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Model checking modal-u

Assume processes are finite-state
@ Brute force (+ optimizations) computes each fixed point

o Local model checking [Larsen, Stirling and Walker, Winskel]
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Assume processes are finite-state
@ Brute force (+ optimizations) computes each fixed point
@ Local model checking [Larsen, Stirling and Walker, Winskel]
“Silly idea”

pevX.p(X) <= pep(vX. ©(X))



Model checking modal-u

Assume processes are finite-state
@ Brute force (+ optimizations) computes each fixed point

@ Local model checking [Larsen, Stirling and Walker, Winskel]
Reduction Lemma

peVX.p(X) = pep(uX.{p} v (X))



Modal-p for model checking

Extend the syntax with defined basic assertions and adapt the fixed point
operator:

A:=U|T|F|-A|ArB|AvB]|(a)A|(-)A|vX A

Semantics identifies assertions with subsets of states:

U is an arbitrary subset of states

T=8

F=92

—A=S\A

ArNB=AnB

AvB=AuB

(a)A={peS|3gp>qgnrqecA}

° (—)A:{peS|E|q,a.pi>q/\qu}

o vX{p1,...,pn} A=U{UcS|Uc AlU/X]}
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Modal-p for model checking

Extend the syntax with defined basic assertions and adapt the fixed point
operator:

As=U|T|F|-A|ArB|AvVB|(a)A|()A|vX{p1.....pn}.A

Semantics identifies assertions with subsets of states:

U is an arbitrary subset of states

T=8

F=92

—A=S\A

ArNB=AnB

AvB=AuB

(a)A={peS|3gp>qgnrqecA}

° (—)A:{p€S|EIq,a.pi>q/\qu}

o vX{p1,...,pn}A=U{UCS|Uc{ps,....,pa} VA[U/X]}

As before, uX.A = -vX.-A[-X/X] and now
vX.A=vX{}.A



The reduction lemma

Lemma
Let ¢ : P(S) — P(S) be monotonic. For all Uc S,

UcvX.p(X)
= UcpwX.(Uup(X)))

In particular,
pevX.po(X)

= pep(X.({p}up(X)))



Model checking algorithm

Given a transition system and a set of basic assertions {U, V,...}:

prU
prU
p-T
p+-F
p+-B
p-AAB
p-AvB
p+{(a)B

p vX{7}.B
pruvX{Ff}.B

true if peU
false if p¢ U
true

false

not(p+ B)

prA and p+ B

prA or prB

qgu-Bor ...org,-B
{gr,--.an} ={qlp>q}

true if pe {7}

prBlwX{p,7}.B/X] if p¢{r}

Can use any sensible reduction technique for not,or and and.



Examples

Define the pure CCS process

P %" 2 (a.nil + a.P)

Check

Pr+uvX.(a)X
and check

P+ puX.(a)X
Note:

wY.[-]Fv{(=)Y =Y. =([-]F v{-)-Y))



Well-founded induction

A binary relation < on a set A is well-founded iff there are no infinite
descending chains
e <@, << ap<ag

The principle of well-founded induction:
Let < be a well-founded relation on a set A. Let P be a property on A.
Then
Vae A P(a)
iff
Vae A ((Vb<a. P(b)) = P(a))



Correctness and termination of the algorithm

Write (p £ A) = true iff p is in the set of states determined by A.

Theorem

Let p € P be a finite-state process and A be a closed assertion. For any
truth value t € {true, false},

(prA) ="t <« (peA)=t



Proof sketch

For assertions A and A’, take

A’ is a proper subassertion of A
A<A << o A=zuvX{F}B &
Ip A =uvX{F,p}B & p¢r

Want, for all closed assertions A,
Q(A) <= VqgePVt(qrA) >"t <= (geA)=t

We show the following stronger property on open assertions by
well-founded induction:

Vclosed substitutions for free variables
QY (A) = Bi/X1,...,Bn/Xy:
Q(B)&...&Q(B,) = QA[B1/X1,.... BalXa])

The proof (presented in the lecture notes) centrally depends on the
reduction lemma.



Chapter 6  Petri nets

In interleaving models,

a.nil || B.nil ~ a.B.nil + B.c.nil

Petri nets:

Transitions Events

States Conditions

A wide range of applications:

@ Fairness: In the following, does a ever occur?
[ ]

a& | L =2

Partial order model checking

Security models and event-based reasoning
Hardware models

Biology



oco-multisets

w® =wu{co}

Extend addition:

n+ oo = 0o for ne w®
Extend subtraction
00— N =00 for new
Extend order:
n<oo for new®

An oo-multiset over a set X is a function

f:X—-w>

It is a multiset if f: X — w.



Operations on co-multisets

o F<giff Yxe X.f(x) < g(x)
@ f + g is the co-multiset such that

VxeX. (f+g)(x)="1(x)+g(x)
@ For g a multiset such that f < g,

VxeX. (f-g)(x)="f(x)-g(x)



General Petri nets

A general Petri net consists of

@ a set of conditions P Q
a set of events T D

°
@ a pre-condition map assigning to each event t a multiset of
conditions °t
O—2s
Q/S)
@ a post-condition map assigning to each event t an co-multiset of
conditions t*
D<©
*> 0
@ a capacity map Cap an co-multiset of conditions, assigning a

capacity in w® to each condition



Dynamics

A marking is an co-multiset M such that

M < Cap

giving how many tokens are in each condition. Q @

The token game:

For M, M’ markings, t an event:

MEM iff t<M & M =M-"t+t

An event t has concession (is enabled) at M iff

t<M & M-°t+t*<Cap









Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of
@ a set of conditions B
@ a set of events E

@ a pre-condition map assigning a subset of conditions ®e to any event
e

@ a post-condition map assigning a subset of conditions e°® to any
event e such that
‘eue+Q

The capacity of any condition is implicitly taken to be 1:
VbeB: Cap(b)=1
A marking M is now a subset of conditions.

‘g M & (M~*e)ne* =g

MEM o P e vt



Concurrency .

Forwards conflict Backwards conflict

Contact




