This time on Types...

Polymorphic A-calculus

(polymorphic A-binding). Let's us type:
A ((f true) :: (fnil))

A-bound variables in ML cannot be used
polymorphically within a function abstraction

E.g. Af((f true):: (fnil)) and Af(f f) are not typeable in the ML type
system.

Syntactically, because in rule

Nx:mEM:nm
FEAx(M):m —m

(fn)

the abstracted variable has to be assigned a trivial type scheme
(recall x : 79 stands for x : V{ } (71)).

Semantically, because V A (71) — 72 is not semantically equivalent
to an ML type when A # { }.

\var?) ()

/— 8
VT T L
@LZVQ('(TZF //% " T‘S @,ﬁ&)

M T
O VT, ¢% = ’Iﬁ:ﬁ; ="y
@ Vo T- il = ’r;-:r‘r; ‘
Tz e Pr'z_ ‘?T;

NN R
ca,tg,'m-.b, o [%?‘:5&

Monomorphic types ...
Tu=a | bool | T— 7| Tlist
...and type schemes
o=7|Va(o)
Polymorphic types

m =« | bool | m—m | wlist | Va(n)

E.g. a — o is a type, Va(a — o) is a type scheme and a polymorphic
type (but not a monomorphic type), ¥V a (o)) — o' is a polymorphic type,
but not a type scheme.

|dentity, Generalisation and Specialisation

MEx:m if(x:m)erl

M« :
fad fv(l
Mo va(n e ® D)

[-M:Va(n)
=M n[n'/a]

Fact (see Wells (1994)):

For the modified ML type system with polymorphic types and
(var >) replaced by the axiom and rules on Slide 41, the type
checking and typeability problems (cf. Slide 9) are equivalent
and undecidable.

Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program
phrases and typings have to be inferred (ideally, entirely at
compile-time). (E.g. Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the
syntax. (E.g. Java.)

E.g. self application function of type Vo (o) = Va ()

(cf. Example 7)

Implicitly typed version: A f (f f)

Explicitly type version: A f : Vay (1) (Aag (F(az = a2)(f az)))

PLC syntax

« type variable
7 — 7 function type
Va(r) V-type

Types

Expressions

M = x variable
| Ax:7(M) function abstraction
| MM function application
| Aa(M) type generalisation
| M~ type specialisation

(o and x range over fixed, countably infinite sets TyVar and Var
respectively.)

Functions on types

In PLC, | A (M) | is an anonymous notation for the function F
mapping each type 7 to the value of M[r/a] (of some particular

type).

denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on

types
(Na (M) T — M[1/a]

as well as the usual form of beta-reduction from A-calculus

(/\X : T(Ml)) M2 — Ml[Mg/X]

PLC typing judgement

takes the form where

> the typing environment I is a finite function from variables to

PLC types.
(We write ' = {x1 : 71,...,Xp : T} to indicate that I has
domain of definition dom(I') = {x1,...,xn} and maps each x;

to the PLC type 7; for i = 1..n.)
» M is a PLC expression

» 7 is a PLC type.

PLC type system

Nex:7 if(x:7)erl (var)

MNx:mkEM:m
FTEAx:mm(M):m =1

if x ¢ dom(T") (fn)

Fr=M:m—m Fr=My:n

FF M My (app)
r=M:r .

T AaM) va() o f) (gen)

Fr=M:Va(n) (spec)

FEMmy:mmn/a

Coonfa. (g g
O F ML
Mi%ﬂ
@ (N Yiek: -

Exercise (5 mins)

Consider the identity function id, which in the simply-typed
lambda calculus is written Ax.x.

Define id in the polymorphic lambda-calculus such that it has type:
id : Va(a — «)
Give its type derivation tree.
Hint: the polymorphic identity function has two layers of

abstraction: first type abstraction over the type variable «, then
over the value variable.

- xerCise. arMSWeRS -

CPOLQMUrFkt(_ ‘MB dfw\c,bmj

Some syntax considerations

» Application is left associative

My My M3 = (My Ma) M3

» Function type arrows are right associative

T — T2 — T3 = T1—>(T2—>T3)

» Delimit binders with parentheses; alternatively dot with scope
as far to right as possible

Va.r = Va(r)

» Multiple binders

Va (VB (7)) = Va, 5(7)
Aa (A3 (7)) = Aev, 5 (T)

a-equivalence

Aa(A(x - a)x) = AB(A(x : B)x)
=N3(Aly : P)y)

Va(a — a) = V(B — 5)

Va(a — 8 — a) #VB(8 — 8 — B)
#Va(a — v — «)

An incorrect ‘proof’

(var)

X1, %ol x

fn
() xiiaFAxia(x) a—a

(wrong!)

xiiaFANa(Ax:a(x)): Va(la— a)

(MI ok Aok b X, ef

(i}m oLy 5 PXIZ'.oﬂ’:o(’—?;’
(3{/\) X X /\Of (>\ g 4(1835
V’f(d—}of\

Explicit types let us control the variables and choose a different
(non-conflicting) variable name for the type of x2

dominic
Explicit types let us control the variables and choose a different (non-conflicting) variable name for the type of x2

Decidability of the PLC typeability and type-checking
problems

Theorem.

For each PLC typing problem, ' = M : 7, there is at most one PLC
type 7 for which ' = M : 7 is provable. Moreover there is an
algorithm, typ, which when given any ' = M : 7 as input, returns
such a 7 if it exists and FAILs otherwise.

Corollary.

The PLC type checking problem is decidable: we can decide
whether or not ' = M : 7 is provable by checking whether
typ(TEM:?)=r.

(N.B. equality of PLC types up to alpha-conversion is decidable.)

PLC type-checking algorithm, |

Variables:

typ(M,x :7HEx:7) Lo,

Function abstractions:
typ(T=Ax:m (M) :7?)
let m=typ(F,x:mmEM:?)inm —n

def

Function applications:

typ(T - My My : 7) &

let 71 = typ(T'= My : 7) in

let 7o = typ(lF' = My : 7) in

case of 7T—=71 +— if 7 =m then 7’ else FAIL
| _ e FAIL

PLC type-checking algorithm, Il

Type generalisations:

typ(T - Aa (M) : 7)

let 7 =typ(TEFM:?)inVa(r)

Type specialisations:

typ(TEMmp 1 7) e

let 7=typ(T' M :7?)in
case 7 of Va(r) — m7i[mn/dq]
| s FAIL

Polymorphic booleans

bool & v o (a = (a0 —a))
def

True = Nav(Ax1 @ a, x2 1 a(x1))
def

False = Na(Ax1 : a,x2 @ a(x2))

if déf/\a()\b : bool,x1 1 i, xp v (barxy x2))

	Introduction
	ML Polymorphism
	An ML type system
	Examples of type inference, by hand
	Principal type schemes
	A type inference algorithm

	Polymorphic Reference Types
	The problem
	Restoring type soundness

	Polymorphic Lambda Calculus
	From type schemes to polymorphic types
	The PLC type system
	PLC type inference
	Datatypes in PLC

	Further Topics
	Dependent types
	Curry-Howard correspondence

