This time on Types...

Polymorphic A-calculus

(polymorphic A-binding). Let's us type:
A ((f true) :: (fnil))



A-bound variables in ML cannot be used
polymorphically within a function abstraction

E.g. Af((f true):: (fnil)) and Af(f f) are not typeable in the ML type
system.

Syntactically, because in rule

Nx:mEM:nm
FEAx(M):m —m

(fn)

the abstracted variable has to be assigned a trivial type scheme
(recall x : 79 stands for x : V{ } (71)).

Semantically, because V A (71) — 72 is not semantically equivalent
to an ML type when A # { }.
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Monomorphic types ...
Tu=a | bool | T— 7| Tlist
...and type schemes
o=7|Va(o)
Polymorphic types

m =« | bool | m—m | wlist | Va(n)

E.g. a — o is a type, Va(a — o) is a type scheme and a polymorphic
type (but not a monomorphic type), ¥V a (o)) — o' is a polymorphic type,
but not a type scheme.



|dentity, Generalisation and Specialisation

MEx:m if(x:m)erl

M« :
fad fv(l
Mo va(n e ® D)

[-M:Va(n)
=M n[n'/a]







Fact (see Wells (1994)):

For the modified ML type system with polymorphic types and
(var >) replaced by the axiom and rules on Slide 41, the type
checking and typeability problems (cf. Slide 9) are equivalent
and undecidable.




Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program
phrases and typings have to be inferred (ideally, entirely at
compile-time). (E.g. Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the
syntax. (E.g. Java.)

E.g. self application function of type Vo (o) = Va ()

(cf. Example 7)

Implicitly typed version: A f (f f)

Explicitly type version: A f : Vay (1) (Aag (F(az = a2)(f az)))



PLC syntax

« type variable
7 — 7 function type
Va(r) V-type

Types

Expressions

M = x variable
|  Ax:7(M) function abstraction
| MM function application
| Aa(M) type generalisation
| M~ type specialisation

(o and x range over fixed, countably infinite sets TyVar and Var
respectively.)



Functions on types

In PLC, | A (M) | is an anonymous notation for the function F
mapping each type 7 to the value of M[r/a] (of some particular

type).

denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on

types
(Na (M) T — M[1/a]

as well as the usual form of beta-reduction from A-calculus

(/\X : T(Ml)) M2 — Ml[Mg/X]



PLC typing judgement

takes the form where

> the typing environment I is a finite function from variables to

PLC types.
(We write ' = {x1 : 71,...,Xp : T} to indicate that I has
domain of definition dom(I') = {x1,...,xn} and maps each x;

to the PLC type 7; for i = 1..n.)
» M is a PLC expression

» 7 is a PLC type.



PLC type system

Nex:7 if(x:7)erl (var)

MNx:mkEM:m
FTEAx:mm(M):m =1

if x ¢ dom(T") (fn)

Fr=M:m—m Fr=My:n

FF M My (app)
r=M:r .

T AaM) va() o f ) (gen)

Fr=M:Va(n) (spec)

FEMmy:mmn/a
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Exercise (5 mins)

Consider the identity function id, which in the simply-typed
lambda calculus is written Ax.x.

Define id in the polymorphic lambda-calculus such that it has type:
id : Va(a — «)
Give its type derivation tree.
Hint: the polymorphic identity function has two layers of

abstraction: first type abstraction over the type variable «, then
over the value variable.
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Some syntax considerations

» Application is left associative

My My M3 = (My Ma) M3

» Function type arrows are right associative

T — T2 — T3 = T1—>(T2—>T3)

» Delimit binders with parentheses; alternatively dot with scope
as far to right as possible

Va.r = Va(r)

» Multiple binders

Va (VB (7)) = Va, 5(7)
Aa (A3 (7)) = Aev, 5 (T)



a-equivalence

Aa(A(x - a)x) = AB(A(x : B)x)
=N3(Aly : P)y)

Va(a — a) = V(B — 5)

Va(a — 8 — a) #VB(8 — 8 — B)
#Va(a — v — «)



An incorrect ‘proof’

(var)

X1, %ol x

fn
() xiiaFAxia(x) a—a

(wrong!)

xiiaFANa(Ax:a(x)): Va(la— a)
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Explicit types let us control the variables and choose a different
(non-conflicting) variable name for the type of x2



dominic
Explicit types let us control the variables and choose a different (non-conflicting) variable name for the type of x2


Decidability of the PLC typeability and type-checking
problems

Theorem.

For each PLC typing problem, ' = M : 7, there is at most one PLC
type 7 for which ' = M : 7 is provable. Moreover there is an
algorithm, typ, which when given any ' = M : 7 as input, returns
such a 7 if it exists and FAILs otherwise.

Corollary.

The PLC type checking problem is decidable: we can decide
whether or not ' = M : 7 is provable by checking whether
typ(TEM:?)=r.

(N.B. equality of PLC types up to alpha-conversion is decidable.)



PLC type-checking algorithm, |

Variables:

typ(M,x :7HEx:7) Lo,

Function abstractions:
typ(T=Ax:m (M) :7?)
let m=typ(F,x:mmEM:?)inm —n

def

Function applications:

typ(T - My My : 7) &

let 71 = typ(T'= My : 7) in

let 7o = typ(lF' = My : 7) in

case of 7T—=71 +— if 7 =m then 7’ else FAIL
| _ e FAIL



PLC type-checking algorithm, Il

Type generalisations:

typ(T - Aa (M) : 7)

let 7 =typ(TEFM:?)inVa(r)

Type specialisations:

typ(TEMmp 1 7) e

let 7=typ(T' M :7?)in
case 7 of Va(r) — m7i[mn/dq]
| s FAIL



Polymorphic booleans

bool & v o (a = (a0 —a))
def

True = Nav(Ax1 @ a, x2 1 a(x1))
def

False = Na(Ax1 : a,x2 @ a(x2))

if déf/\a()\b : bool,x1 1 i, xp v (barxy x2))
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