Topics in Concurrency
Lecture 10

Jonathan Hayman

6 March 2015

Public-key cryptography

Public key cryptography:
o for each entity/participant/agent A, there is a key Pub(A) and a key
Priv(A).
Pub(A) is intended to be known by everybody: it is public
Priv(A) is intended to be known only by A: it is private
Any agent can encrypt using a key that it knows

To decrypt a message encrypted under Pub(A) it is necessary to
know Priv(A)

@ To decrypt a message encrypted under Priv(A) it is necessary to
know Pub(A)

Will also allow symmetric keys e.g. Key(A, B).

The Needham-Schroder-Lowe Protocol

The goal of the NSL protocol: two agents use public-key cryptography to
ensure

@ authentication: For A as the initiator: upon completion of the
protocol, A can be be sure that B generated the messages that A
received following the protocol in response to A's request

@ shared secret: if two entities complete the protocol with each
other, at the end they both know a value not known to any potential
attacker (e.g. to be used in more efficient symmetric-key
cryptographic operations)

Formally, the correctness properties are subtle (e.g. what if B chose to
release its private key?)

The original protocol

(1) A—B: {m A}pus)
(2) B—A: {m, n}pupa)
(3) A—B: {n}pun)

m and n are nonces: fresh randomly-generated (very) long integers

The original protocol

(1) A — B: {mﬂA}Pub(B)
(2) B—A: {m,n}pusa)
(3) A—B: {n}pun)

m and n are nonces: fresh randomly-generated (very) long integers

Original protocol introduced by Needham and Schroder in 1978
contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP].

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,

posing as A.
A E B

A— B: {m,A}pub(B)

B— A: {m,n}puna)

A—B: {n}prus

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,

posing as A.
A E B

{"LA}Pub(E)
A—B: {maA}Pub(B) @ e >@

B— A: {m,n}puna)

A—B: {n}prus

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,

posing as A.
A E B

{va}’Pub(E) {maA}Pub(B)
A SN B : {maA}Pub(B) @ e by RnT >0

B— A: {m,n}puna)

A—B: {n}prus

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,

posing as A.
A E B
{m, A}’Pub(E) {m, A}Pub(B)
A SN B : {maA}Pub(B) @ e by RnT >0
{m, ”}Pub(A)
B—A: {m7 n}Pub(A) [R TR T P o

A—B: {n}prus

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,

posing as A.
A E B
{m, A}’Pub(E) {m, A}Pub(B)
A SN B : {maA}Pub(B) @ e by RnT >0
{m, ”}Pub(A)
B—A: {m7 n}Pub(A) [R TR T P o

A—B: {n}Pub(B) @ e >@

An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,

posing as A.
A E B
{m, A}Pub(E) {m, A}Pub(B)
A SN B : {maA}Pub(B) @ e by RnT >0
{m, ”}Pub(A)
B—A: {m7 n}Pub(A) [R TR T P o

A—B: {n}Pub(B) L P >0

The fixed protocol

(1) A—B: {m A}pus)
(2) B— A: {m, n, B}Pub(A)
(3) A—B: {n}pun)

@ Only B can decrypt the message sent in (1)

@ A knows that only B can have sent the message in (2)
@ B knows that only A can have sent the message in (1)
@ the nonces m and n are shared secrets

But these properties are informal and approximate, and we've only
described what's supposed to happen ...

SPL

Security Protocol Language

One of a range of languages and models for analyzing
crypto-protocols

Others include Spi calculus, strand spaces

Supports reasoning based on events (vs transitions)

Asynchronous communication
Messages persist on network

New-name generation on output

Input pattern-matches messages on network

Syntax

@ We take an infinite set of names
Names = {m,n,...,A,B,...}

m, n, ... stand for for nonces, A, B agent identifiers

@ with name variables inside the language
X, Y, X, Y

X, Y tend to range over agent identifiers, x, y over nonces

@ The language also contains message variables

1/17 1/1/, ¢1, R
@ Indices shall be used to identify components of parallel compositions

i € Indices

SPL syntax

Name expressions vi=n|A|...|x|X

Key expressions K :: = Pub(v) | Priv(v) | Key(v, V')

Messages M= |v|k|M,M|{M},
pi= outnew X M.p
Processes | inpatX,¢ M.p
| lier pi

@ outnew X M.p generates a new vector of nonce values 7, using them
for X to output M[ri/X] before resuming as p[ii/X]
@ input uses pattern matching. ..

Messages as patterns

Messages can contain variables.
(& n, x {m, y,B}pub(a)
These are used to perform matching.

Examples:
e match {A, B}p,ua) against the pattern ¢
o match {m, n,B}p,ua) against the pattern {m,x, Y} pp(a)

@ match m, (n, A) against the pattern n, x where m # n

Messages as patterns

Messages can contain variables.
(& n, x {m, y,B}pub(a)
These are used to perform matching.

Examples:
e match {A, B}p,ua) against the pattern ¢ Y = {A, B} pun(a)
o match {m, n,B}p,ua) against the pattern {m,x, Y} pp(a)

@ match m, (n, A) against the pattern n, x where m # n

Messages as patterns

Messages can contain variables.

(& n, x {m, y,B}pub(a)
These are used to perform matching.

Examples:
e match {A, B}p,ua) against the pattern ¢ Y = {A, B} pun(a)

o match {m, n,B}p,ua) against the pattern {m,x, Y} pp(a)
x—=nY—B

@ match m, (n, A) against the pattern n, x where m # n

Messages as patterns

Messages can contain variables.

(& n, x {m, y,B}pub(a)
These are used to perform matching.

Examples:
e match {A, B}p,ua) against the pattern ¢ Y = {A, B} pun(a)

o match {m, n,B}p,ua) against the pattern {m,x, Y} pp(a)
x—=nY—B

@ match m, (n, A) against the pattern n, x where m # n no match

Conventions

Messages with no free variables are closed.

The input in pat X, W M.p binds the variables X, ¢ in M and p,
attempting to match the pattern M against any closed message that
has been output to the network

The output out new X M.p binds the variables X in M and p

A process with no unbound (free) variables is closed.

We write:
@ out M.p where the list of new variables is empty

@ in M.p where the lists of name and message variables are precisely
the free name and message variables in M

@ nil is the empty parallel composition, which may be freely omitted
@ use infix notation for finite parallel composition: py || p2 is [[ic(12} Pi

o replication of a process !p is ||ic, p

Names and variables

@ A closed process can contain names: nonce values n or real agent
identifiers A

@ Variables are not names

@ The set of all names in a process term is names(p) and in a message
is names(M)
@ Example:
names(out new x{n, x} pup(a)) = {n, A}

The NSL protocol in SPL

The initiator initiator of the protocol is parameterized by the identity of
the initiator and their intended participant:

Init(A,B) = outnew x {x,A}pup).-
in {Xa)/a B}Pub(A)~
out {y} pun(B)
The responder:
Resp(B) = in {X7Z}Pub(B)-

outnew y {x,y, B}Pub(z)'
in {y}Pun(B)

Dolev-Yao assumptions

We can program various forms of attacker process. Viewing messages as
persisting once output to the network, they output new messages built

from existing ones.

Spy1
Spy»
Spys
Spya

Spy

in t1.in Y. out (Y1, 12)

in (1,2). out)y out 1),

in X.in 9. out {4} pup(x)

in Priv(X).in {¢} pup(x)- out ¢

||ie{1,2,3,4} Spy;

The NSL system

We reason about concurrent runs of the protocol in parallel with w-copies
of the attacker.

Pspy = Spy

Pinie = || nit(A,B)
A,BeAgents

Presp = || IResp(A)
AcAgents

Messages from one run of the protocol can be used by the attacker
against another run of the protocol.

NSL = | P;

i€{resp,init,spy}

Operational semantics

@ A configuration is a tuple
(p.s,t)

e pis a closed process term
e s is a finite subset of names: the names already in use
o t is a subset of closed messages: the messages that have been
output to the network
@ Proper configurations:

@ names(p) Cs
@ A € s for every agent identifier A
Q U{names(M) | M et} Cs

@ Transitions are labelled with actions

a:=outnewiM|inM|i:«

Operational semantics

@ Output: if 7 all distinct and not in s

out new i M[A/X]

(outnew X M.p, s, t) (p[ri/X],s U{n}, t U{M[r/x]})

o Input: if M[7/R][N/y] € t

in M[7i/<)[N /]
) ———

(in pat X,1 M.p,s,t plA/R|[N /), s, t)

o Parallel:
(pj,s,t) = (pi,s',t") jel

(lier piss, t) 25 (lics ply sy t)

where p} = p; for j # i

Reasoning from the transition semantics

Secrecy of the responder’s nonce:
Suppose Priv(A) and Priv(B) do not occur as the contents of any
message in ty. For all runs

Qr

<NSL, S0, to) T <p,_175,_1, t,_1> — ...

where (NSL, s, to) is proper, if «, has the form
resp : B : j :outnew n{m,n,B}pyp(a), then n & t; for any | € w.

Proof idea: strengthen hypothesis, prove by induction / assume earliest
violation.

The model obscures the key reasoning technique: that a violation must
be by an event that causally depends (either through input/output or
control) on an earlier event that violates the invariant.

~~ a Petri net semantics for SPL

Petri net semantics of SPL

A net with persistent conditions representing all of SPL (not just
particular processes at first).

Conditions viewed as being: control, network and name

@ Control conditions form a set C of capacity-1 conditions
b::=outnew X M.p | in pat)'(',@/;l\/l.p |i:b

the control state of each thread

@ Network conditions: form a set O of persistent conditions
O = {closed messages}

the messages already output

@ Name conditions: form a set S of capacity-1 conditions

S = Names

the names in use

Control conditions

For a process p, the subset of control conditions

Ie(p)
is called its initial conditions.
Ic(outnew X M.p) = outnew X M.p
Ic(in pat)'(',Jl\/l.p) = in pat)"(’,Jl\/l.p
(|| p) = i lelp)
icl iel

where j: C={i:b|be C} for C CC.

The events of SPL: output

The set Events includes:

if outnew X M.p is a closed term and 77 = ny, ..., n; are distinct names to
match X = xq, ..., X

outnew X M.p

Events are labelled with an action.

The events of SPL: input

The set Events includes:

if in pat X, 0 M.p is a closed term and i = ny, ..., n; are distinct names
to match X = xq,...,x;and L = Ly, ..., L, are messages to match
b=, v

in pat X,7 M.p M(r/%, Z/zﬁ]

in MI7i/%, L/]

le(plii/%, L/4)])

The events of SPL: tags

If e.g. there is an event

