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Petri nets

Introduced in 1962 (though claimed to have been invented be 1939)

Starting point: think of a transition system where a number of
processes can be in a given state and then allow coordination

Conditions: local components of state

Events: transitions and coordination

Allows study of concurrency of events, reasoning about causal
dependency and how the action of one process might conflict with
that of another

The first of a range of models: event structures, Mazurkiewicz trace
languages, asynchronous transition systems, . . .

Many variants with different algorithmic properties and expressivity



∞-multisets

Multisets generalise sets by allow elements to occur some number of
times. ∞-multisets generalise further by allowing infinitely many
occurrences.

ω∞ = ω ∪ {∞}

Extend addition:
n +∞ =∞ for n ∈ ω∞

Extend subtraction

∞− n =∞ for n ∈ ω

Extend order:
n ≤ ∞ for n ∈ ω∞

An ∞-multiset over a set X is a function

f : X → ω∞

It is a multiset if f : X → ω.



Operations on ∞-multisets

f ≤ g iff ∀x ∈ X .f (x) ≤ g(x)

f + g is the ∞-multiset such that

∀x ∈ X . (f + g)(x) = f (x) + g(x)

For g a multiset such that f ≤ g ,

∀x ∈ X . (f − g)(x) = f (x)− g(x)



General Petri nets

A general Petri net consists of

a set of conditions P

a set of events T

a pre-condition map assigning to each event t a multiset of
conditions •t

3

5

a post-condition map assigning to each event t an ∞-multiset of
conditions t•

2

∞

a capacity map Cap an ∞-multiset of conditions, assigning a
capacity in ω∞ to each condition



Dynamics

A marking is an ∞-multiset M such that

M≤ Cap

giving how many tokens are in each condition.
∞

The token game:

For M,M′ markings, t an event:

M t−→M′ iff •t ≤M & M′ =M− •t + t•

An event t has concession (is enabled) at M iff

•t ≤M & M− •t + t• ≤ Cap
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Further examples

Cap: 5
1

Cap: 5
2 1

2 2

Cap: 5
2 2



Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of

a set of conditions B

a set of events E

a pre-condition map assigning a subset of conditions •e to any event
e

a post-condition map assigning a subset of conditions e• to any
event e such that

•e ∪ e• 6= ∅

The capacity of any condition is implicitly taken to be 1:

∀b ∈ B : Cap(b) = 1

A marking M is now a subset of conditions.

M e−→M′ iff
•q ⊆M & (M\ •e) ∩ e• = ∅

& M′ = (M\ •e) ∪ e•



Concepts

Concurrency

Forwards conflict Backwards conflict

Contact



Persistent conditions

Between basic and general nets

conditions can be introduced that when they hold persist thereafter

Useful for modelling broadcast messages
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M e−→M′ iff
•e ⊆M & (e• ∩ (M\ (Persistent ∪ •e)) = ∅

& M′ = (M\ •e) ∪ e• ∪ (M∩ Persistent)
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SPL

Modelling cryptographic protocols
and event-based reasoning



Cryptographic protocols

Protocols that use crytosystems to achieve some security goal across
a distributed network

Difficult and important to get right

Security properties are subtle and hard to express

Must reason about processes in an adverse environment:

Asynchronous communication
Dolev-Yao attacker (idealised cryptographic primitives)

 a language to represent protocols

with a Petri net semantics

Analysis based on causal dependency: event-based reasoning



Public-key cryptography

Public key cryptography:

for each entity/participant/agent A, there is a key Pub(A) and a key
Priv(A).

Pub(A) is intended to be known by everybody: it is public

Priv(A) is intended to be known only by A: it is private

Any agent can encrypt using a key that it knows

To decrypt a message encrypted under Pub(A) it is necessary to
know Priv(A)

To decrypt a message encrypted under Priv(A) it is necessary to
know Pub(A)

Will also allow symmetric keys e.g. Key(A,B).



The Needham-Schröder-Lowe Protocol

The goal of the NSL protocol: two agents use public-key cryptography to
ensure

authentication: For A as the initiator: upon completion of the
protocol, A can demonstrate that B generated the messages that A
received following the protocol in response to A’s request

shared secret: if two entities complete the protocol with each
other, at the end they both know a value not known to any potential
attacker (e.g. to be used in more efficient symmetric-key
cryptographic operations)

Formally, the correctness properties are subtle (e.g. what if B chose to
release its private key?)



The protocol

(1) A −→ B: {m,A}Pub(B)

(2) B −→ A: {m, n,B}Pub(A)
(3) A −→ B: {n}Pub(B)

m and n are nonces: randomly-generated (very) long integers

Only B can decrypt the message sent in (1)

A knows that only B can have sent the message in (2)

B knows that only A can have sent the message in (1)

the nonces m and n are shared secrets

But these properties are informal and approximate, and we’ve only
described what’s supposed to happen . . .



The original protocol

Original protocol introduced by Needham and Schröder in 1978
contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)
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SPL

We take an infinite set of names

Names = {m, n, . . . ,A,B, . . .}

with name variables
x , y , . . . ,X ,Y

Messages shall be ranged over by message variables

ψ,ψ′, ψ1, . . .

Indices shall be used to identify components of parallel compositions

i ∈ Indices

Messages can contain free variables  messages as patterns on input



SPL syntax

Name expressions v :: = n | A | . . . | x | X

Key expressions K :: = Pub(v) | Priv(v) | Key(v , v ′)

Messages M :: = ψ | v | k | M1,M2 | {M}k

Processes

p :: = out new ~x M.p

| in pat~x ~ψM.p
| ‖i∈I pi



Conventions

out M.p where the list of new variables is empty

in M.p where the lists of name and message variables are precisely
the free name and message variables in M

nil is the empty parallel composition, which may be freely omitted

use infix notation for finite parallel composition: p1 ‖ p2 is ‖i∈{1,2} pi

replication of a process !p is ‖i∈ω p


