
Topics in Concurrency
Lecture 8

Jonathan Hayman

2 March 2015



Model checking modal-µ

Assume processes are finite-state

Brute force (+ optimizations) computes each fixed point

Local model checking [Larsen, Stirling and Walker, Winskel]

p ∈ νX .ϕ(X )⇐⇒ p ∈ ϕ(νX .

{p} ∨

ϕ(X ))



Model checking modal-µ

Assume processes are finite-state

Brute force (+ optimizations) computes each fixed point

Local model checking [Larsen, Stirling and Walker, Winskel]
“Silly idea”

p ∈ νX .ϕ(X )⇐⇒ p ∈ ϕ(νX .

{p} ∨

ϕ(X ))



Model checking modal-µ

Assume processes are finite-state

Brute force (+ optimizations) computes each fixed point

Local model checking [Larsen, Stirling and Walker, Winskel]
Reduction Lemma

p ∈ νX .ϕ(X )⇐⇒ p ∈ ϕ(νX .{p} ∨ ϕ(X ))



Modal-µ for model checking

Extend the syntax with defined basic assertions and adapt the fixed point
operator:

A ∶∶ = U ∣ T ∣ F ∣ ¬A ∣ A ∧B ∣ A ∨B ∣ ⟨a⟩A ∣ ⟨−⟩A ∣ νX

{p1, . . . ,pn}

.A

Semantics identifies assertions with subsets of states:

U is an arbitrary subset of states
T = S
F = ∅
¬A = S ∖A
A ∧B = A ∩B
A ∨B = A ∪B
⟨a⟩A = {p ∈ S ∣ ∃q.p

aÐ→ q ∧ q ∈ A}
⟨−⟩A = {p ∈ S ∣ ∃q, a.p

aÐ→ q ∧ q ∈ A}
νX{p1, . . . ,pn}.A = ⋃{U ⊆ S ∣ U ⊆

{p1, . . . ,pn} ∪

A[U/X ]}

As before, µX .A ≡ ¬νX .¬A[¬X /X ] and now

νX .A = νX{}.A



Modal-µ for model checking

Extend the syntax with defined basic assertions and adapt the fixed point
operator:

A ∶∶ = U ∣ T ∣ F ∣ ¬A ∣ A ∧B ∣ A ∨B ∣ ⟨a⟩A ∣ ⟨−⟩A ∣ νX{p1, . . . ,pn}.A

Semantics identifies assertions with subsets of states:

U is an arbitrary subset of states
T = S
F = ∅
¬A = S ∖A
A ∧B = A ∩B
A ∨B = A ∪B
⟨a⟩A = {p ∈ S ∣ ∃q.p

aÐ→ q ∧ q ∈ A}
⟨−⟩A = {p ∈ S ∣ ∃q, a.p

aÐ→ q ∧ q ∈ A}
νX{p1, . . . ,pn}.A = ⋃{U ⊆ S ∣ U ⊆ {p1, . . . ,pn} ∪A[U/X ]}

As before, µX .A ≡ ¬νX .¬A[¬X /X ] and now

νX .A = νX{}.A



Modal-µ for model checking

Extend the syntax with defined basic assertions and adapt the fixed point
operator:

A ∶∶ = U ∣ T ∣ F ∣ ¬A ∣ A ∧B ∣ A ∨B ∣ ⟨a⟩A ∣ ⟨−⟩A ∣ νX{p1, . . . ,pn}.A

Semantics identifies assertions with subsets of states:

U is an arbitrary subset of states
T = S
F = ∅
¬A = S ∖A
A ∧B = A ∩B
A ∨B = A ∪B
⟨a⟩A = {p ∈ S ∣ ∃q.p

aÐ→ q ∧ q ∈ A}
⟨−⟩A = {p ∈ S ∣ ∃q, a.p

aÐ→ q ∧ q ∈ A}
νX{p1, . . . ,pn}.A = ⋃{U ⊆ S ∣ U ⊆ {p1, . . . ,pn} ∪A[U/X ]}

As before, µX .A ≡ ¬νX .¬A[¬X /X ] and now

νX .A = νX{}.A



The reduction lemma

Lemma

Let ϕ ∶ P(S)→ P(S) be monotonic. For all U ⊆ S,

U ⊆ νX .ϕ(X )
⇐⇒ U ⊆ ϕ(νX .(U ∪ ϕ(X )))

In particular,
p ∈ νX .ϕ(X )

⇐⇒ p ∈ ϕ(νX .({p} ∪ ϕ(X ))).



Model checking algorithm

Given a transition system and a set of basic assertions {U,V , . . .}:

p ⊢ U Ð→ true if p ∈ U
p ⊢ U Ð→ false if p /∈ U
p ⊢ T Ð→ true
p ⊢ F Ð→ false
p ⊢ ¬B Ð→ not(p ⊢ B)
p ⊢ A ∧B Ð→ p ⊢ A and p ⊢ B
p ⊢ A ∨B Ð→ p ⊢ A or p ⊢ B
p ⊢ ⟨a⟩B Ð→ q1 ⊢ B or . . . or qn ⊢ B

{q1, . . . ,qn} = {q ∣ p
aÐ→ q}

p ⊢ νX{r⃗}.B Ð→ true if p ∈ {r⃗}
p ⊢ νX{r⃗}.B Ð→ p ⊢ B[νX{p, r⃗}.B/X ] if p /∈ {r⃗}

Can use any sensible reduction technique for not,or and and.



Examples

Define the pure CCS process

P
def= a.(a.nil + a.P)

Check
P ⊢ νX .⟨a⟩X

and check
P ⊢ µX .⟨a⟩X

Note:

µY .[−]F ∨ ⟨−⟩Y ≡ ¬νY .¬([−]F ∨ ⟨−⟩¬Y ))



Well-founded induction

A binary relation ≺ on a set A is well-founded iff there are no infinite
descending chains

⋯ ≺ an ≺ ⋯ ≺ a1 ≺ a0

The principle of well-founded induction:
Let ≺ be a well-founded relation on a set A. Let P be a property on A.
Then

∀a ∈ A. P(a)
iff

∀a ∈ A. ((∀b≺a. P(b)) Ô⇒ P(a))



Correctness and termination of the algorithm

Write (p ⊧ A) = true iff p is in the set of states determined by A.

Theorem
Let p ∈ P be a finite-state process and A be a closed assertion. For any
truth value t ∈ {true, false},

(p ⊢ A)Ð→∗ t ⇐⇒ (p ⊧ A) = t



Proof sketch

For assertions A and A′, take

A′ ≺ A ⇐⇒
A′ is a proper subassertion of A

or A ≡ νX{r⃗}B &
∃p A′ ≡ νX{r⃗ ,p}B & p /∈ r⃗

Want, for all closed assertions A,

Q(A) ⇐⇒ ∀q ∈ P.∀t.(q ⊢ A)Ð→∗ t ⇐⇒ (q ⊧ A) = t

We show the following stronger property on open assertions by
well-founded induction:

Q+(A) ⇐⇒
∀closed substitutions for free variables
B1/X 1, . . . ,Bn/X n ∶
Q(B1)& . . .&Q(Bn) Ô⇒ Q(A[B1/X 1, . . . ,Bn/X n])

The proof (presented in the lecture notes) centrally depends on the
reduction lemma.



Chapter 6 Petri nets

In interleaving models,

α.nil ∥ β.nil ∼ α.β.nil + β.α.nil

Petri nets:

Transitions Events

States Conditions

A wide range of applications:

Fairness: In the following, does α ever occur?

∥α τ

Partial order model checking

Security models and event-based reasoning

Hardware models

Biology



∞-multisets

ω∞ = ω ∪ {∞}
Extend addition:

n +∞ =∞ for n ∈ ω∞

Extend subtraction
∞− n =∞ for n ∈ ω

Extend order:
n ≤∞ for n ∈ ω∞

An ∞-multiset over a set X is a function

f ∶ X → ω∞

It is a multiset if f ∶ X → ω.



Operations on ∞-multisets

f ≤ g iff ∀x ∈ X .f (x) ≤ g(x)
f + g is the ∞-multiset such that

∀x ∈ X . (f + g)(x) = f (x) + g(x)

For g a multiset such that f ≤ g ,

∀x ∈ X . (f − g)(x) = f (x) − g(x)



General Petri nets

A general Petri net consists of

a set of conditions P

a set of events T

a pre-condition map assigning to each event t a multiset of
conditions ●t

3

5

a post-condition map assigning to each event t an ∞-multiset of
conditions t●

2

∞

a capacity map Cap an ∞-multiset of conditions, assigning a
capacity in ω∞ to each condition



Dynamics

A marking is an ∞-multiset M such that

M ≤ Cap

giving how many tokens are in each condition.
∞

The token game:

For M,M′ markings, t an event:

M tÐ→M′ iff ●t ≤M & M′ =M − ●t + t●

An event t has concession (is enabled) at M iff

●t ≤M & M − ●t + t● ≤ Cap



Cap: ∞

Cap: 1

Cap: 4

2

1

2

Cap: ∞

Cap: 1

Cap: 4

2

1

2



Further examples

Cap: 5
1

Cap: 5
2 1

2 2

Cap: 5
2 2



Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of

a set of conditions B

a set of events E

a pre-condition map assigning a subset of conditions ●e to any event
e

a post-condition map assigning a subset of conditions e● to any
event e such that

●e ∪ e● ≠ ∅
The capacity of any condition is implicitly taken to be 1:

∀b ∈ B ∶ Cap(b) = 1

A marking M is now a subset of conditions.

M eÐ→M′ iff
●q ⊆M & (M ∖ ●e) ∩ e● = ∅

& M′ = (M ∖ ●e) ∪ e●



Concepts

Concurrency

Forwards conflict Backwards conflict

Contact


