
Topics in Concurrency
Lecture 10

Jonathan Hayman

6 March 2015

Public-key cryptography

Public key cryptography:

for each entity/participant/agent A, there is a key Pub(A) and a key
Priv(A).

Pub(A) is intended to be known by everybody: it is public

Priv(A) is intended to be known only by A: it is private

Any agent can encrypt using a key that it knows

To decrypt a message encrypted under Pub(A) it is necessary to
know Priv(A)

To decrypt a message encrypted under Priv(A) it is necessary to
know Pub(A)

Will also allow symmetric keys e.g. Key(A,B).

The Needham-Schröder-Lowe Protocol

The goal of the NSL protocol: two agents use public-key cryptography to
ensure

authentication: For A as the initiator: upon completion of the
protocol, A can be be sure that B generated the messages that A
received following the protocol in response to A’s request

shared secret: if two entities complete the protocol with each
other, at the end they both know a value not known to any potential
attacker (e.g. to be used in more efficient symmetric-key
cryptographic operations)

Formally, the correctness properties are subtle (e.g. what if B chose to
release its private key?)

The original protocol

(1) A −→ B: {m,A}Pub(B)

(2) B −→ A: {m, n}Pub(A)
(3) A −→ B: {n}Pub(B)

m and n are nonces: fresh randomly-generated (very) long integers

Original protocol introduced by Needham and Schröder in 1978
contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP].

The original protocol

(1) A −→ B: {m,A}Pub(B)

(2) B −→ A: {m, n}Pub(A)
(3) A −→ B: {n}Pub(B)

m and n are nonces: fresh randomly-generated (very) long integers

Original protocol introduced by Needham and Schröder in 1978
contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP].

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E)

{m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E)

{n}Pub(B)

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)

The fixed protocol

(1) A −→ B: {m,A}Pub(B)

(2) B −→ A: {m, n,B}Pub(A)
(3) A −→ B: {n}Pub(B)

Only B can decrypt the message sent in (1)

A knows that only B can have sent the message in (2)

B knows that only A can have sent the message in (1)

the nonces m and n are shared secrets

But these properties are informal and approximate, and we’ve only
described what’s supposed to happen . . .

SPL

Security Protocol Language

One of a range of languages and models for analyzing
crypto-protocols

Others include Spi calculus, strand spaces

Supports reasoning based on events (vs transitions)

Asynchronous communication

Messages persist on network

New-name generation on output

Input pattern-matches messages on network

Syntax

We take an infinite set of names

Names = {m, n, . . . ,A,B, . . .}

m, n, . . . stand for for nonces, A,B agent identifiers

with name variables inside the language

x , y , . . . ,X ,Y

X ,Y tend to range over agent identifiers, x , y over nonces

The language also contains message variables

ψ,ψ′, ψ1, . . .

Indices shall be used to identify components of parallel compositions

i ∈ Indices

SPL syntax

Name expressions v :: = n | A | . . . | x | X

Key expressions K :: = Pub(v) | Priv(v) | Key(v , v ′)

Messages M :: = ψ | v | k | M1,M2 | {M}k

Processes

p :: = out new ~x M.p

| in pat ~x , ~ψ M.p
| ‖i∈I pi

out new ~x M.p generates a new vector of nonce values ~n, using them
for ~x to output M[~n/~x] before resuming as p[~n/~x]

input uses pattern matching. . .

Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ

ψ 7→ {A,B}Pub(A)

match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)

x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n

no match

Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ ψ 7→ {A,B}Pub(A)
match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)

x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n

no match

Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ ψ 7→ {A,B}Pub(A)
match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)
x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n

no match

Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ ψ 7→ {A,B}Pub(A)
match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)
x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n no match

Conventions

Messages with no free variables are closed.

The input in pat ~x , ~ψ M.p binds the variables ~x , ~ψ in M and p,
attempting to match the pattern M against any closed message that
has been output to the network

The output out new ~x M.p binds the variables ~x in M and p

A process with no unbound (free) variables is closed.

We write:

outM.p where the list of new variables is empty

in M.p where the lists of name and message variables are precisely
the free name and message variables in M

nil is the empty parallel composition, which may be freely omitted

use infix notation for finite parallel composition: p1 ‖ p2 is ‖i∈{1,2} pi
replication of a process !p is ‖i∈ω p

Names and variables

A closed process can contain names: nonce values n or real agent
identifiers A

Variables are not names

The set of all names in a process term is names(p) and in a message
is names(M)

Example:
names(out new x{n, x}Pub(A)) = {n,A}

The NSL protocol in SPL

The initiator initiator of the protocol is parameterized by the identity of
the initiator and their intended participant:

Init(A,B) ≡ out new x {x ,A}Pub(B).
in {x , y ,B}Pub(A).
out {y}Pub(B)

The responder:

Resp(B) ≡ in {x ,Z}Pub(B).
out new y {x , y ,B}Pub(Z).

in {y}Pub(B)

Dolev-Yao assumptions

We can program various forms of attacker process. Viewing messages as
persisting once output to the network, they output new messages built
from existing ones.

Spy1 ≡ in ψ1.in ψ2. out (ψ1, ψ2)

Spy2 ≡ in (ψ1, ψ2). outψ1. outψ2

Spy3 ≡ in X .in ψ. out {ψ}Pub(X)

Spy4 ≡ in Priv(X).in {ψ}Pub(X). outψ

Spy ≡ ‖i∈{1,2,3,4} Spyi

The NSL system

We reason about concurrent runs of the protocol in parallel with ω-copies
of the attacker.

Pspy ≡ !Spy

Pinit ≡
n

A,B∈Agents

!Init(A,B)

Presp ≡
n

A∈Agents

!Resp(A)

Messages from one run of the protocol can be used by the attacker
against another run of the protocol.

NSL ≡
n

i∈{resp,init,spy}

Pi

Operational semantics

A configuration is a tuple
〈p, s, t〉

p is a closed process term
s is a finite subset of names: the names already in use
t is a subset of closed messages: the messages that have been
output to the network

Proper configurations:
1 names(p) ⊆ s
2 A ∈ s for every agent identifier A
3

⋃
{names(M) | M ∈ t} ⊆ s

Transitions are labelled with actions

α :: = out new ~nM | in M | i : α

Operational semantics

Output: if ~n all distinct and not in s

〈out new ~x M.p, s, t〉 out new ~nM[~n/~x]−−−−−−−−−−→ 〈p[~n/~x], s ∪ {~n}, t ∪ {M[~n/~x]}〉

Input: if M[~n/~x][~N/~ψ] ∈ t

〈in pat ~x , ~ψ M.p, s, t〉 in M[~n/~x][~N/~ψ]−−−−−−−−−→ 〈p[~n/~x][~N/~ψ], s, t〉

Parallel:
〈pj , s, t〉

α−→ 〈p′j , s ′, t ′〉 j ∈ I

〈‖i∈I pi , s, t〉
j :α−−→ 〈‖i∈I p′i , s ′, t ′〉

where p′i = pi for j 6= i

Reasoning from the transition semantics

Secrecy of the responder’s nonce:
Suppose Priv(A) and Priv(B) do not occur as the contents of any
message in t0. For all runs

〈NSL, s0, t0〉
α1−→ . . . 〈pr−1, sr−1, tr−1〉

αr−→ . . .

where 〈NSL, s0, t0〉 is proper, if αr has the form
resp : B : j : out new n{m, n,B}Pub(A), then n 6∈ tl for any l ∈ ω.

Proof idea: strengthen hypothesis, prove by induction / assume earliest
violation.

The model obscures the key reasoning technique: that a violation must
be by an event that causally depends (either through input/output or
control) on an earlier event that violates the invariant.

 a Petri net semantics for SPL

Petri net semantics of SPL

A net with persistent conditions representing all of SPL (not just
particular processes at first).

Conditions viewed as being: control, network and name

Control conditions form a set C of capacity-1 conditions

b :: = out new ~x M.p | in pat ~x , ~ψ M.p | i : b

the control state of each thread

Network conditions: form a set O of persistent conditions

O = {closed messages}

the messages already output

Name conditions: form a set S of capacity-1 conditions

S = Names

the names in use

Control conditions

For a process p, the subset of control conditions

Ic(p)

is called its initial conditions.

Ic(out new ~x M.p) = out new ~x M.p

Ic(in pat ~x , ~ψ M.p) = in pat ~x , ~ψ M.p

Ic(
n

i∈I

pi) =
⋃
i∈I

i : Ic(p)

where i : C = {i : b | b ∈ C} for C ⊆ C.

The events of SPL: output

The set Events includes:

if out new ~x M.p is a closed term and ~n = n1, . . . , nl are distinct names to
match ~x = x1, . . . , xl

Ic(p[~n/~x])

out new ~x M.p

out new ~nM[~n/~x]

· · · n1

· · ·
nl M[~N/~X]

Events are labelled with an action.

The events of SPL: input

The set Events includes:

if in pat ~x , ~ψ M.p is a closed term and ~n = n1, . . . , nl are distinct names
to match ~x = x1, . . . , xl and ~L = L1, . . . , Lk are messages to match
~ψ = ψ1, . . . , ψk

Ic(p[~n/~x ,~L/~ψ])

in pat ~x , ~ψ M.p M[~n/~x ,~L/~ψ]

in M[~n/~x ,~L/~ψ]

· · ·

The events of SPL: tags

If e.g. there is an event

b1

bl

α
b′1

b′k

M, . . . n

then there is an event

i : b1

i : bl

α
i : b′1

i : b′k

M, . . . n

