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Some of the exercises require the implementation of short programs. The model answers
use Perl (see Part IB Unix Tools course), but you can use any language you prefer, as
long as it supports an arbitrary-length integer type and offers a SHA-1 function. Include
both your source code and the required output into your answers.

Before starting any programming exercise, first estimate of how many minutes the solution
will take you. Please include in your answers both this estimate, as well as the actual
time you required.

Exercise 1: Explain the collision resistance requirement for the hash function used in a
digital signature scheme.

Exercise 2: Your colleagues urgently need a collision-resistant hash function. Their code
contains already an existing implementation of ECBC-MAC, using a block cipher with
256-bit block size. Therefore, they suggest to use ECBC-MAC with fixed keys K1 = K2 =
0` as a hash function. Show that this construction is not even pre-image resistant.

Exercise 3: Show how the DES block cipher can be used to build a 64-bit hash function.
Is the result collision resistant?

Exercise 4: A one-time password authentication system generates 6-character passwords
formed using only the set of 64 characters ‘a-zA-Z0-9.,’. The first of these passwords is
hashed with SHA-1, the resulting hash value is truncated to the first 5 bytes, which are
then used to form the next password.

• After how many passwords is there a better than 50% probability that this hash
chain has entered a cycle?

• Write a program that finds two passwords that lead to a collision in the first 5 bytes
of SHA-1 and provide an example collision. Chose a programming language that
offers a SHA-1 implementation in its standard library. One example collision:

$ perl -e 'use Digest::SHA qw(sha1_hex);while($_=shift @ARGV)

{print sha1_hex($_),"\n"}' scqfNI KAHgNI

c379d58af1012b03a5b72f5430b663c730499508

c379d58af1123a44e7a1828eaa42a995e44a4634

Exercise 5: Use Euclid’s algorithm to calculate gcd(36, 24).
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Exercise 6: The following Perl program implements a non-recursive form of the Eu-
clidean algorithm:

#!/usr/bin/perl

use bigint; # use arbitrary-length integer type

sub gcd {

my ($a0, $b0) = @_;

my ( $a, $b) = @_;

while (1) {

my $q = $a / $b;

if ($a == $b * $q) {

print "gcd($a0,$b0) = $b\n";

return $b;

}

($a, $b) =

($b, $a-$b*$q);

}

}

gcd(2250,360);

Modify it, such that it implements a non-recursive form of the extended Euclidean algo-
rithm. To do so, first define two additional local variables

my ($aa, $ab) = (1, 0);

my ($ba, $bb) = (0, 1);

that record how $a and $b can be represented as linear combinations of their initial values
$a0 and $b0, by maintaining the following invariant:

$a == $a0 * $aa + $b0 * $ab

$b == $a0 * $ba + $b0 * $bb

(a) Extend the final 2-tuple assignment ($a, $b) = ($b, $a-$b*$q); into a 6-tuple
assignment ($a, $aa, $ab, $b, $ba, $bb) = ($b, ... ); that maintains the
above invariant.

(b) Extend the print and return statements to output the gcd result also as a linear
combination of the input values.

(c) If your function is called with egcd(2250,360) it should output

gcd(2250,360) = 90 = 2250 * 1 + 360 * -6

What is the output of your function if called with the following values?

gcd(733810016255931844845,1187329547587210582322)

Exercise 7: Show how the following two basic properties of every group (G, •) follow
from the group axions given on slide 47:

(a) The neutral element of any group is unique. In other words: if both e and e′ are
neutral elements of the group, with g • e = g = e • g and g • e′ = g = e′ • g for every
group element g, then show that this implies e = e′.
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(b) The inverse element of any group element is unique. In other words: if e is the
neutral element of a group and if we have group elements g, f, h where f and h are
inverse elements of g, that is g • f = e = f • g and g • h = e = g • h, show that this
implies f = h.

Exercise 8: Let (F,�,�) be a field. The definition of a field requires that � is left-
distributive over �, which means that for any a, b, c ∈ F: a�(b�c) = (a�b)�(a�c). Show
that this requirement implies the right-distributive property (a� b)� c = (a� c)� (b� c).

Exercise 9:

(a) Convert your implementation of the extended Euclidean algorithm from Exercise 6
into an implementation of a function modinv(a, n) that returns a−1 such that
aa−1 mod n = 1, or aborts with an error if no such a−1 exists. Verify that it outputs
modinv(806515533049393, 1304969544928657) = 806515533049393 and fails for
modinv(4505490,7290036).

(b) Which calculation steps of the extended Euclidean algorithm can be dropped for
this application?

(c) What is modinv(892302390667940581330701, 1208925819614629174706111)?

Exercise 10: Use Euler’s theorem to calculate the inverse

(a) 5−1 mod 7

(b) 5−1 mod 12

(c) 5−1 mod 15

Exercise 11: Given an abelian group (G, •), let H be the set of its quadratic residues,
that is H = {g2 | g ∈ G}. Show that (H, •) is a subgroup of (G, •).

Exercise 12: Name two advantages of using cyclic groups of prime order in cryptographic
schemes that rely on the difficulty of the Discrete Logarithm problem or the Diffie–Hellman
problems.
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Exercise 13: Slide 66 shows how to construct a prime-order subgroup G ⊂ Z∗p, for use
with cryptosystems that rely on the discrete-logarithm problem being hard. It contains
half of all elements of Z∗p, namely the |G| = q = (p − 1)/2 quadratic residues (with p, q
prime). However, sometimes we want to choose q much smaller than p.

(a) What different criteria apply to choosing the bit-length of p and q, and what are
the main advantages of having q much smaller than p?

(b) We can construct a smaller subgroup G ⊂ Z∗p with prime order q = (p − 1)/r for
any pair of primes p, q with p = rq + 1 (Schnorr group). For arbitrary h ∈ Z∗p \ {1},
the value g = hr mod p will be a generator of this group. (The construction on slide
66 merely shows the case r = 2).

(i) Show that G = {hr mod p|h ∈ Z∗p} is a subgroup of Z∗p.

(ii) Show that G = {hr mod p|h ∈ Z∗p} has q = (p − 1)/r elements, by showing
that the function fr : Z∗p → G with fr(x) = xr mod p is an r-to-1 function.

[Hint: Let g be a generator of Z∗p such that {g0, g1, . . . , gp−2} = Z∗p. Under what
condition for i, j is (gi)r ≡ (gj)r (mod p)? For any fixed j ∈ {0, . . . , p − 2} =
Zp−1, what values of i ∈ Zp−1 fulfill that condition, and how many such values
i are there?]

(iii)Sometimes, if we receive a value a from an untrusted source, we should first
verify that a ∈ G = {hr mod p|h ∈ Z∗p} before using it further. Show that for
any a ∈ Z∗p we have a ∈ G if and only if aq mod p = 1.

[Hint: Assume a = gi where g is a generator of Z∗p and i ∈ {0, . . . , p−2}. Then
show that aq ≡ 1 mod p iff r|i.]

Exercise 14: Implement a function modexp(g, e, m) that calculates ge mod m using
the square-and-multiply algorithm for modular exponentiation. Test your implementation
on

123456789987654321 mod (280 − 1) = 785446763117418429158664

and then use it to calculate

(72521−1 mod (23217 − 1)) mod 108

Exercise 15: Let G(1`) be a polynomial-time group generator that outputs an `-bit prime
p and a generator g of Z∗p. Show that the DDH problem is not hard relative to G.
[Hint: Recall that Euler’s criterion allows efficient detection of quadratic residues.]

Exercise 16: With RSA encryption, it is common practice to choose e as a small number
(e.g., 3, 17, 216 + 1).

(a) How does this affect the speed of encryption?

(b) If you wanted to make decryption faster, could you simply set d to one of these
three values instead?

(c) How else can RSA decryption be calculated more efficiently using the Chinese Re-
mainder Theorem and Fermat’s little theorem?
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Exercise 17: In the textbook RSA encryption scheme, with n = pq being a product of
two different primes and ed mod ϕ(n) = 1, the identity med mod n = m, which states
that we obtain the same plaintext m after encryption and decryption, is only guaranteed
by Euler’s theorem for any m ∈ Z∗n, that is if gcd(n,m) = 1.

(a) Show that it actually also holds for any m ∈ Zn. [Hint: CRT]

(b) Conversely, if we instead had chosen n = p2 being the square of a prime number
(i.e., p = q), show a simple example for the fact that in this case ed mod ϕ(n) = 1
does not imply med mod n = m for all m ∈ Zn.

Exercise 18: A device vendor uses the DSA signature scheme to digitally sign configu-
ration updates. The system parameters are

p = 0x8df2a494492276aa3d25759bb06869cbeac0d83afb8d0cf7cbb8324f0d7882e5
d0762fc5b7210eafc2e9adac32ab7aac49693dfbf83724c2ec0736ee31c80291

q = 0xc773218c737ec8ee993b4f2ded30f48edace915f

g = 0x626d027839ea0a13413163a55b4cb500299d5522956cefcb3bff10f399ce2c2e
71cb9de5fa24babf58e5b79521925c9cc42e9f6f464b088cc572af53e6d78802

and the vendor’s public key is

y = 0xeb772a91db3b69af90c5da844d7733f24270bdd11aac373b26f58ff528ef2678
94b1e746e3f20b8b89ce9e5d641abbff3e3fa7dedd3264b1b313d7cd569656c

The vendor has already signed two messages:

H(m1) = SHA-1("Monday") = 0x932eeb1076c85e522f02e15441fa371e3fd000ac

r1 = 0x8f4378d1b2877d8aa7c0687200640d4bba72f2e5

s1 = 0x696de4ffb102249aef907f348fb10ca704a4b186

H(m2) = SHA-1("Tuesday") = 0x42e43b612a5dfae57ddf5929f0fb945ae83cbf61

r2 = 0x8f4378d1b2877d8aa7c0687200640d4bba72f2e5

s2 = 0x25f87cbb380eb4d7244963e65b76677bc968297e

(a) Calculate gq mod p.

(b) Verify that the two signatures are valid under the given public key y. (Preferably
perform the required calculations using the modinv and modexp routines that you
implemented yourself in exercises 9 and 14. Alternatively, download a computer-
algebra system, such as Sage or PARI/GP.)

(c) What mistake did the vendor make when generating these two signatures?

(d) Exploit this mistake to reconstruct the secrets k and x used to generate these sig-
natures. [Hint: Start by subtracting the two defining equations for s1 and s2 from
each other.]

(e) Use this information to falsify a signature for the new message

H(m3) = SHA-1("Wednesday") = 0x932eeb1076c85e522f02e15441fa371e3fd000ac

and then verify its correctness against public key y.
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