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• What is concurrency?

• How does it relate to security?

• Case studies

• (Some) lessons learned

Outline
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• Recall I.B Concurrent and Distributed Systems:

• Multiple processes occur simultaneously and 
may interact with each other

• Concurrency incurs the appearance (reality?) 
of non-determinism — e.g., variations in 
execution path and timing

• You were warned
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Concurrency



Origins of concurrency

• Interleaved or 
asynchronous 
computation

• Parallel computing

• Distributed systems
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Local concurrency

• Interleaved or 
asynchronous execution 
on a single processor

• “Better” scheduling,  
more efficient use of 
computation resources

• Mask I/O latency, 
multitasking, preemption
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Shared memory multiprocessing

• Multiple CPUs with shared memory

• Possibly asymmetric memory 
speed/topology

• Weaker memory model:  
writes order weakened,  
explicit synchronisation

• New programming models
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Message passing and 
distributed systems

• Protocol-centric approach with explicit 
communication

• Synchronous or 
asynchronous

• Explicit data 
consistency management

• Distributed file systems, databases, etc.
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Concurrency research

• Extract more concurrency and parallelism

• Maximise performance

• Represent concurrency to the programmer

• Identify necessary and sufficient orderings

• Detect and eliminate incorrectness

• Manage concurrency-originated failure modes
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Consistency models
and data races

• Semantics of accessing [possibly] replicated data 
concurrently from multiple processes

• Strong models support traditional non-
concurrent programming assumptions

• Weak models exchange consistency for 
performance improvement

• In both, bugs can arise → race conditions
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Security scalability through 
weaker consistency

• Strong models expose latency/contention/failure modes

• Desirable to allow access to stale data in distributed systems

• Timeouts: DNS caches, NFS attribute cache, x.509 
certificates, Kerberos tickets

• Other weak semantics: AFS last close, UNIX passwd/group 
vs. in-kernel credentials

• These make timely revocation more difficult (impossible?)

• More generally, capability-system semantics

• E.g., UNIX file descriptors with respect to DAC
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Practical concerns
with concurrency

• Performance

• Consistency of replicated data

• Liveliness of concurrency protocols

• Non-deterministic execution

• Distributed system failure modes
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Most classes of 
bugs are 

interesting in 
security — but 

these two 
concurrency 

problems have 
proven  

particularly 
fruitful (difficult)



UNIX API concurrency

• Simultaneously execute two 
instances of UNIX chmod 
with “update” syntax

• chmod o-w file

• chmod g-w file

• stat()/chmod() can’t express atomicity

• Output of one system call lost: read-modify-write race

• Passive vulnerability: hard for attackers to exploit directly
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Concurrency and security

• Abbot, Bisbey/Hollingworth in 1970’s

• Inadequate synchronisation or unexpected 
concurrency leads to violation of security policy

• Most commonly: race conditions

• Also a concern: timing side channels

• Distributed systems, multicore notebooks, ... 
this is an urgent and timely issue
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E.g., OS access-
control bugs

E.g., key leakage



Reasoning about 
concurrency and security
• Both security and concurrency require reasoning 

about adversarial behaviour and bugs

• “Weakest link” analysis

• Malicious rather than probabilistic incidence

• Can’t exercise bugs deterministically in testing 
Debuggers mask rather than reveal bugs

• Static and dynamic analysis tools limited
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Concurrency vulnerabilities

• Incorrect concurrency management / 
synchronisation leads to vulnerability

• Violation of specifications

• Violation of user expectations

• Passive - information or privilege “leaked”

• Active - allow adversary to extract information, 
gain privilege, deny service...
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From concurrency bug 
to security bug

• Concurrency bugs in security-critical interfaces

• Races on arguments and interpretation

• Atomic “check” and “access” not possible

• Data consistency vulnerabilities

• Stale or inconsistent security metadata

• Security metadata and data inconsistent

• Side channels from execution timing
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Learning by example

• Consider two vulnerability types briefly

• /tmp race conditions

• SMT covert channels

• Detailed study

• System-call wrapper races
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/tmp race conditions

• Bishop and Dilger, 1996

• UNIX file system APIs allow non-atomic 
sequences resulting in vulnerability

• Unprivileged processes manipulate shared /tmp

• Race against vulnerable privilege processes to 
replace targets of open(), etc.
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xterm /tmp race

• xterm is setuid root to allow 
privileged pty, utmp operations

1. access() used real UID to check 
permissions on /tmp/X

2. open() uses effective UID to 
authorize file access

• Race between access() and open() 
lets attacker exploit xterm to 
overwrite system password file
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/

tmp

X1 passwdX1

etc

① access(“/tmp/X”)
② unlink(“/tmp/X”)

③ symlink(“/etc/passwd”, “/tmp/X”)
④ open(“/tmp/X”)

①

③

②

④

✘



SMT side channels

• 2005 was year of the hyperthreading side channel:  
Percival 2005, Bernstein 2005, Osvik 2005

• Covert/side channel channels historically considered an 
quite academic research topic

• Symmetric multithreading, hyper-threading, and multicore 
processors share caches

• Extract RSA, AES key material by analysing cache misses in 
“spy process”

• Many other side channels have been explored to extract keying 
material including, recently, audio side channels to extract RSA 
keys from other machines in the same room
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Percival SMT side-channel attack
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System memory

Shared level-1 cache

OpenSSL performs RSA crypto
leaving cache-miss trail revealing

sequence of operations taken

Malicious program loops
through cache measuring read

latency for each line via TSC

Logical processor 1 Logical processor 2

• Data-dependent branches have a measurable footprint on the cache

• Where branch instructions test bits from the key, attackers sharing a 
cache may be able to gain information about those bits

• Workaround: avoid data-dependent branches in crypto code



System-call wrapper vulnerabilities

• Our main case study: system-call wrappers

• Popular extension technique in 1990s, 2000s

• No kernel source code required

• Application sandboxing and monitoring

• Pre- and post-conditions on system calls

• Frameworks: GSWTK, Systrace, CerbNG

• Almost all commercial anti-virus systems
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System-call wrappers as a 
reference monitor
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Operating system kernel

Process Process Process

Resources

Reference monitor

Consumer Consumer

System call wrapper

Consumer



Are wrappers a reference monitor?
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• Reference monitors (Anderson 1972)

• Tamper-proof: in kernel address space

• Non-bypassable: can inspect all syscalls

• Small enough to test and analyse: security 
code neatly encapsulated in one place

• Perhaps they count?



… but not entirely

• No time axis in (otherwise) neat picture

• System calls in kernel are non-atomic

• Wrappers even more non-atomic with kernel

• Opportunity for race conditions on copying and 
interpretation of arguments and results
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Race conditions to consider

• Syntactic races - indirect arguments are copied 
on demand, so wrappers do their own copy and 
may see different values

• Semantic races - even if argument values are 
the same, interpretations may change between 
the wrapper and kernel
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Types of system-call wrapper races

• TOCTTOU - time-of-check-to-time-of-use

• TOATTOU - time-of-audit-to-time-of-use

• TORTTOU* - time-of-replacement-to-time-of-use
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* Peter Neumann has accurately described 
this acronym as “torturous”



Goals of the attacker

• Bypass wrapper to perform controlled, audited, 
or modified system calls 
 
  open(“/sensitive/file”, O_RDWR)  
  write(fd, virusptr, viruslen)  
 
 
  connect(s, controlledaddr, addrlen)

• Attacker can race to rewrite indirect arguments

• Paths, I/O data, socket addresses, group lists, ...
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Racing in user memory

• User process, using concurrency, will replace 
argument memory in address space between 
wrapper and kernel processing

• Uniprocessor - force page fault or blocking so 
kernel yields to attacking process/thread

• Multiprocessor - execute on second CPU or 
use uniprocessor techniques
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Practical attacks

• Consider attacks on three wrapper frameworks 
implementing many policies

• Systrace [sudo, sysjail, native policies]

• GSWTK [demo policies and IDwrappers]

• CerbNG [demo policies]

• Attacks are policy-specific rather than 
framework-specific
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Uniprocessor example
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• Generic Software Wrappers Toolkit (GSWTK) 
with IDwrappers

• Ko, Fraser, Badger, Kilpatrick 2000

• Flexible enforcement + IDS framework

• 16 of 23 demo wrappers vulnerable

• Employ page faults on indirect arguments



Uniprocessor
GSWTK attack
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open() system call GSWTK
postcondition

/home/ko/.forward home/ko/Inbox

Process 1

Process 2

path

kernel

user

user

Attacker forces
last byte of path

into swap

IDwrappers copies
replaced path for

use in IDS

Attacker replaces real path
with path intended for IDS

while kernel is paging last byte

Kernel copies real path
from memory, then faults
on last byte and sleeps
until page is in memoryAttacker copies real

path of file to open
into shared memory

Exploitable race window while process 1
waits for memory to be paged



Multiprocessor example

33

• Sysjail over Systrace

• Provos, 2003; Dzonsons 2006

• Systrace allows processes to instrument system 
calls of other processes

• Sysjail implements FreeBSD’s “jail” model on 
NetBSD/OpenBSD with Systrace

• Employ true parallelism to escape Sysjail

• Sysjail withdrawn after vulnerabilities published



Multiprocessor
Sysjail attack
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bind()
system

call

Sysjail/Systrace
precondition

0.0.0.0 0.0.0.0192.168.100.20

Sysjail copies
in 0.0.0.0;

validates and
accepts it

Process 1

Process 2

path

kernel

user

user

Attacker
copies 0.0.0.0
into memory

bind() copies
in and uses

0.0.0.0 to bind
the socket

Attacker restores original
system call arguments of 0.0.0.0

before bind() copyin runs
Process 2 waits 500k

cycles on CPU 2

Sysjail replaces IP
with jail address
192.168.100.20

Exploitable race window
between memory copies



Implementation notes

• OS paging systems vary significantly

• On SMP, race window sizes vary

• Timestamp Counter (TSC) a good way to 
time attacks: cycle-accurate timing

• Systrace experiences 500k+-cycyle windows 
due to context switches; others shorter

• Both techniques are extremely reliable
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Defence against wrapper races

• Serious vulnerabilities

• Bypass of audit, control, replacement

• Easily bypassed mitigation techniques

• Interposition requires reliable access to syscall 
arguments, foiled by concurrency

• More synchronisation, message passing, or just 
not using system call wrappers...
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Lessons learned

• Concurrency bugs are a significant security 
threat to complex software systems

• Developing and testing concurrent programs is 
extremely difficult

• Static analysis and debugging tools are of limited 
utility, languages are still immature

• Multiprocessor systems and distributed systems 
proliferating
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Principles I

1. Concurrency is hard — avoid it

2. Strong consistency models are easier to 
understand and implement than weak ones

3. Where you must program concurrently, pick 
the easy path (E.g., multi-reader single-writer)

4. Prefer deterministic invalidation algorithms to 
time expiry of cached data
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Principles II

5. Take care not to rely on stronger atomicity than 
is afforded by the underlying substrate/API

6. Explicit message passing / state machines (vs. 
shared memory) support protocol-style analysis, 
formal definitions of correctness

7. Document locking or message protocols using 
assertions to ensure continuous testing
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Principles III

8. With side-channel-sensitive code (e.g., crypto) 
rely on existing carefully analysed 
implementations: don’t roll your own

9. Remember that every narrow race window can 
be widened in a way you don’t expect (e.g., 
system-call wrapper attacks)
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