the assignment with the indirection on the left-hand-smddause the existing reference thasw
already there:

@{$A0A[3]} = @array;

Of course, thisvould have the ‘interesting’ effect of clobbering@another_array . (Have you ever
noticed hav when a programmer says somethingirgeresting’, that rather than meaningntriguing”,
they’re disturbingly more apt to mean thas itannoying”, “difficult”, or both? :-)

So just rememberahbys to use the array or hash constructors fittor {} , and you'll be fine, although
it's not aways optimally efficient.

Surprisingly the following dangerous-looking construct will actually work out fine:

for $i (1..10) {
my @array = somefunc($i);
$A0A[S$I] = \@array;

}

That's becausemy() is more of a run-time statement than it is a compile-time declarpgorse This

means that theny() variable is remade afresh each time through the loop. vBo though itlooks as

though you stored the samariable reference each time, you actually did not! This is a subtle distinction
that can produce more efficient code at the risk of misleadingtahé most experienced of programmers.

So | usually advise ainst teaching it to lggnners. Infact, except for passing arguments to functions, |
seldom lile to ®e the gimme-a-reference operator (backslash) used much at all in code. Instead, | advise
beginners that the (and most of the rest of us) should try to use the much more easily understood
constructorg] and{} instead of relying upon lexical (or dynamic) scoping and hidden reference-counting
to do the right thing behind the scenes.

In summary:
$A0A[SI] = [@array]; # usually best
$A0A[$I] = \@array; # perilous; just how my() was that array?
@{ $A0A[SI] } = @array; # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things lik@{$A0A[$i]} , the following are actually the same thing:

$aref—>[2][2] # clear
$3aref[2][2] # confusing

That's because Ped precedence rules on its éiyrefix dereferencers (which look ékomeone swearing:

$ @ * % &make them bind more tightly than the postfix subscripting betslor braces! This will no
doubt come as a great shock to the Cep&grammerwho is quite accustomed to usitefi] to mean
what's pointed to by the@'th element ofa. That is, thg first tale the subscript, and only then dereference
the thing at that subscript. Thafine in C, but this is'C.

perl v5.18.2 2013-11-04 243

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

The seemingly equalent construct in Perfs$aref[$i] first does the deref dfaref , making it tale

$aref as a reference to an arrapd then dereference that, and finally tell youiithevalue of the array
pointed to by$AoA. If you wanted the C notion, yalrhave to write ${$A0A[Si]} to force the
$A0A[$I] to get @aluated first before the leadiifgdereferencer.

WHY YOU SHOULD AL WAY S use strict
If this is starting to sound scarier thars ittorth, relax. Perl has some features to help y®uoi@ its most
common pitélls. Thebest way toaoid getting confused is to stanteey program lile this:

#!/usr/bin/perl —w
use strict;

This way, you'll be forced to declare all your variables witty() and also disally accidental “‘symbolic
dereferencing’ Thereforeif you'd done this:

my $aref = [
[" fred", "barney", "pebbles”, "bambam", "dino",],
[" homer", "bart", "marge", "maggie",],
[" george", "jane", "elroy", "judy",],

I

print $aref[2][2];

The compiler would immediately flag that as an eabrcompile time because you were accidentally
accessing@aref , an undeclared variable, and it would thereby remind you to write instead:

print $aref->[2][2]

DEBUGGING
You can use the delgger'sx command to dump out complelata structuresFor example, gven the
assignment t&A0A above, here’s the debugger output:

DB<1> x $A0A
$A0A = ARRAY(0x13b5a0)
0 ARRAY(0x1f0a24)
' fred'
' barney'
' pebbles'
' bambam'
' dino'
RRAY (0x13b558)
' homer'
' bart'
' marge'
' maggie'
RRAY (0x13b540)
' george’
' jane'
" elroy'
' judy’

WNPFRPOD>PWNROIIRAWNERO

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday) here are showoptEse
illustrating access of various types of data structures.

ARRAYS OF ARRAYS
Declaration of anARRAY OF ARRAYS
@AO0A = (
[" fred", "barney"],
[" george", "jane", "elroy"],
[" homer", "marge", "bart"],

);

244 2013-11-04 perl v5.18.2

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

Generation of anARRAY OF ARRAYS
r eading from file
while (<>) {
push @AOA, [split];
}

calling a function
for$i(1.. 10){

$A0A[SI] = [somefunc($i)];
}

using temp vars
for$i(1.. 10){
@tmp = somefunc($i);
$A0A[SI] =[@tmp];
}

add to an existing row
push @{ $A0A[0] }, "wilma", "betty";

Access and Printing of amlARRAY OF ARRAYS
one element
$A0A[0][0] = "Fred";

another element
$A0A[L][1] =" s/(\WwW)N\uS$1/;

print the whole thing with refs
for $aref (@A0A) {

print "\t [@$aref],\n";
}

print the whole thing with indices
for $i (0 .. $#A0A) {

print "\t [@{$ACA[$i]}],\n";
}

print the whole thing one at a time
for $i (0 .. $#A0A) {
for $j (0 .. $#{ $A0A[$I] }) {
print "elt $i $j is SAOA[SI][Hj]\n";
}

}

HASHES OF ARRAYS
Declaration of aHASH OF ARRAYS

%HOoA = (
flintstones => [" fred", "barney"],
jetsons => [" george", "jane", "elroy"],
simpsons => [" homer", "marge", "bart"],
);

Generation of aHASH OF ARRAYS
r eading from file
f lintstones: fred barney wilma dino
while (<>) {
next unless s/"(.*?):\s*//;
$SHOA{$1} = [split];

perl v5.18.2 2013-11-04 245

PERLDSC(1) PerProgrammers Reference Guide

r eading from file; more temps

f lintstones: fred barney wilma dino

while ($line = <>) {
($who, $rest) = split /:\s*/, $line, 2;
@fields = split ' ', $rest;
$HoA{$who} = [@fields];

}

calling a function that returns a list

for $group ("simpsons”, "jetsons", "flintstones") {
$HoA{$group} = [get_family($group) ;
}

| ikewise, but using temps

for $group ("simpsons”, "jetsons", "flintstones") {
@members = get_family($group);
$HoA{$group} = [@members];

}

append new members to an existing family
push @{ $HoA{"flintstones"} }, "wilma", "betty":

Access and Printing of aHASH OF ARRAYS

246

one element
$HoA{flintstones}[0] = "Fred";

another element
$HoA{simpsons}[1] = s/(\W)A\u$1/;

print the whole thing
foreach $family (keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing with indices
foreach $family (keys %HoA) {
print "family: ";
foreach $i (0 .. $#{ $HoA{$family} }) {
print " $i = $SHoA{Sfamily}[$i]";
}

print "\n";

}

print the whole thing sorted by number of members

foreach $family (sort { @{$HOA{$b}} <=> @{$HOA{$a}} } keys %HOA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing sorted by number of members and name

foreach $family (sort {

@{SHOA{$b}} <=> @{$SHoA{$a}}
I

$a cmp $b
} k eys %HOA)

print "$family: ", join(", ", sort @{ $HoA{Sfamily} }), "\n";

2013-11-04

PERLDSC(1)

perl v5.18.2

PERLDSC(1) PerProgrammers Reference Guide

ARRAYS OF HASHES
Declaration of anARRAY OF HASHES

@AoH = (

{
Lead => "fred",
Friend => "barney",

h

{
Lead => '"george",
Wife => ‘"jane",
Son => ‘"elroy",

h

{
Lead => "homer",
Wife => "marge",
Son => "bart",

}

)i
Generation of anARRAY OF HASHES
r eading from file
f ormat: LEAD=fred FRIEND=barney
while (<>) {
$rec = {};
for $field (split) {
($key, $value) = split /=/, $field;
$rec—>{$key} = $value;

}
push @AoH, $rec;

r eading from file
f ormat: LEAD=fred FRIEND=barney
no t emp
while (<>) {
push @AoH, { split /\s+=]/ };
}

calling a function that returns a key/value pair list, like

" lead","fred","daughter","pebbles"

while (%fields = getnextpairset()) {
push @AoH, { %fields };

}

| ikewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($) };
}

add key/value to an element
$AoH[O{pet} = "dino";
$AOH[2){pet} = "santa’s little helper";

Access and Printing of amlARRAY OF HASHES
one element
$AoH[O[{lead} = "fred";

another element
$AoH[1[{lead} =~ s/(\W)\u$1/;

perl v5.18.2 2013-11-04

PERLDSC(1)

247

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

print the whole thing with refs
for $href (@AoH) {
print "{";
for $role (keys %S$href) {
print "$role=$href->{$role} *;
}
print "An";
}

print the whole thing with indices
for $i (0 .. $#A0oH) {
print "$iis {";
for $role (keys %{ $AoH[$i] }) {
print "$role=$AoH[$i]{$role} *;
}

print "A\n";
}

print the whole thing one at a time
for $i (0 .. $#A0oH) {
for $role (keys %{ $AoH[$i] }) {
print "elt $i $role is SAoH[$il{$role}\n";
}

}

HASHES OF HASHES
Declaration of aHASH OF HASHES

%HoH = (
flintstones => {
lead = "fred",
pal => "barney",
2
jetsons => {
lead => ‘"george",
wife => 'jane",
"his boy" => "elroy",
2
simpsons = {
lead => "homer",
wife => "marge",
kid => "bart",
2
);

Generation of aHASH OF HASHES
r eading from file
f lintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {
next unless s/"(.*?):\s*//;
$who = $1;
for $field (split) {
($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

r eading from file; more temps
while (<>) {
next unless s/"(.*?):\s*//;

248 2013-11-04 perl v5.18.2

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

$who = $1;

$rec = {};

$HoH{$who} = $rec;

for $field (split) {
($key, $value) = split /=/, $field;
$rec—>{$key} = $value;

}

calling a function that returns a key,value hash

for $group ("simpsons”, "jetsons", "flintstones") {
$HoH{$group} = { get_family($group) };
}

| ikewise, but using temps

for $group ("simpsons”, "jetsons", "flintstones") {
%members = get_family($group);
$HoH{$group} = { Yomembers };

}

append new members to an existing family
%new_folks = (

wife => "wilma",

pet => "dino",

);

for $what (keys %new_folks) {
$HoH({flintstones{$what} = $new_folks{$what};
}

Access and Printing of aHASH OF HASHES
one element
$HoH({flintstones}H{wife} = "wilma";

another element
$HoH{simpsons}Klead} =" s/(\w)\u$1/;

print the whole thing
foreach $family (keys %HoH) {
print "$family: {";
for $role (keys %{ $HoH{$family} }) {
print "$role=$HoH{$familyH$role} ";
}

print "A\n";
}

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {
print "$family: {";
for $role (sort keys %{ $HoH{Sfamily} }) {
print "$role=$HoH{$familyH$role} ";
}

print "A\n";

print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH) {
print "$family: {";

perl v5.18.2 2013-11-04 249

PERLDSC(1)

PerProgrammers Reference Guide

for $role (sort keys %{ $HoH{Sfamily} }) {
print "$role=$HoH{$familyH$role} ";

}
print "A\n";
}

establish a sort order (rank) for each role

$i=0;

for (qw(lead wife son daughter pal pet)) { $rank{$ } = ++$i }

now print the whole thing sorted by number of members

foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys %HoH) {

print "$family: {";

and print these according to rank order

for $role (sort { $rank{$a} <=> $rank{$b}} keys %{ $HoH{$family}}) {

print "$role=$HoH{$familyH$role} ";

}
print "A\n";
}
MORE ELABORATE RECORDS

Declaration of MORE ELABORATE RECORDS
Heres a sample showing hwe to create and use a record whose fields are ofyrdiffierent sorts:

$rec ={

TEXT => $string,
SEQUENCE =>[@old_values],
LOOKUP => { %some_table },
THATCODE =>\&some_function,
THISCODE => sub{$ [0]*$ [1]},
HANDLE => *STDOUT,

3

print $rec—>{TEXT};

print $rec—>{SEQUENCE}[0];
$last = pop @ { $rec—>{SEQUENCE} };

print $rec—>{LOOKUPK"key"}
($first_k, $first_v) = each %{ $rec—>{LOOKUP} };

$answer = $rec->{THATCODE}->($arg);
$answer = $rec—>{THISCODE}->($arg1, $arg2);

careful of extra block braces on fh ref
print { $rec—>{HANDLE} } "a string\n";

use FileHandle;

$rec—>{HANDLE}->autoflush(1);
$rec—>{HANDLE}->print(" a string\n");

Declaration of aHASH OF COMPLEX RECORDS

250

2013-11-04

PERLDSC(1)

perl v5.18.2

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

%TV = (
flintstones =>{
series => "flintstones",
nights => [g w(monday thursday friday)],
members => |

{ n ame =>"fred", role =>"lead", age => 36, },
{ name =>"wilma", role => "wife", age =>31,},
{ n ame => "pebbles", role => "kid", age => 4, H
1,
2
jetsons => {
series => "jetsons",
nights => [g w(wednesday saturday)],
members => |
{ name =>"george", role=>"lead", age =>41,},
{ name =>"jane", role => "wife", age =>39,},
{ n ame =>"elroy", role => "kid", age => 9, H
1,
2
simpsons = {
series => "simpsons",
nights => [g w(monday)],
members => |
{ name =>"homer", role => "lead", age => 34, },
{ name =>"marge", role => "wife", age => 37, },
{ name =>"bart", role =>"kid", age => 11, H
1,
2

);
Generation of aHASH OF COMPLEX RECORDS
r eading from file
t his is most easily done by having the file itself be
in t he raw data format as shown above. perl is happy
to p arse complex data structures if declared as data, so
sometimes it's easiest to do that

here's a piece by piece build up
$rec = {};

$rec—>{series} = "flintstones";
$rec—>{nights} = [find_days()];

@members = ();
assume this file in field=value syntax
while (<>) {
%fields = split /[\s=]+/;
push @members, { %fields };
}

$rec—>{members} = [@members];

now remember the whole thing
$TV{ $rec—>{series} } = $rec;

HHEHH R R R R T T T R R R
now, you might want to make interesting extra fields that

i nclude pointers back into the same data structure so if

change one piece, it changes everywhere, like for example

perl v5.18.2 2013-11-04 251

PERLDSC(1) PerProgrammers Reference Guide PERLDSC(1)

if y ou wanted a {kids} field that was a reference
to an a rray of the kids' records without having duplicate
r ecords and thus update problems.
HHHH R R
foreach $family (keys %TV) {
$rec = $TV{$family}; # temp pointer
@kids = ();
for $person (@{ $rec—>{members}}) {
if ($person—>{role} =" /kid|son|daughter/) {
push @kids, $person;
}
}
REMEMBER: $rec and $TV{$family} point to same data!!
$rec—>{kids} = [@kids];
}

you copied the array, but the array itself contains pointers
to u ncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0[{age}++;

t hen this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsonsHkids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {
print "the $family";
print " is on during @{ $TV{$family}{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family{members}}) {
print " $who—>{name} ($who->{role}), age $who->{age}\n";
}

print “it turns out that $TV{$family}{lead} has ";
print scalar (@{ $TV{$family}{kids} }), " kids named ";
print join (", ", map { $_—>{name} } @{ $TV{$family}{kids} });
print "\n";
}
Database Ties
You cannot easily tie a multilel data structure (such as a hash of hashes) to a dbm file. The first problem
is that all lut GDBM and Berleley DB have sze limitations, but beyond that, you alsovégroblems with
how references are to be represented on disk. One experimental module that does partially attempt to
address this need is théDBM module. Checkyour nearestCPAN site as described in perlmodlib for
source code tvILDBM.

SEE ALSO
perlref, perllol, perldata, perlobj

AUTHOR
Tom Christiansen tchrist@perl.corm

252 2013-11-04 perl v5.18.2

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

NAME
perlrequick — Perl regular expressions quick start

DESCRIPTION
This page ceers the very basics of understanding, creating and using regular expressEga®y’) in
Perl.

The Guide

Simple word matching
The simplest rgex is smply a word, or more generallya dring of charactersA regex ansisting of a wrd
matches anstring that contains that word:

"Hello World" =~ /World/; # matches

In this statemeniVorld is a rggex and the// enclosingWorld/ tells Perl to search a string for a match.
The operators™ associates the string with thegeg match and produces a true value if thgekematched,

or false if the rgex did not match.In our caseWorld matches the second word"idello World" , 0
the expression is true. This idea hagesa variations.

Expressions lig this are useful in conditionals:
print "It matches\n" if "Hello World" =~ /World/;
The sense of the match can beersed by usindg™ operator:
print "It doesn't match\n" if "Hello World" I" /World/;
The literal string in the regecan be replaced by a variable:

$greeting = "World";
print "It matches\n" if "Hello World" =" /$greeting/;

If you're matching against_, the$_ =~ part can be omitted:

$_="Hello World";
print "It matches\n" if /World/;

Finally, the// default delimiters for a match can be changed to arbitrary delimiters by putting aout
front:

"Hello World" =~ m!World!; # matches, delimited by '
"Hello World" =~ m{World}; # matches, note the matching '{}'
"fusr/bin/perl" =~ m"/perl"; # matches after '/usr/bin’,

' I' becomes an ordinary char

o o

Regees must match a part of the striegactly in order for the statement to be true:

"Hello World" =" /world/; # doesn't match, case sensitive
"Hello World" =" /o WV, # matches, ''is an ordinary char
"Hello World" =~ /World /; # doesn't match, no ' ' at end

Perl will always match at the earliest possible point in the string:

"Hello World" =" /o/; # matches 'o' in 'Hello'
"That hat is red" =~ /hat/; # matches 'hat' in 'That'

Not all characters can be used 'as is’ in a mafbme characters, callegetacharacters are reserved for
use in rege notation. Themetacharacters are

{00782

A metacharacter can be matched by putting a backslash before it:

"2+2=4" =" [2+2]; # doesn't match, + is a metacharacter
"2+2=4" =" [2\+2/, # matches, \+ is treated like an ordinary +
'C:\WIN32' =" /C:\\WINY/; # matches
"fusr/bin/per!" =~ Musr\/binVperl/; # matches

In the last regex, the forward sldéh is also backslashed, because it is used to delimit the regex.

Non-printableASCII characters are representeddsgape sequence€Common examples ake for a tab,
\n for a newline, andr for a carriage return. Arbitrary bytes are represented by octal escape sequences,
e.9.,\033 , or hexadecimal escape sequences, &GB :

perl v5.18.2 2014-01-06 253

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

"1000\t2000" =~ m(0\t2) # matches

"cat" = N143\x61\x74/ # matches in ASCII, but a weird way to spell cat
Regees ae treated mostly as double-quoted strings, so variable substitution works:

$foo = 'house’;
‘cathouse' =" /cat$foo/; # matches
'housecat' =" /${foo}cat/; # matches

With all of the rgexes above, if the rggex matched anywhere in the string, it was considered a mdizh.
specify whereit should match, we would use th@chor metacharacters and$. The anchof means
match at the beginning of the string and the anghoreans match at the end of the string, or before a
newline at the end of the string. Some examples:

"housekeeper" =" /keeper/; # matches
"housekeeper" =" I"keeper/; # doesn't match
"housekeeper" =" /keeper$/; # matches
"housekeeper\n" =~ /keeper$/; # matches
"housekeeper" =~ "housekeeper$/; # matches

Using character classes
A character classallows a set of possible characters, rather than just a single chataat&tch at a
particular point in a iIgex. Characteclasses are denoted by brats{...] , with the set of characters to
be possibly matched inside. Here are some examples:

[catl, # matches 'cat'

/[ber]at/; # matches 'bat', ‘cat’, or 'rat'

"abc" =" /[cab]/; # matches 'a’
In the last statementyen though'c’ is the first character in the class, the earliest point at whichdbg re
can match i&'

/[lyY][eE][sS]/; # match 'yes' in a case-insensitive way

' yes', 'Yes', 'YES/ etc.

lyesli; # also match 'yes' in a case—insensitive way

The last example shows a match withian modifier, which makes the match case-insewsiti

Character classes alsoveaxrdinary and special characters, but the sets of ordinary and special characters
inside a character class are different than those outside a character class. The special characters for a
character class ard\"$ and are matched using an escape:

/\c]ldef/; # matches ']def' or ‘cdef’

$x = 'ber’;
/[$x]at/; # matches 'bat, 'cat’, or 'rat'
N\$x]at/; # matches '$at' or 'xat'

/\$x]at/; # matches "\at', 'bat, 'cat', or 'rat'

The special charactér' acts as a range operator within character classes, so that the unwieldy
[0123456789] and[abc...xyz] become the svelf®-9] and[a-z]

fitem[0-9)/; # matches 'item0' or ... or 'item9'
/[0-9a—fA-F]/; # matches a hexadecimal digit
If '=' s the first or last character in a character class, it is treated as an ordinary character.

The special charactérin the first position of a character class denotasgated character classwhich
matches ancharacter but those in the bratk Both|...] and["...] must match a character the
match &ils. Then

["alat/; # doesn't match 'aat' or 'at', but matches
all other 'bat’, ‘cat, 'Oat', '%at’, etc.

0-9)/; # matches a non—numeric character

/[aat/; # matches 'aat’ or "at'; here " is ordinary

Perl has seral abbreviations for common character classes. (These definitions are those that Perl uses in
ASCIl-safe mode with théa modifier Otherwise thg could match may more non-ASCIlI Unicode
characters as well. See “Backslash sequehicegerlrecharclass for details.)

254 2014-01-06 perl v5.18.2

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

» \dis adigit and represents

[0-9]

* \sis a whitespace character and represents
[\ \\rAn\f]

 \wis aword character (alphanumeric or) and represents
[0-9a-zA-Z]

 \Dis a ngdaed \d; it represents qrtharacter but a digit
[0-9]

 \Sis angaed\s; it represents ymon-whitespace character
M\s]

 \Wis a ngaed \w; it represents gmon-word character
(W]

e The period .matches aycharacter but “\n”
The \d\s\W\D\S\W abbreviations can be used both inside and outside of character classes. Here are

some in use:
Nd\d:\d\d:\d\d/; # matches a hh:mm:ss time format
/N\d\s)/; # matches any digit or whitespace character
AWAWAWY; # matches a word char, followed by a
non-word char, followed by a word char
[.rtl; # matches any two chars, followed by 'rt'
/end\./; # matches 'end.’
lend[.J/; # same thing, matches 'end.’
The word anchor \b matches a boundary between a word character and a non-word chavatteor
\WAw :
$x = "Housecat catenates house and cat";
$x =" Nbcat/; # matches cat in ‘catenates'
$x =" /cat\b/; # matches cat in 'housecat'
$x =" N\bcat\b/; # matches 'cat' at end of string

In the last example, the end of the string is considered a word boundary.

Matching this or that
We @an match different character strings with #iernation metacharactef’ . To matchdog or cat ,
we form the rgexdog|cat . As kefore, Perl will try to match the gex at the earliest possible point in
the string. At each character position, Perl will first try to match the first altegnddig. If dog doesn’t
match, Perl will then try the next alternaticat . If cat doesnt match eitherthen the match fails and
Perl mares to the next position in the string. Some examples:

"cats and dogs" =" /cat|dog|bird/; # matches "cat"

"cats and dogs" =" /dog|cat|bird/; # matches "cat"
Even thougtdog is the first alternate in the second regegat is able to match earlier in the string.

"cats"
"cats"

/c|ca|cat|cats/; # matches "c"
[/cats|cat|ca]c/; # matches "cats"

At a given character position, the first alternagtithat allows the mgex match to succeed will be the one that
matches. Here, all the alterna®8 match at the first string position, so the first matches.

Grouping things and hierarchical matching
The grouping metacharacter§ allow a part of a rgex to be teated as a single uniPats of a rgex are
grouped by enclosing them in parentheses. Tigexrbouse(cat|keeper) means matcthouse
followed by eithercat or keeper . Some more examples are

perl v5.18.2 2014-01-06 255

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

/(a|b)b/; # matches 'ab’ or 'bb’

/Calb)c/; # matches 'ac' at start of string or 'bc' anywhere
/house(cat|)/; # matches either 'housecat' or 'house'
/house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or

' house'. Note groups can be nested.

"20" =7 /(19|20))\d\d/; # matches the null alternative '(O\d\d’,
because '20\d\d' can't match

Extracting matches

The grouping metacharactgj)s also allav the extraction of the parts of a string that matchéa. each
grouping, the part that matched inside goes into the spexiables$l, $2, eic. They can be used just as
ordinary variables:

extract hours, minutes, seconds

$time =" /(\d\d): (\d\d): (\d\d)/; # match hh:mm:ss format
$hours = $1;

$minutes = $2;

$seconds = $3;

In list context, a matchregex/ with groupings will return the list of matchedlues($1,%2,...)
So we could rewrite it as

($hours, $minutes, $second) = ($time =" /(\d\d):(\d\d): (\d\d)/);

If the groupings in a gex are nested$l gets the group with the leftmost opening parenth&gighe net
opening parenthesis, etEor example, here is a compleegex and the matching variables indicated lvelo
it:
/(ab(cd|ef)((gD)))/;
1 2 34

Associated with the matchingaiables$l, $2, ... are thebackreferences\gl , \g2 , ... Backreferences
are matching variables that can be ussttiea regex

I(ww\w)\s\g1/; # find sequences like 'the the' in string
$1, $2, ... should only be used outside of a regex,\gid, \g2 , ... only inside a regex.

Matching repetitions

256

The quantifier metacharacters, *, +, and{} allow us to determine the number of repeats of a portion of
a regex we aonsider to be a matchQuantifiers are put immediately after the charadtearacter class, or
grouping that we want to specifirhey havethe following meanings:

 a?=match’a 1 or0times

e a* =match 'a’ 0 or more times, i.e., mnumber of times
 at+=match’a 1 or more times, i.e., at least once

« a{n,m} =match at leash times, but not more thantimes.
« a{n,} =match at leash or more times

 a{n} =match exactlyn times

Here are some examples:

[[a—z]+\sH\d*/; # match a lowercase word, at least some space, and
any number of digits
/(Ww+)\s+\gl/; # match doubled words of arbitrary length
$year =" /"\d{2,4}%/; # make sure year is at least 2 but not more
t han 4 digits
$year =" N\d{4}$|"\d{2}$/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while stilirgjlthe rgex to match.
So we hge

2014-01-06 perl v5.18.2

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

$x = 'the cat in the hat;
$x =" I"(.*)(at)(.*)$/; # matches,

$1 = ' thecatintheh'
$2 ="' at
$3 = (0 matches)

The first quantifier* grabs as much of the string as possible while still having thex match. The
second quantifier has no string left to it, so it matches 0 times.

Mor e matching
There are a f@ more things you might &ant to knav about matching operators. The global modifigr
allows the matching operator to match within a string asyntanes as possible. In scalar coxte
successie matches against a string willve//g jump from match to match, keeping track of position in
the string as it goes alongyou can get or set the position with thes() function. For example,

$x = "cat dog house"; # 3 words
while ($x =7 /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";
}

prints

Word is cat, ends at position 3
Word is dog, ends at position 7
Word is house, ends at position 13

A failed match or changing the target string resets the position. If yotiwant the position reset after
failure to match, add théc , as n/regex/gc

In list context, //g returns a list of matched groupings, or if there are no groupings, a list of matches to the

whole reg&. So
@words = ($x =" /(\w+)/g); # matches,
$word[0] = 'cat’
$word[1] = 'dog'
$word[2] = 'house'

Search and replace

Search and replace is performed usifrggex/replacement/modifiers . Thereplacement is
a Ferl double-quoted string that replaces in the string wiate matched with theegex . The operator
=" is also used here to associate a string sfth . If matching aginst$_, the$ =" can be dropped.

If there is a matchs/// returns the number of substitutions made; otherwise it retatss. f Hereare a
few examples:

$x = "Time to feed the cat!";

$x =" s/cat/hacker/; # $x c ontains "Time to feed the hacker!"
$y = "quoted words";
By =" s/(*)'$/$1/; # strip single quotes,

$y c ontains "quoted words"
With thes/// operatoy the matched ariables$1, $2, etc. areimmediately &ailable for use in the

replacement expression. With the global modifség will search and replace all occurrences of the

rege in the string:
$x ="l batted 4 for 4";

$x =" s/4ffourl; # $x c ontains "l batted four for 4"
$x ="| batted 4 for 4";
$x =" s/4/four/g; # $x c ontains "l batted four for four"

The non-destructe nodifier s//ir causes the result of the substitution to be returned instead of

modifying$_ (or whateer variable the substitute was bound to with):

$x = "I like dogs.";
$y = $x =" s/dogs/cats/r;
print "$x $y\n"; # prints "I like dogs. | like cats."

$x = "Cats are great."”;

perl v5.18.2 2014-01-06 257

PERLREQJICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

print $x =~ s/Cats/Dogs/r =" s/Dogs/Frogs/r =~ s/Frogs/Hedgehogs/r, "\n";
prints "Hedgehogs are great."

@foo =map { s/[a—z]/X/Ir } gqw(a b c 1 2 3);
@oo0 is now qw(X X X 12 3)

The evduation modifiers//le wraps aneval{...} around the replacement string and thdwated
result is substituted for the matched substring. Some examples:

r everse all the words in a string
$x = "the cat in the hat";
$x =" s/(\w+)/reverse $1/ge; # $x c ontains "eht tac ni eht tah"

convert percentage to decimal
$x = "A 39% hit rate";
$x =" s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows tt</ can use other delimiters, suchsdd ands{}{} , and even s{}//
If single quotes are used' , then the regeand replacement are treated as single-quoted strings.

The split operator

split /regex/, string splits string into a list of substrings and returns that list. Thgere
determines the character sequencedhratg is split with respect toFor example, to split a string into
words, use

$x = "Calvin and Hobbes";

@word = split \s+/, $x; # $word[0] = 'Calvin’
$word[1] = 'and'
$word[2] = 'Hobbes'

To extract a comma-delimited list of numbers, use

$x="1.618,2.718, 3.142";

@const = split /,\s*/, $x; # $const[0] ='1.618
$const[1] ='2.718'
$const[2] ='3.142'

If the empty rgex// is used, the string is split into individual characters. If tlggedas groupings, then
the list produced contains the matched substrings from the groupings as well:

$x = "/usr/bin";
@parts = split m!(/)!, $x; # $parts[0] ="
$parts[1] ="
$parts[2] = 'usr'
$parts[3] ="
$parts[4] = 'bin’
Since the first character 8k matched the regegplit prepended an empty initial element to the list.

BUGS
None.

SEE ALSO
This is just a quick start guidd=or a more in-depth tutorial on gexes, see perlretut and for the reference
page, see perlre.

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

Acknowledgments
The author would li to hank Mark-Jason Dominus, Tom Christiansen, llya Zaktene Brad Hughes,
and Mike Groux for all their helpful comments.

258 2014-01-06 perl v5.18.2

PERLSTYLE(1) PerProgrammers Reference Guide PERLSTYLE(1)

NAME
peristyle — Perl style guide

DESCRIPTION
Each programmer will, of course,\ahs or her own preferences ingaeds to formatting, but there are
some general guidelines that will neeyour programs easier to read, understand, and maintain.

The most important thing is to run your programs under-theflag at all times.You may turn it of

explicitly for particular portions of code via the warnings pragma or th& W variable if you must.
You should also akays run undeuse strict or knowv the reason whnot. Theuse sigtrap and
even use diagnostics pragmas may also pre wseful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing
curly bracket of a multi-lin8LOCK should line up with the égword that started the construdBeyond
that, he has other preferences that am¥rong:

e 4-column indent.

» Opening curly on same line asyword, if possible, otherwise line up.
» Space before the opening curly of a multi-IB1eOCK.

* One-lineBLOCK may be put on one line, including curlies.

* No space before the semicolon.

* Semicolon omitted in “shortone-lineBLOCK.

* Space around most operators.

e Space around a “compléxubscript (inside brackets).

» Blank lines between chunks that do different things.

* Uncuddled elses.

* No space between function name and its opening parenthesis.
* Space after each comma.

e Long lines broken after an operator (excapd andor).

» Space after last parenthesis matching on current line.

» Line up corresponding items vertically.

e Omit redundant punctuation as long as clarity ddesiffer.

Larry has his reasons for each of these thingshb doesr’claim that @eryone elses mind works the
same as his does.

Here are some other more substantiyle issues to think about:

e Just because yaDAN do something a particular way dodsmiean that yolsSHOULD do it that vay.
Perl is designed to ¢ you seeral ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo) || die "Can't open $foo: $!";
is better than
die "Can't open $foo: $!" unless open(FOO,$foo);
because the second way hides the main point of the statement in a mauiifiee other hand
print "Starting analysis\n" if $verbose;
is better than
$verbose && print "Starting analysis\n®;
because the main point ism/hether the user typee/ or not.

Similarly, just because an operator lets you assume default arguments dwmssnthat you he o
make wse of the defults. Thedefaults are there for lazy systems programmers writing one-shot
programs. lfyou want your program to be readable, consider supplying the argument.

perl v5.18.2 2013-11-04 259

PERLSTYLE(1) PerProgrammers Reference Guide PERLSTYLE(1)

260

Along the same lines, just because YIAN omit parentheses in mamplaces doesm’'mean that you
ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce ondidn% k
Vi.

Even if you arert' in doubt, consider the mental welfare of the person who has to maintain the code
after you, and who will probably put parentheses in the wrong place.

Don't go through silly contortions to exit a loop at the top or the bottom, when Perl providastthe
operator so you can exit in the middle. Just “outdétrd’ |ittle to male it more visible:

LINE:
for (3;) {
statements;
last LINE if $foo;
next LINE if /"#/,
statements;
}

Don't be draid to use loop labels-they're there to enhance readability as well as tonaltwltilevel
loop breaks. See the previous example.

Avoid usinggrep() (or map()) or ‘backticks’ in a void contd, that is, when you just throaway
their return alues. Thoséunctions all hae return values, so use them. Otherwise ufsgesach()
loop or thesystem() function instead.

For portability, when using features that may not be implementedreny enachine, test the construct
in an &a to see if it fails. If you knaw what version or patchiel a particular feature was
implemented, you can te$] ($PERL_VERSIONin English) to se if it will be there. The
Config module will also let you interrogate values determined byCinafigure program when Perl
was installed.

Choose mnemonic identifiers. If you carémember what mnemonic means, yeupt a problem.

While short identifiers lik $gotit are probably ok, use underscores to separate words in longer
identifiers. Itis generally easier to re&var_names_like_this than$VarNamesLikeThis
especially for non-nate gealers of English. I8 dso a simple rule that works consistently with
VAR_NAMES_LIKE_THIS

Package names are sometimes an exception to this rule. Perl informally reserves lowercase module
names for ‘pragma’ modules lile integer andstrict . Other modules should begin with a
capital letter and use mixed case, but probably without underscores due to limitations inepfimiti
systems’ representations of module names as files that must fit imisaafse bytes.

You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best asnadfdase. E.g$obj—>as_string()

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

If you have a eally hairy regular expression, use themodifier and put in some whitespace to mak
it look a little less lile line noise. Don't use slash as a delimiter when yougaee has slashes or
backslashes.

Use the ne and andor operators towid having to parenthesize list operators so much, and to
reduce the incidence of punctuation operators &8i& and|| . Call your subroutines as if thievere
functions or list operators towvaid excessie anpersands and parentheses.

Use here documents instead of repeptéatt() statements.

2013-11-04 perl v5.18.2

PERLSTYLE(1) PerProgrammers Reference Guide PERLSTYLE(1)

» Line up corresponding things verticalegpecially if itd be bo long to fit on one line anyway.
$IDX = $ST_MTIME;

$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!";
chdir($tmpdir) or die "can't chdir $tmpdir: $!";
mkdir 'tmp’, 0777 or die "can't mkdir $tmpdir/tmp: $!";

» Always check the return codes of system calls. Good error messages shoulTqRERR include
which program caused the problem, what tadefl system call and arguments were, aviiRY
IMPORTANT) should contain the standard system error message for what went wiergs a smple
but sufficient example:

opendir(D, $dir) or die "can't opendir $dir: $!";
e Line up your transliterations when it makes sense:
tr [abc]
[xyzl;

e Think about reusability Why waste brainpower on a one-shot when you miggnttvio do something
like it agan? Considegeneralizing your code. Consider writing a module or object classisider
making your code run cleanly witkse strict anduse warnings (or —w) in effect. Consider
giving awvay your code. Consider changing your whole worldwieConsider... oh, ngr mind.

* Try to document your code and use Pod formatting in a consistgntHere are commonlyxpected
corventions:

e useC<> for function, variable and module names (and more generajfihiag that can be
considered part of code, éikfilehandles or specificalues). Note that function names are
considered more readable with parentheses after their name fthrettisn()

e useB<>for commands names lilaat or grep.

e useF<> or C<>for file namesF<> should be the only Pod code for file names, but as most Pod
formatters render it as italic, Unix andinfows paths with their slashes and backslashes may be
less readable, and better rendered @it».

. Be consistent.
. Be nice.

perl v5.18.2 2013-11-04 261

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

NAME
perltrap — Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting tse warnings or use the-w switch; see perlbevarn and perlrun.
The second biggest trap is not making your entire program runnable uselestrict . The third

biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomedawk users should takgpecial note of the following:

» A Perl program recutes only once, not once for each input liveu can do an implicit loop with-n
or —p.

e The English module, loaded via
use English;

allows you to refer to special variables @di®/) with names (lile $RS), as though thewere inawk;
see perlvar for details.

» Semicolons are required after all simple statements in Perl (except at the end of aNdodkje is
not a statement delimiter.

» Curly brackets are required dns andwhile s.

» Variables begin with “$”, “@" or ‘%'’ in Perl.

* Arrays inde from 0. Likewise string positions isubstr()andindex()

* You haveto decide whether your array has numeric or string indices.

» Hash values do not spring into existence upon mere reference.

* You haveto decide whether you want to use string or numeric comparisons.

» Reading an input line does not split it for yotou get to split it to an array yourself. And tbplit()
operator has different arguments tlzavk's.

* The current input line is normally #_, not $0. It generally does not kva the newline stripped($0
is the name of the programeeuted.) Se@erlvar.

» $<digit> does not refer to fields-it refers to substrings matched by the last match pattern.

» Theprint() statement does not add field and record separators unless fouaset$\ . You can set
$OFSand$ORSIf you're using the English module.

* You must open your files before you print to them.
* The range operator is *., not comma. The comma operator works as in C.

(—~n

* The match operator is “=™", not

“r

» (""" is the ones complement operatpas in C)

wny Ny

 The exponentiation operator i%*' ', not is the XOR operator as in C (You know, one
could get the feeling thatwk is basically incompatible with C.)

» The concatenation operator is’'; not the null string. (Using the null string would rendpat/
/pat/ unparsable, because the third slastuld be interpreted as a division operatethe tolenizer
is in fact slightly context sensig for operators lig “/'’, **?”, and *>"". And in fact, *.” i tself can be
the beginning of a number.)

e« Thenext ,exit ,andcontinue keywords work differently.
* The following variables work differently:

262 2014-01-06 perl v5.18.2

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Awk Perl

ARGC scalar @ARGV (compare with $#ARGV)
ARGV[0] $0

FILENAME $ARGV

FNR $. - something

FS (whatever you like)
NF $#FId, or some such
NR $.

OFMT $#

OFS $,

ORS $\

RLENGTH length($&)

RS $/

RSTART length($")

SUBSEP $;

* You cannot se$RSto a pattern, only a string.
* When in doubt, run thawk construct througla2p and see what it gés you.

C/C+Traps
Cerebral C and-€programmers should takote of the following:

* Curly brackets are required dn’s andwhile 's.
* You must useelsif rather tharelse if

« Thebreak andcontinue keywords from C become in Pddst andnext , respectiely. Unlike
in C, these dmotwork within ado { } while construct. SeéLoop Control’ in perlsyn.

» The switch statement is callgiven/when and only aailable in perl 5.10 or neer. See ‘Switch
Statementsin perlsyn.

» Variables begin with “$”, “@" or ‘%'’ in Perl.

e Comments begin with'#’, not “/*'' or “/I'". Perl may interpret C/& comments as dision
operators, unterminated regular expressions or the defined-or operator.

* You cant take the address of anything, although a similar operator in Perl is the backslash, which
creates a reference.

* ARGMnust be capitalizedbARGVI[0] is C'sargv[l] ,andargv[0] ends up ir$0.

» System calls such d@mk(), unlink(), rename() etc. return nonzero for success, not ysfem()
however, returns zero for success.)

» Signal handlers deal with signal names, not humbése kill - to find their names on your
system.
Sed Traps

Seasonededprogrammers should takote of the following:

» A Perl program recutes only once, not once for each input liveu can do an implicit loop with-n
or —p.

» Backreferences in substitutions use’ t&ither than “\".
* The pattern matching metacharacters “(”, “)”, and’‘ffo not have backslashes in front.
» The range operator is , rather than comma.

Shell Traps
Sharp shell programmers shoulddakte of the following:

» The backtick operator does variable interpolation withogdrceto the presence of single quotes in the
command.

» The backtick operator does no translation of the return value, wslike

e Shells (especiallgsh) do sveal levels of substitution on each command lireerl does substitution
in only certain constructs such as double quotes, backticks, angle brackets, and search patterns.

perl v5.18.2 2014-01-06 263

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Shells interpret scripts a little bit at a time. Perl compiles the entire program bréotdirg it
(except foBEGIN blocks, which gecute at compile time).

The arguments arevalable via@ARG\Mot $1, $2, etc.
The environment is not automatically madeilable as separate scalar variables.

The shellstest uses ‘=", ‘“I1="", *'<’’ etc for string comparisons ant-eq”, ‘‘-ne”, ‘‘~It'’ etc for
numeric comparisons. This is theveese of Perl, which usesx, ne, It for string comparisons, and
==, =< etc for numeric comparisons.

Pel Traps
Practicing Perl Programmers shouldgakte of the following:

264

Remember that mgroperations behea dfferently in a list context than thelo in a €alar one.See
perldata for details.

Avoid barevords if you can, especially all lowercase on¥su can't tell by just looking at it whether
a haravord is a function or a stringBy using quotes on strings and parentheses on function calls, you
won't ever get them confused.

You cannot discern from mere inspection which builtins are unary operataitik() andchdir())
and which are list operators @ilprint() andunlink()). (Unlessprototyped, user-defined subroutines
canonly be list operators, ner unary ones.) See perlop and perlsub.

People hee a lard time remembering that some functions defaui tpor @ARG\br whatever, but
that others which you might expect to do not.

The <FH> construct is not the name of the filehandle, it is a readline operation on that h@hele.
data read is assigned$o only if the file read is the sole condition in a while loop:

while (<FH>) {1}
while (defined($_ = <FH>)) {}..
<FH>; # data discarded!

Remember not to usewhen you need™ ; these tw constructs are quite different:

$x = [fool;
$x =" [fool;
Thedo {} construct isrt'a real loop that you can use loop control on.
Usemy() for local variables whewer you can getway with it (but see perlform for where you

cant). Usinglocal() actually gves a bcal value to a global variable, which Vea you open to
unforeseen side-effects of dynamic scoping.

If you localize an exportedaviable in a module, its exported value will not change. The local name
becomes an alias to amm&alue but the external name is still an alias for the original.

As always, if ary of these areer officially declared as bugs, they'll be fixed and rgeao

2014-01-06 perl v5.18.2

PERLBOOK(1) PerProgrammers Reference Guide PERLBOOK(1)

NAME
perlbook — Books about and related to Perl

DESCRIPTION
There are manbooks on Perl and Perl-related. AM@f these are good, some ap&, but mary aren't
worth your mong. There is a list of these books, some witteasve reviews, at http://books.perl.org/ . &V
list some of the books here, and while listing a book implies our endorsemertt,ttdok’ that not
including a book means anything.

Most of these books areailable online through Safari Books Online (http://safaribooksonline.com/).

The most popular books
The major reference book on Perl, written by the creator of P&pggamming Perl

Programming Perl(the “Camel Book”):
by Tom Christiansen, brian d foy, Larry Wall with Jon Orwant
ISBN 978-0-596-00492-7 [4th edition February 2012]
ISBN 978-1-4493-9890-3 [ebook]
http://oreilly.com/catalog/9780596004927

The Ram is a cookbook with hundreds of examples of using Perl to accomplish specific tasks:

The Perl Cookbookhe “Ram Book”):
by Tom Christiansen and Nathan Torkington,
with Foreword by Larry Wall
ISBN 978-0-596-00313-5 [2nd Edition August 2003]
http://oreilly.com/catalog/9780596003135/

If you want to learn the basics of Perl, you might start with the Llama book, which assumes that you
already knwv a little about programming:

Learning Perl (the “Llama Book")
by Randal L. Schwartz, Tom Phoenix, and brian d foy
ISBN 978-1-4493-0358-7 [6th edition June 2011]
http://oreilly.com/catalog/0636920018452

The tutorial started in the Llama continues in the Alpaca, which introduces the intermediate features of
references, data structures, object-oriented programming, and modules:

Intermediate Per(the *Alpaca Book”)
by Randal L. Schwartz and brian d foy, with Tom Phoenix
foreword by Damian Conway
ISBN 978-1-4493-9309-0 [2nd edition August 2012]
http://oreilly.com/catalog/0636920012689/

References
You might want to keep these desktop references close by ggino&rd:

Perl 5 Pokket Reference
by Johan Vromans
ISBN 978-1-4493-0370-9 [5th edition July 2011]
ISBN 978-1-4493-0813-1 [ebook]
http://oreilly.com/catalog/0636920018476/

Perl Debugger Pocket Reference
by Richard Foley
ISBN 978-0-596-00503-0 [1st edition January 2004]
http://oreilly.com/catalog/9780596005030/

Regular Expression Pket Reference
by Tony Stubblebine
ISBN 978-0-596-51427-3 [July 2007]
http://oreilly.com/catalog/9780596514273/

Tutorials
Beginning Perl

perl v5.18.2 2013-11-04 265

PERLBOOK(1) PerProgrammers Reference Guide PERLBOOK(1)

by James Lee
ISBN 1-59059-391-X [3rd edition April 2010]
http://www.apress.com/9781430227939

Learning Perl
by Randal L. Schwartz, Tom Phoenix, and brian d foy
ISBN 978-0-596-52010-6 [5th edition June 2008]
http://oreilly.com/catalog/9780596520106

Intermediate Per(the *Alpaca Book”)
by Randal L. Schwartz and brian d foy, with Tom Phoenix
foreword by Damian Conway
ISBN 0-596-10206-2 [1st edition March 2006]
http://oreilly.com/catalog/9780596102067

Mastering Perl
by brian d foy
ISBN 978-0-596-10206-7 [1st edition July 2007]
http://www.oreilly.com/catalog/9780596527242

Effective Perl Pogramming
by Joseph N. Hall, Joshua A. McAdams, brian d foy
ISBN 0-321-49694-9 [2nd edition 2010]
http://www.effectiveperlprogramming.com/

Task-Oriented
Writing Perl Modules foCPAN
by Sam Tregar
ISBN 1-59059-018-X [1st edition August 2002]
http://www.apress.com/9781590590188

The Perl Cookbook
by Tom Christiansen and Nathan Torkington
with foreword by Larry Wall
ISBN 1-56592-243-3 [2nd edition August 2003]
http://oreilly.com/catalog/9780596003135

Automating System Administration with Perl
by David N. Blank—Edelman
ISBN 978-0-596-00639-6 [2nd edition May 2009]
http://oreilly.com/catalog/9780596006396

Real WorldsQL Server Administration with Perl
by Linchi Shea
ISBN 1-59059-097-X [1st edition July 2003]
http://www.apress.com/9781590590973

Special Topics
Regular Expressions Cookbook
by Jan Goyvaerts and Steven Levithan
ISBN 978-0-596-52069-4 [May 2009]
http://oreilly.com/catalog/9780596520694

Programming the PerbBI
by Tim Bunce and Alligator Descartes
ISBN 978-1-56592-699-8 [February 2000]
http://oreilly.com/catalog/9781565926998

Perl Best Practices
by Damian Conway
ISBN: 978-0-596-00173-5 [1st edition July 2005]
http://oreilly.com/catalog/9780596001735

Higher-Order Perl

266 2013-11-04 perl v5.18.2

PERLBOOK(1) PerProgrammers Reference Guide PERLBOOK(1)

by Mark-Jason Dominus
ISBN: 1-55860-701-3 [1st edition March 2005]
http://hop.perl.plover.com/

Mastering Regular Expressions
by Jeffrey E. F. Friedl
ISBN 978-0-596-52812-6 [3rd edition August 2006]
http://oreilly.com/catalog/9780596528126

Network Pogramming with Perl
by Lincoln Stein
ISBN 0-201-61571-1 [1st edition 2001]
http://www.pearsonhighered.com/educator/product/Network—Programming-with—Perl/9780201

Perl Template Toolkit
by Darren Chamberlain, Dave Cross, and Andy Wardley
ISBN 978-0-596-00476-7 [December 2003]
http://oreilly.com/catalog/9780596004767

Object Oriented Perl
by Damian Conway
with foreword by Randal L. Schwartz
ISBN 1-884777-79-1 [1st edition August 1999]
http://www.manning.com/conway/

Data Munging with Perl
by Dave Cross
ISBN 1-930110-00-6 [1st edition 2001]
http://www.manning.com/cross

Mastering Perl/Tk
by Steve Lidie and Nancy Walsh
ISBN 978-1-56592-716-2 [1st edition January 2002]
http://oreilly.com/catalog/9781565927162

Extending and Embedding Perl
by Tim Jenness and Simon Cozens
ISBN 1-930110-82-0 [1st edition August 2002]
http://www.manning.com/jenness

Pro Perl Debugging
by Richard Foley with Andy Lester
ISBN 1-59059-454-1 [1st edition July 2005]
http://www.apress.com/9781590594544

Free (as in beer) books
Some of these books areaable as free downloads.

Higher-Order Peri http://hop.perl.ploer.com/

Other interesting, non-Perl books
You might notice seeral familiar Perl concepts in this collection A€M columns from Jon Bentje The
similarity to the title of the major Perl book (which came later) is not completely accidental:

Programming Pearls
by Jon Bentley
ISBN 978-0-201-65788-3 [2 edition, October 1999]

More Programming Pearls
by Jon Bentley
ISBN 0-201-11889-0 [January 1988]

A note on freshness
Each version of Perl comes with the documentation tlaat eurrent at the time of release. This poses a
problem for content such as book lists. There are probably very nice books published after this list w
included in your Perl release, and you can check the latest released version at
http://perldoc.perl.org/perlbook.html .

perl v5.18.2 2013-11-04 267

PERLBOOK(1) PerProgrammers Reference Guide PERLBOOK(1)

Some of the books we listed appear almost ancient in internet scale, butematluded those books
because thestill describe the current way of doing things. Neérgthing in Perl changesvery day Many
of the bginner-level books, too, go wer basic features and techniques that are still valid tddageneral
though, we try to limit this list to books published in the pastyaars.

Get your book listed
If your Perl book isrt’listed and you think it should be, let us \no

268 2013-11-04 perl v5.18.2

