
Types

8 lectures for CST Part II by Dominic Orchard

(previously Andrew Pitts)

�www.cl.cam.ac.uk/teaching/1415/Types/�

“One of the most helpful concepts in the whole of programming is the

notion of type, used to classify the kinds of object which are

manipulated. A significant proportion of programming mistakes are

detected by an implementation which does type-checking before it runs

any program. Types provide a taxonomy which helps people to think and

to communicate about programs.”

R. Milner, “Computing Tomorrow” (CUP, 1996), p264

dominic
picture from http://learnyouahaskell.com

The full title of this course is

Type Systems for Programming Languages

What are ‘type systems’ and what are they good for?

“A type system is a tractable syntactic method for

proving the absence of certain program behaviours by

classifying phrases according to the kinds of values they

compute”

B. Pierce, ‘Types and Programming Languages’ (MIT, 2002), p1

Type systems are one of the most important channels by which

developments in theoretical computer science get applied in

programming language design and software verification.

Uses of type systems

�
Detecting errors via type-checking, either statically (decidable

errors detected before programs are executed) or dynamically

(typing errors detected during program execution).

�
e.g.

- 42.0 / "foo";

! Toplevel input:
! 42.0 / "foo"
! ^^^^^
! Type clash: expression of type
! string
! cannot have type
! real

Uses of type systems

�
Detecting errors via type-checking, either statically (decidable

errors detected before programs are executed) or dynamically

(typing errors detected during program execution).

�
e.g.

>>> 42 / "foo"

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: ’int’ and ’str’

Uses of type systems

�
Detecting errors via type-checking, either statically (decidable

errors detected before programs are executed) or dynamically

(typing errors detected during program execution).

�
Abstraction and support for structuring large systems.

�
Documentation.

�
E�ciency.

�
Whole-language safety.

Safety

Informal definitions from the literature.

�
‘A safe language is one that protects its own high-level

abstractions [no matter what legal program we write in it]’.

�
‘A safe language is completely defined by its programmer’s

manual [rather than which compiler we are using]’.

�
‘A safe language may have trapped errors [one that can be

handled gracefully], but can’t have untrapped errors [ones

that cause unpredictable crashes]’.

Formal type systems

�
Constitute the precise, mathematical characterisation of

informal type systems (such as occur in the manuals of most

typed languages.)

�
Basis for type soundness theorems: ‘any well-typed program

cannot produce run-time errors (of some specified kind)’.

�
Can decouple specification of typing aspects of a language

from algorithmic concerns: the formal type system can define

typing independently of particular implementations of

type-checking algorithms.

Notations for the typing relation

‘foo has type bar’

ML-style (used in this course):

foo : bar

Haskell-style:

foo :: bar

C/Java-style:

bar foo

Typical type system ‘judgement’

� ` e : �

Typical type system ‘judgement’

is a relation between typing environments (�), program phrases (e)

and type expressions (⌧) that we write as

� ` e : ⌧

and read as: given the assignment of types to free identifiers of e

specified by type environment �, then e has type ⌧ .

E.g.

f : int list ! int, b : bool ` (if b then f nil else 3) : int

is a valid typing judgement about ML.

Type checking, typeability, and type inference

Suppose given a type system for a programming language with

judgements of the form � ` e : ⌧ .

�
Type-checking problem: given �, e, and ⌧ , is � ` e : ⌧
derivable in the type system?

�
Typeability problem: given � and e, is there any ⌧ for which

� ` e : ⌧ is derivable in the type system?

Second problem is usually harder than the first. Solving it usually

involves devising a type inference algorithm computing a ⌧ for each

� and e (or failing, if there is none).

A definition for type soundness, progress & preservation

Recall from CST Part IB Semantics:

�
Progress:

�s. (� ` e : ⌧) � (dom(�) � dom(s))

� value(e) � �e

0, s 0.�e, s� ! �e 0, s 0�

�
Preservation:

(� ` e : ⌧) � (�e, s� ! �e 0, s 0�) � � ` e

0
: ⌧

Course outline

� Introduction. The role of type systems in programming

languages. Formalizing type systems. [1 lecture]

� ML polymorphism. ML-style polymorphism. Principal type

schemes and type inference. [2 lectures]

� Polymorphic reference types. The pitfalls of combining ML

polymorphism with reference types. [1 lecture]

� Polymorphic lambda calculus. Syntax and reduction

semantics. Examples of datatypes definable in the

polymorphic lambda calculus. Applications. [2 lectures]

� Further topics. The Curry-Howard correspondence

(types-as-formulae, terms-as-proofs) as a source of type

systems. Dependent types. [2 lectures]

Mid-lecture exercise (4 minutes)

Recall the syntax of the �-calculus:

e ::= v | �v .e | e1 e2

(where v ranges over variables).

Define types and a typing relation � ` e : � for �-calculus

terms.

Simply-typed �-calculus (monmorphic)

(var)
� ` x : ⌧

(x : ⌧) 2 �

(abs)
�, x : ⌧ ` e : ⌧ 0

� ` �x .e : ⌧ ! ⌧ 0 x 62 dom(�)

(app)
� ` e : ⌧ ! ⌧ 0

� ` e

0
: ⌧

� ` e e

0
: ⌧ 0

recall: “,” extends typing context, i.e. dom(�, x : ⌧) = dom(�) [{x : ⌧}

(let)
� ` e : ⌧ �, x : ⌧ ` e

0
: ⌧ 0

� ` let x = e in e

0
: ⌧ 0

Syntactic sugar let x = e in e

0
= (�x .e 0

)e (but not in Mini-ML,

only in the monomorphic setting).

Polymorphism = ‘has many types’

�
Overloading (or ‘ad hoc’ polymorphism): same symbol

denotes operations with unrelated implementations. (E.g. +

might mean both integer addition and string concatenation.)

�
Subsumption ⌧1 <: ⌧2: any M1 : ⌧1 can be used as M1 : ⌧2

without violating safety.

�
Parametric polymorphism (‘generics’): same expression

belongs to a family of structurally related types. (E.g. in SML,

length function

fun length nil = 0
| length (x :: xs) = 1 + (length xs)

has type ⌧ list ! int for all types ⌧ .)

Type variables and type schemes in Mini-ML

To formalise statements like

‘ length has type ⌧ list ! int, for all types ⌧ ’

it is natural to introduce type variables � (i.e. variables for which

types may be substituted) and write

length : � � (� list ! int).

� � (� list ! int) is an example of a type scheme.

Polymorphism of let-bound variables in ML

For example in

let f = �x(x) in (f true) :: (f nil)

�x(x) has type ⌧ ! ⌧ for any type ⌧ , and the variable f to which

it is bound is used polymorphically:

- in (f true), f has type bool ! bool

- in (f nil), f has type bool list ! bool list

Overall, the expression has type bool list.

�
‘Parametric’ polymorphism:

if f : � � (� ! �),

then (f true) :: (f nil) : bool list.

Behaviour is uniform for di�erent type instantiations– does

not depend on the type.

�
‘Ad hoc’ polymorphism (overloading):

if f : bool ! bool

and f : bool list ! bool list,

then (f true) :: (f nil) : bool list.

Type-dependent behaviour.

Mini-ML types and type schemes

Types ⌧ ::= � type variable

| bool type of booleans

| ⌧ ! ⌧ function type

| ⌧ list list type

where � ranges over a fixed, countably infinite set TyVar.

Type Schemes � ::= � A (⌧)

where A ranges over finite subsets of the set TyVar.

When A = {�1, . . . , �n}, we write � A (⌧) as

� �1, . . . , �n (⌧).

Mini-ML typing judgement

takes the form � ` M : ⌧ where

�
the typing environment � is a finite function from variables to

type schemes.

(We write � = {x1 : �1, . . . , xn : �n} to indicate that � has

domain of definition dom(�) = {x1, . . . , xn} and maps each xi

to the type scheme �i for i = 1..n.)

�
M is a Mini-ML expression

� ⌧ is a Mini-ML type.

Mini-ML expressions, M

::= x variable

| true boolean values

| false

| if M then M else M conditional

| �x(M) function abstraction

| M M function application

| let x = M inM local declaration

| nil nil list

| M :: M list cons

| caseM of nil=> M | x :: x => M case expression

Mini-ML type system, I

� ` x : � if (x : �) 2 � and � � � (var �)

� ` B : bool if B 2 {true, false} (bool)

� ` M
1

: bool � ` M
2

: � � ` M
3

: �
� ` if M

1

then M
2

else M
3

: �
(if)

