CST Part II Types: Exercise Sheet

ML Polymorphism

Exercise 1. Here are some type checking problems, in the sense of Slide 8. Prove the following typings hold for the Mini-ML type system:

$$\vdash \lambda x(x::\texttt{nil}): \forall \alpha \ (\alpha \to \alpha \ list)$$

$$\vdash \lambda x(\texttt{case} \ x \ \texttt{ofnil} \Longrightarrow \texttt{true} \ \mid x_1:: x_2 \Longrightarrow \texttt{false}): \forall \alpha \ (\alpha \ list \to bool)$$

$$\vdash \lambda x_1(\lambda x_2(x_1)): \forall \alpha_1, \alpha_2 \ (\alpha_1 \to (\alpha_2 \to \alpha_1))$$

$$\vdash \texttt{let} \ f = \lambda x_1(\lambda x_2(x_1)) \ \texttt{in} \ f \ : \forall \alpha_1, \alpha_2, \alpha_3 \ (\alpha_1 \to (\alpha_2 \to (\alpha_3 \to \alpha_2))).$$

Exercise 2. Show that if $\{\} \vdash M : \sigma$ is provable, then M must be *closed*, i.e. have no free variables. [Hint: use rule induction for the rules on Slides 19–21 to show that the provable typing judgements, $\Gamma \vdash M : \tau$, all have the property that $fv(M) \subseteq dom(\Gamma)$.]

Exercise 3. Let σ and σ' be Mini-ML type schemes. Show that the relation $\sigma \succ \sigma'$ defined on Slide 29 holds if and only if

$$\forall \tau \, (\sigma' \succ \tau \; \Rightarrow \; \sigma \succ \tau).$$

[Hint: use the following property of simultaneous substitution:

$$(\tau[\tau_1/\alpha_1,\ldots,\tau_n/\alpha_n])[\vec{\tau}'/\vec{\alpha}'] = \tau[\tau_1[\vec{\tau}'/\vec{\alpha}']/\alpha_1,\ldots,\tau_n[\vec{\tau}'/\vec{\alpha}']/\alpha_n]$$

which holds provided the type variables $\vec{\alpha}'$ do not occur in τ .]

Exercise 4. Try to augment the definition of *pt* on Slide 32 and in Figure 3 with clauses for nil, cons, and case-expressions.

Exercise 5. Suppose M is a closed expression and that (S, σ) is a principal solution for the typing problem $\{ \} \vdash M : ?$ in the sense of Slide 29. Show that σ must be a principal type scheme for M in the sense of Slide 25.

Exercise 6. Show that if $\Gamma \vdash M : \sigma$ is provable and $S \in Sub$ is a type substitution, then $S \Gamma \vdash M : S \sigma$ is also provable.

Polymorphic Reference Types

Exercise 7. Letting *M* denote the expression on Slide 35 and $\{\}$ the empty state, show that $\langle M, \{\} \rangle \rightarrow^*$ *FAIL* is provable in the transition system defined in Figure 4.

Exercise 8. Give an example of a Mini-ML let-expression which is typeable in the type system of Section 2.1, but not in the type system of Section 3.2 for Midi-ML with the value-restricted rule (letv).

Polymorphic Lambda Calculus

Exercise 9. Give a proof inference tree for (8) in Example 7. Show that

$$\forall \alpha_1 (\alpha_1 \rightarrow \forall \alpha_2 (\alpha_2)) \rightarrow bool \ list$$

is another possible polymorphic type for $\lambda f((f \operatorname{true}) :: (f \operatorname{nil}))$.

Exercise 10. Show that if $\Gamma \vdash M : \tau$ and $\Gamma \vdash M : \tau'$ are both provable in the PLC type system, then $\tau = \tau'$ (equality up to α -conversion). [Hint: show that $H \stackrel{\text{def}}{=} \{(\Gamma, M, \tau) \mid \Gamma \vdash M : \tau \& \forall \tau' (\Gamma \vdash M : \tau' \Rightarrow \tau = \tau')\}$ is closed under the axioms and rules on Slide 47.]

Exercise 11. In PLC, defining the expression $let x = M_1 : \tau in M_2$ to be an abbreviation for $(\lambda x : \tau (M_2)) M_1$, show that the typing rule

$$\frac{\Gamma \vdash M_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash M_2 : \tau_2}{\Gamma \vdash (\operatorname{let} x = M_1 : \tau_1 \operatorname{in} M_2) : \tau_2} \quad \text{if } x \notin dom(\Gamma)$$

is admissible—in the sense that the conclusion is provable if the hypotheses are.

Exercise 12. The *erasure*, erase(M), of a PLC expression M is the expression of the untyped lambda calculus obtained by deleting all type information from M:

$$erase(x) \stackrel{\text{def}}{=} x$$

$$erase(\lambda x : \tau (M)) \stackrel{\text{def}}{=} \lambda x (erase(M))$$

$$erase(M_1 M_2) \stackrel{\text{def}}{=} erase(M_1) erase(M_2)$$

$$erase(\Lambda \alpha (M)) \stackrel{\text{def}}{=} erase(M)$$

$$erase(M \tau) \stackrel{\text{def}}{=} erase(M).$$

- (i) Find PLC expressions M_1 and M_2 satisfying $erase(M_1) = \lambda x(x) = erase(M_2)$ such that $\vdash M_1$: $\forall \alpha (\alpha \rightarrow \alpha)$ and $\vdash M_2 : \forall \alpha_1 (\alpha_1 \rightarrow \forall \alpha_2 (\alpha_1))$ are provable PLC typings.
- (ii) We saw in Example 13 that there is a closed PLC expression M of type $\forall \alpha (\alpha) \rightarrow \forall \alpha (\alpha)$ satisfying $erase(M) = \lambda f(f f)$. Find some other closed, typeable PLC expressions with this property.
- (iii) [For this part you will need to recall, from the CST Part IB Foundations of Functional Programming course, some properties of beta reduction of expressions in the untyped lambda calculus.] A theorem of Girard says that if $\vdash M : \tau$ is provable in the PLC type system, then erase(M) is strongly normalisable in the untyped lambda calculus, i.e. there are no infinite chains of beta-reductions starting from erase(M). Assuming this result, exhibit an expression of the untyped lambda calculus which is not equal to erase(M) for any closed, typeable PLC expression M.

Exercise 13. Prove the various typings and beta-reductions asserted in Example 18.

Exercise 14. Prove the various typings asserted in Example 19 and the beta-conversions on Slide 58.

Exercise 15. For the polymorphic product type $\alpha_1 * \alpha_2$ defined in the right-hand column of Figure 5, show that there are PLC expressions *Pair*, *fst*, and *snd* satisfying:

$$\{ \} \vdash Pair : \forall \alpha_1, \alpha_2 (\alpha_1 \to \alpha_2 \to (\alpha_1 * \alpha_2)) \\ \{ \} \vdash fst : \forall \alpha_1, \alpha_2 ((\alpha_1 * \alpha_2) \to \alpha_1) \\ \{ \} \vdash snd : \forall \alpha_1, \alpha_2 ((\alpha_1 * \alpha_2) \to \alpha_2) \\ fst \alpha_1 \alpha_2 (Pair \alpha_1 \alpha_2 x_1 x_2) =_{\beta} x_1 \\ snd \alpha_1 \alpha_2 (Pair \alpha_1 \alpha_2 x_1 x_2) =_{\beta} x_2.$$

Exercise 16. [hard] Suppose that τ is a PLC type with a single free type variable, α . Suppose also that T is a closed PLC expression satisfying

$$\{\} \vdash T : \forall \alpha_1, \alpha_2 ((\alpha_1 \to \alpha_2) \to (\tau[\alpha_1/\alpha] \to \tau[\alpha_2/\alpha])).$$

Define ι to be the closed PLC type

$$\iota \stackrel{\text{def}}{=} \forall \, \alpha \, ((\tau \to \alpha) \to \alpha).$$

Show how to define PLC expressions R and I satisfying

$$\{ \} \vdash R : \forall \alpha ((\tau \to \alpha) \to \iota \to \alpha) \\ \{ \} \vdash I : \tau[\iota/\alpha] \to \iota \\ (R \alpha f)(I x) \to^* f (T \iota \alpha (R \alpha f) x) \}$$