
1

Software and Interface Design
Models, Tools & Processes

Alan Blackwell

Cambridge University

Computer Science Tripos Part 1a

How hard can it be?

• State what the system should do
•  {D1, D2, D3 …}

• State what it shouldn’t do
•  {U1, U2, U3 …}

• Systematically add features
•  that can be proven to implement Dn
• while not implementing Un

How hard can it be …

• The United Kingdom Passport Agency
•  http://www.parliament.the-stationery-office.co.uk/

pa/cm199900/cmselect/cmpubacc/65/6509.htm

• 1997 contract for new computer system
•  aimed to improve issuing efficiency, on tight project timetable
•  project delays meant throughput not thoroughly tested
•  first live office failed the throughput criterion to continue roll-out
•  second office went live, roll out halted, but no contingency plan
•  rising backlog in early 1999, alongside increasing demand
•  passport processing times reached 50 days in July 1999
•  widespread publicity, anxiety and panic for travelling public
•  telephone service overloaded, public had to queue at UKPA offices
•  only emergency measures eventually reduced backlog

• So how hard can it be to issue a passport?
• … let’s try some simple definition

… to define this system?

born in
UK

dies

leave UK
return to

UK

issue
passport

cancel

record
exit

record
entry

2

How hard can it be …

… to define a simple
bureaucracy?

Why is the world complicated?

• Bureaucratic systems are complex because managers
(people) always mess up

• What about physical systems, which don’t rely on
people to work?

• Start with known characteristics of physical device.
• Assemble behaviours to achieve function
• This is how engineering products (bridges and

aircraft) are designed.

How hard can it be … … to define a physical system?

3

Design and uncertainty

• A good programmer should be able to:
• Create a system that behaves as expected.
• Behaves that way reliably.

• But a good designer must also:
• Take account of the unexpected.

• A well-designed software system is not the same as a
well-designed algorithm.

•  If the requirements change or vary,
you might replace the algorithm,

• But it’s seldom possible to replace
a whole system.

What is the problem?

• The problem is not that we don’t understand the
computer.

• The problem is that we don’t understand the problem!

• Does computer science offer any answers?

• The good news:
• We’ve been working on it since 1968

• The bad news:
• There is still no “silver bullet”!

(from great IBM pioneer Fred Brooks)

Introduction

A design process based on knowledge

Pioneers – Bavarian Alps, 1968

• 1954: complexity of
SAGE air-defence
project was under-
estimated by 6000
person-years …

• … at a time when
there were only
about 1000
programmers
in the whole world!

• … “Software Crisis!”

• 1968: First meeting on “Software Engineering”
convened in Garmisch-Partenkirchen.

4

Engineering = science + design

• Science: if we have enough knowledge, we can solve
problems.

• Design: understanding the importance of what you
don’t know

• dealing with uncertainty, lack of knowledge …
• … but trying to be systematically ignorant!

• Design is a process, not a set of known facts
• process of learning about a problem
• process of describing a solution
• at first with many gaps …
• eventually in sufficient detail to build the solution

Learning by building models

• The software design process involves gaining
knowledge about a problem, and about its technical
solution.

• We describe both the problem and the solution in a
series of design models.

• Testing, manipulating and transforming those models
helps us gather more knowledge.

• One of the most detailed models is written in a
programming language.

• Getting a working program is almost a side-effect of
describing it!

What is a design model?

• A model is a description from which
detail has been removed:

•  in a systematic manner,
• and for a particular purpose.

• A model is a simplification of reality
•  intended to promote understanding.

•  If we want to understand and analyse large and
complex problems …

• … we have to use models.

Design models – architecture

Model by Hans Rosbach

5

Design models – software Unified Modeling Language

•  Use Case diagrams - interactions with / interfaces
to the system.

•  Class diagrams - type structure of the system.

•  Collaboration diagrams - interaction between
instances

•  Sequence diagrams - temporal structure of
interaction

•  Activity diagrams - ordering of operations

•  Statechart diagrams - behaviour of individual
objects

•  Component and Deployment diagrams - system
organisation

UML history & status

Booch method Rumbaugh’s OMT

Unified Method 0.8 OOPSLA ´95

OOSE Other methods

UML 0.9 & 0.91 Web - June ´96
 Sept ´96

public
feedback OMG Acceptance, Nov 1997

UML 2

UML 1.0, 1.1 UML partners experience

Derived from [Booch 1999]
& [Jacobson 1999]

April 1999, following OMG feedback UML 1.4

2005

Object
Constraint
Language

Outline for the rest of the course

• Roughly follows stages of the (UML-related)
Unified Software Development Process

•  Inception
•  structured description of what system must do

• Elaboration
•  defining classes, data and system structure

• Construction
•  object interaction, behaviour and state

• Transition
•  testing and optimisation

• Plus allowance for iteration
• at every stage, and through all stages

6

Unified Process vs. Models

Usage Model

Structure Model

Implementation
Models

Behaviour Models

Class Diagrams

Statechart Diagrams

Activity Diagrams

Sequence Diagrams

Collaboration Diagrams

Use Case Diagrams

Component Diagrams

Deployment Diagrams

Interaction Models

Inception

Elaboration

Construction

Transition

Old-style stages: the “waterfall”

Implementation
& unit testing

Operations &
maintenance

Integration &
system testing

Requirements

Specification

Modern stages: the “spiral”

Initial plan

Prototype
1

Development
plan

Prototype
2

Requirements

Plan next phases

Evaluate alternatives
and resolve risks

Develop and verify
next level product

Code

Test

Integrate
Implement

Effort distribution

P r e l i m i n a r y
I t e r a t i o n (s)

i t e r .
1

i t e r .
2

i t e r .
n

i t e r .
n + 1

i t e r .
n + 2

i t e r .
m

i t e r .
m + 1

I n c e p t i o n E l a b o r a t i o n C o n s t r u c t i o n T r a n s i t i o n

Requirements

Design

Implementation

Test

Analysis

7

Books

• Code Complete: A practical handbook of software construction
•  Steve McConnell, Microsoft Press 2004 (2nd edition)

• UML Distilled: A brief guide to the standard object modeling language

• Martin Fowler, Addison-Wesley 2003 (3rd edition)

• Further:
•  Interaction Design, Rogers, Sharp & Preece
•  Software Engineering, Roger Pressman
•  The Mythical Man-Month, Fred Brooks
•  The Design of Everyday Things, Donald Norman
•  Contextual Design, Hugh Beyer & Karen Holtzblatt
•  Software Pioneers, Broy & Denert
•  Educating the Reflective Practitioner, Donald Schon

Supervision exercises

• Use design briefs from Part 1b Group Design Projects
• http://www.cl.cam.ac.uk/teaching/

group-projects/design-briefs.html

• Choose a specific project to work on

• Carry out initial design phases, up to the point where
you could start writing source code

• Supervision 1: Inception phase + early elaboration
• Supervision 2: Iterate and refine elaboration phase
• Supervision 3: Explore early construction phase
• Supervision 4: Consider ways to evaluate & test

Inception phase

structured description of system usage and
function

Pioneers – Tom DeMarco

• Structured Analysis
• 1978, Yourdon Inc

• Defined the critical technical role of the system analyst
• Analyst acts as a middleman between users and

(technical) developers

• Analyst’s job is to construct a functional specification
• data dictionary, data flow, system partitioning

8

How can you capture requirements?

Analysing requirements

• Analysis usually involves (re)negotiation of
requirements between client and designer.

• Once considered “requirements capture”.
• Now more often “user-centred design”.

• An “interaction designer” often replaces (or works
alongside) traditional systems analysts.

• Professional interaction design typically combines
research methods from social sciences with visual
or typographic design skills (and perhaps CS).

Pioneers: Gould & Lewis (1985)

• The (then) radical alternative of
User-Centred Design

• Early focus on users and tasks
• Understand them by studying them

• Empirical measurement
• Test user responses to prototypes

•  Iterative design
• Fix any problems and try again

Communicating requirements

• The need for user documentation

9

Documentation bugs Interaction design bugs

From Interface Hall of Shame

The psychological approach

• Anticipate what will happen when someone tries to use
the system.

• Design a “conceptual model” that will help them
(and you) develop shared understanding.

• The gulf of execution:
• System users know what they want to achieve, but

can’t work out how to do it.

• The gulf of evaluation:
• Systems fail to give suitable feedback on what just

happened, so users never learn what to do.

• See Norman: Design of Everyday Things.
• Far more detail to come in Part II HCI course

The anthropological approach

• Carry out fieldwork:
•  Interview the users.
• Understand the context they work in.
• Observe the nature of their tasks.
• Discover things by observation that they might not

have told you in a design brief.

• Collaborate with users to agree:
• What problem ought to be solved.
• How to solve it (perhaps by reviewing sketches of

proposed screens etc.).

10

Ethnographic field studies

• Understand real detail of user activity, not just official
story, theories or rationalisations.

• Researchers work in the field:
• Observing context of people’s lives
•  Ideally participating in their activities

• Academic ethnography tends to:
• Observe subjects in a range of contexts.
• Observe over a substantial period of time.
• Make full record of both activities and artefacts.
• Use transcripts of video/audio recordings.

Interviews

• See Beyer & Holtzblatt, Contextual Design
• Field work usually includes interviews

• Additional to requirements meetings with client
• Often conducted in the place of work during

‘contextual enquiry’ (as in Beyer & Holtzblatt)
• emphasis on user tasks, not technical issues

• Plan questions in advance
• ensure all important aspects covered

Structured models of work

• Division of labour and its coordination
• activities, methods and connections
• measures, exceptions and domain knowledge

• Plans and procedures
• When do they succeed and fail?
• Where paperwork meets computer work

• Local knowledge and everyday skills
• Spatial and temporal organisation
• Organisational memory

•  How do people learn to do their work?
•  Do formal/official methods match reality?

User Personas

• This is a way to ‘distil’ information about users
•  from field work, interviews, user studies etc
•  into a form that is more useful to design teams.

• Write fictional portraits of individuals representing
various kinds of user

• give them names, jobs, and personal history
• often include photographs (from libraries ,actors)

• Help software engineers to remember that customers
are not like them …

• … or their friends …
• … or anyone they’ve ever met!

11

Designing system-use scenarios

• Aim is to describe the human activity that the system
has to carry out or support.

• Known as use cases in UML/USDP

• Use cases help the designer to discover and record
interactions between software objects.

• Can be refined as a group activity, based on personas,
or in discussion with clients.

• May include mock-ups of screen designs, or physical
prototypes.

• Organised and grouped in use case diagrams

UML Use Case diagram

UML Use Case diagram

• Actors
• play system role
• may not be people

• Use case
•  like a scenario

• Relationships
•  include
• extend
• generalisation

Deriving objects from a scenario

• The nouns in a description refer to ‘things’.
• A source of classes and objects.

• The verbs refer to actions.
• A source of interactions between objects.
• Actions describe object behavior, and hence

required methods.

12

Example of context description

The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Nouns

The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Verbs

The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Extracted nouns & verbs

Cinema booking system
Stores (seat bookings)
Stores (telephone number)

Seat booking

Theatre
Has (seats)

Seat

Row

Customer
Reserves (seats)
Is given (row number, seat number)
Requests (seat booking)

Row number

Seat number Show
Is scheduled (in theatre)

Movie

Date Time

Telephone number

13

Scenario structure: CRC cards

• First described by Kent Beck and Ward Cunningham.
• Later innovators of “agile” programming,

and also the first wiki!

• Use simple index cards, with each cards recording:
• A class name.
• The class’s responsibilities.
• The class’s collaborators.

Typical CRC card

Class name Collaborators

Responsibilities

Partial example

CinemaBookingSystem Collaborators
Can find movies by Movie
title and day.
Stores collection of Collection
movies.
Retrieves and displays
movie details.
...

Refinement of usage model

• Scenarios allow you to check that the problem
description is clear and complete.

• Analysis leads gradually into design.
• Talking through scenarios & class responsibilities

leads to elaborated models.

• Spotting errors or omissions here will save
considerable wasted effort later!

• Sufficient time should be taken over the analysis.
• CRC was designed to allow (in principle) review and

discussion with analysts and/or clients.

14

Requirements documents

• Statement of organised user/system requirements -
generally written in natural language

• Not a formal deliverable in USDP
•  But can be useful if a client wants waterfall-style contracts

• Agile processes are actively opposed to formal
requirements documents

•  The requirements emerge as the system is implemented, in
response to user requests and feedback

•  But in this case, cost control is essential!

Functional vs non-functional

• Functional – what the system will do
• e.g. the cinema system shall provide a facility for

accepting payments
• e.g. the cinema system shall authenticate door entry

• Non-functional – how the system will do it
(a constraint on how functions are implemented)

• e.g. the cinema system shall authenticate a
payment in 30 seconds or less

• e.g. the cinema system shall use hard-copy tickets

Requirements prioritisation

MoSCoW criteria

• M: Must have - mandatory requirements that are
fundamental to the system

• S: Should have - important requirements that could be

omitted

• C: Could have - optional requirements

• W: Want to have - these requirements really can wait
(i.e. bells & whistles)

Elaboration

defining classes, data and system structure

15

Pioneers – Peter Chen

• Entity-Relationship Modeling
• 1976, Massachusetts Institute of Technology

• User-oriented response to Codd’s theoretical definition
of the relational database

• Define attributes and values
• Relations as associations between things
• Things play a role in the relation.

• E-R Diagrams showed entity (box), relation (diamond),
role (links).

• Object-oriented Class Diagrams show class (box) and
association (links)

ER diagram (design of a wiki system)

From entities to objects

• objects
•  represent ‘things’ in some problem domain

(example: “the red car down in the car park”)

• classes
•  represent all objects of a kind (example: “car”)

• operations
• actions invoked on objects (Java “methods”)

•  instance
• can create many instances from a single class

• state
• all the attributes (field values) of an instance

UML Class
diagram

16

UML Class diagram

• Attributes
•  type and visibility

• Operations
• signature and

visibility

• Relationships
• association

•  with multiplicity
•  potentially

aggregation

• generalisation

Class design from CRC cards

• Scenario analysis helps to clarify application structure.
• Each card maps to a class.
• Collaborations reveal class cooperation/object

interaction.

• Responsibilities reveal public methods.
• And sometimes fields; e.g. “Stores collection ...”

Refining class interfaces

• Replay the scenarios in terms of method calls,
parameters and return values.

• Note down the resulting method signatures.

• Create outline classes with public-method stubs.

• Careful design is a key to successful implementation.

Dividing up a design model

• Abstraction
•  Ignore details in order to focus on higher level

problems (e.g. aggregation, inheritance).
•  If classes correspond well to types in domain they

will be easy to understand, maintain and reuse.

• Modularization
• Divide model into parts that can be built and tested

separately, interacting in well-defined ways.
• Allows different teams to work on each part
• Clearly defined interfaces mean teams can work

independently & concurrently, with increased
chance of successful integration.

17

Pioneers – David Parnas

•  Information Hiding
• 1972, Carnegie Mellon University

• How do you decide the points at which a program
should be split into pieces?

• Are small modules better?
• Are big modules better?
• What is the optimum boundary size?

• Parnas proposed the best criterion for modularization:
• Aim to hide design decisions within the module.

Information hiding in OO models

• Data belonging to one object is hidden from other
objects.

• Know what an object can do, not how it does it.
•  Increases independence, essential for large

systems and later maintenance
• Use Java visibility to hide implementation

• Only methods intended for interface to other classes
should be public.

• Fields should be private – accessible only within the
same class.

• Accessor methods provide information about object
state, but don’t change it.

• Mutator methods change an object’s state.

Cohesion in OO models

• Aim for high cohesion:
• Each component achieves only “one thing”

• Method (functional) cohesion
• Method only performs out one operation
• Groups things that must be done together

• Class (type) cohesion
• Easy to understand & reuse as a domain concept

• Causes of low, poor, cohesion
• Sequence of operations with no necessary relation
• Unrelated operations selected by control flags
• No relation at all – just a bag of code

Construction

object interaction, behaviour and state

18

UML Collaboration diagram UML Collaboration
diagram

• Objects
•  class instances
•  can be transient

• Links
•  from associations

• Messages
•  travel along

links
•  numbered to

show sequence

UML Sequence diagram
UML Sequence diagram

•  Interaction again
• same content as

collaboration
• emphasises time

dimension

• Object lifeline
• objects across

page
•  time down

page

• Shows focus
of control

19

Loose coupling

• Coupling: links between parts of a program.

•  If two classes depend closely on details of each other,
they are tightly coupled.

• We aim for loose coupling.
• keep parts of design clear & independent
• may take several design iterations

• Loose coupling makes it possible to:
• achieve reusability, modifiability
• understand one class without reading others;
• change one class without affecting others.

• Thus improves maintainability.

Responsibility-driven design

• Which class should I add a new method to?
• Each class should be responsible for manipulating

its own data.
• The class that owns the data should be responsible

for processing it.

• Leads to low coupling & “client-server contracts”
• Consider every object as a server
•  Improves reliability, partitioning, graceful

degradation

Interfaces as specifications

• Define method signatures for classes to interact
•  Include parameter and return types.
• Strong separation of required functionality from the

code that implements it (information hiding).

• Clients interact independently of the implementation.
• But clients can choose from alternative

implementations.

Causes of error situations

•  Incorrect implementation.
• Does not meet the specification.

•  Inappropriate object request.
• E.g., invalid index.

•  Inconsistent or inappropriate object state.
• E.g. arising through class extension.

• Not always programmer error
• Errors often arise from the environment

(incorrect URL entered, network interruption).
• File processing often error-prone

(missing files, lack of appropriate permissions).

20

Defensive programming

• Client-server interaction.
• Should a server assume that clients are

well-behaved?
• Or should it assume that clients are

potentially hostile?

• Significant differences in implementation required.

•  Issues to be addressed
• How much checking by a server on method calls?
• How to report errors?
• How can a client anticipate failure?
• How should a client deal with failure?

Argument values

• Arguments represent a major ‘vulnerability’ for a server
object.

• Constructor arguments initialize state.
• Method arguments often control behavior.

• Argument checking is one defensive measure.

• How to report illegal arguments?
• To the user? Is there a human user?

Can the user do anything to solve the problem?
If not solvable, what should you suggest they do?

• To the client object:
return a diagnostic value, or throw an exception.

Example of diagnostic return

public boolean removeDetails(String key)
{
 if(keyInUse(key)) {
 ContactDetails details =
 (ContactDetails) book.get(key);
 book.remove(details.getName());
 book.remove(details.getPhone());
 numberOfEntries--;
 return true;
 }
 else {
 return false;
 }
}

Diagnostic OK

Diagnostic not OK

Client response to diagnostic

• Either:
• Test the return value.

•  Attempt recovery on error.
•  Avoid program failure.

•  Ignore the return value.
•  Cannot be prevented.
•  Likely to lead to program failure.

• Exceptions are preferable.

• Clients should take note of error notifications.
• Check return values.
• Don’t ‘ignore’ exceptions.

•  Include code to attempt recovery.
• Will often require a loop.

21

Error avoidance

• Clients can often use server query methods to avoid
errors.

• More robust clients mean servers can be more
trusting.

• Unchecked exceptions can be used.
• Simplifies client logic.

• But there is a trade-off: the use of queries may
increase client-server coupling.

Construction inside objects

object internals

UML Activity
diagram

Pioneers – Edsger Dijkstra

• Structured Programming
• 1968, Eindhoven

• Why are programmers so bad at understanding
dynamic processes and concurrency?

•  (ALGOL then – but still hard in Java today!)

• Observed that “GOTO” made things worse
• Hard to describe what state a process has reached,

when you don’t know which process is being
executed.

• Define process as nested set of execution blocks, with
fixed entry and exit points

22

Top-down design & stepwise refinement

dispatch ambulance

identify region take 999 call send ambulance

allocate vehicle estimate arrival note patient
condition

radio crew

record address
find vehicle

in region

assign vehicle
to call

Bottom-up construction

• Why?
• Start with what you understand
• Build complex structures from well-understood parts
• Deal with concrete cases in order to understand

abstractions

• Study of expert programmers shows that real software
design work combines top-down and bottom up.

Modularity at code level

•  Is this piece of code (class, method, function,
procedure … “routine” in McConnell) needed?

• Define what it will do
• What information will it hide?
•  Inputs
• Outputs (including side effects)
• How will it handle errors?

• Give it a good name

• How will you test it?

• Think about efficiency and algorithms

• Write as comments, then fill in actual code

Modularity in non-OO languages

• Separate source files in C
•  Inputs, outputs, types and interface functions

defined by declarations in “header files”.
• Private variables and implementation details defined

in the “source file”

• Modules in ML, Perl, Fortran, …
• Export publicly visible interface details.
• Keep implementation local whenever possible, in

interest of information hiding, encapsulation, low
coupling.

23

Source code as a design model

• Objectives:
• Accurately express logical structure of the code
• Consistently express the logical structure
•  Improve readability

• Good visual layout shows program structure
• Mostly based on white space and alignment
• The compiler ignores white space
• Alignment is the single most obvious feature to

human readers.

• Like good typography in interaction design: but the
“users” are other programmers!

Code as a structured model

public int Function_name (int parameter1, int parameter2)

// Function which doesn’t do anything, beyond showing the fact
// that different parts of the function can be distinguished.

 int local_data_A;
 int local_data_B;

 // Initialisation section
 local_data_A = parameter1 + parameter2;
 local_data_B = parameter1 - parameter2;
 local_data_B++;

 // Processing
 while (local_data_A < 40) {
 if ((local_data_B * 2) > local_data_A) then {
 local_data_B = local_data_B – 1;
 } else {
 local_data_B = local_data_B + 1;
 }
 local_data_C = local_data_C + 1;
 }
 return local_data_C;
}

Expressing local control structure

while (local_data_C < 40) {
 form_initial_estimate(local_data_C);
 record_marker(local_data_B – 1);
 refine_estimate(local_data_A);
 local_data_C = local_data_C + 1;
} // end while

if ((local_data_B * 2) > local_data_A) then {
 // drop estimate
 local_data_B = local_data_B – 1;
} else {
 // raise estimate
 local_data_B = local_data_B + 1;
} // end if

Expressing structure within a line

• Whitespacealwayshelpshumanreaders
•  newtotal=oldtotal+increment/missamount-1;
•  newtotal = oldtotal + increment / missamount - 1;

• The compiler doesn’t care – take care!
•  x = 1 * y+2 * z;

• Be conservative when nesting parentheses
•  while ((! error) && readInput())

• Continuation lines – exploit alignment
•  if ((aLongVariableName && anotherLongOne) |
 (someOtherCondition()))
 {
 …
 }

24

Naming variables: Form

• Priority: full and accurate (not just short)
• Abbreviate for pronunciation (remove vowels)

•  e.g. CmptrScnce (leave first and last letters)

• Parts of names reflect conventional functions
• Role in program (e.g. “count”)
• Type of operations (e.g. “window” or “pointer”)
• Hungarian naming (not really recommended):

•  e.g. pscrMenu, ichMin

• Even individual variable names can exploit typographic
structure for clarity

• xPageStartPosition
• x_page_start_position

Naming variables: Content

• Data names describe domain, not computer
• Describe what, not just how
• CustomerName better than PrimaryIndex

• Booleans should have obvious truth values
• ErrorFound better than Status

•  Indicate which variables are related
• CustName, CustAddress, CustPhone

•  Identify globals, types & constants
• C conventions: g_wholeApplet, T_mousePos

• Even temporary variables have meaning
• Index, not Foo

Pioneers – Michael Jackson

• Jackson Structured Programming
•  1975, independent consultant, London

• Describe program structure according to the structure
of input and output streams

• Mostly used for COBOL file processing
•  Still relevant to stream processing in Perl

• Data records (items in collection, elements in array)
require a code loop

• Variant cases (subtypes, categories, enumerations)
require conditional execution

• Switching between code and data perspectives helps
to learn about design complexity and to check
correctness.

Structural roles of variables

• Classification of what variables do in a routine
•  Don’t confuse with data types (e.g. int, char, float)

• Almost all variables in simple programs do one of:
•  fixed value
•  stepper
• most-recent holder
• most-wanted holder
•  gatherer
•  transformation
•  one-way flag
•  follower
•  temporary
•  organizer

most common:
70 % of variables

25

 Fixed value
• Value is never changed after initialization

• Example: input radius of a circle, then print area
• variable r is a fixed value, gets its value once, never

changes after that.

• Useful to declare “final” in Java (see variable PI).

public class AreaOfCircle {

 public static void main(String[] args) {

 final float PI = 3.14F;

 float r;

 System.out.print("Enter circle radius: ");

 r = UserInputReader.readFloat();

 System.out.println(“Circle area is " + PI * r * r);

 }

}

Stepper
• Goes through a succession of values in some

systematic way
•  E.g. counting items, moving through array index

• Example: loop where multiplier is used as a stepper.
•  outputs multiplication table, stepper goes through values from

one to ten.

public class MultiplicationTable {

 public static void main(String[] args) {
 int multiplier;
 for (multiplier = 1; multiplier <= 10; multiplier++)
 System.out.println(multiplier + " * 3 = "
 + multiplier * 3);
 }

}

 Most-recent holder

• Most recent member of a group, or simply latest input
value

• Example: ask the user for input until valid.
•  Variable s is a most-recent holder since it holds the latest input

value.

public class AreaOfSquare {

 public static void main(String[] args) {
 float s = 0f;
 while (s <= 0) {
 System.out.print("Enter side of square: ");
 s = UserInputReader.readFloat();
 }
 System.out.println(“Area of square is " + s * s);
 }

}

 Most-wanted holder

• The "best" (biggest, smallest, closest) of values seen.
• Example: find smallest of ten integers.

•  Variable smallest is a most-wanted holder since it is given the
most recent value if it is smaller than the smallest one so far.

•  (i is a stepper and number is a most-recent holder.)

public class SearchSmallest {
 public static void main(String[] args) {
 int i, smallest, number;
 System.out.print("Enter the 1. number: ");
 smallest = UserInputReader.readInt();
 for (i = 2; i <= 10; i++) {
 System.out.print("Enter the " + i + ". number: ");
 number = UserInputReader.readInt();
 if (number < smallest) smallest = number;
 }
 System.out.println("The smallest was " + smallest);
 }

}

26

 Gatherer

• Accumulates values seen so far.
• Example: accepts integers, then calculates mean.

•  Variable sum is a gatherer the total of the inputs is gathered in it.
•  (count is a stepper and number is a most-recent holder.)

public class MeanValue {

 public static void main(String[] argv) {
 int count=0;
 float sum=0, number=0;
 while (number != -999) {
 System.out.print("Enter a number, -999 to quit: ");
 number = UserInputReader.readFloat();
 if (number != -999) { sum += number; count++; }
 }
 if (count>0) System.out.println("The mean is " +
 sum / count);
 }

}

Transformation
• Gets every value by calculation from the value of other variable(s).
•  Example: ask the user for capital amount, calculate interest and

total capital for ten years.
•  Variable interest is a transformation and is always calculated from the

capital.
•  (capital is a gatherer and i is a counter.)

public class Growth {
 public static void main(String[] args) {
 float capital, interest; int i;
 System.out.print("Enter capital (positive or negative): ");
 capital = UserInputReader.readFloat();
 for (i = 1; i <=10; i++) {
 interest = 0.05F * capital;
 capital += interest;
 System.out.println("After "+i+" years interest is "
 + interest + " and capital is " + capital);
 }
 }

}

One-way flag
•  Boolean variable which, once changed, never returns to its original

value.
•  Example: sum input numbers and report if any negatives.

•  The one-way flag neg monitors whether there are negative numbers
among the inputs. If a negative value is found, it will never return to false.

•  (number is a most-recent holder and sum is a gatherer.)

public class SumTotal {
 public static void main(String[] argv) {
 int number=1, sum=0;
 boolean neg = false;
 while (number != 0) {
 System.out.print("Enter a number, 0 to quit: ");
 number = UserInputReader.readInt(); sum += number;
 if (number < 0) neg = true;
 }
 System.out.println("The sum is " + sum);
 if (neg) System.out.println(“There were negative numbers.");
 }

}

Follower
• Gets old value of another variable as its new value.
•  Example: input twelve integers and find biggest difference

between successive inputs.
•  Variable previous is a follower, following current.

public class BiggestDifference {
 public static void main(String[] args) {
 int month, current, previous, biggestDiff;
 System.out.print("1st: "); previous = UserInputReader.readInt();
 System.out.print("2nd: "); current = UserInputReader.readInt();
 biggestDiff = current - previous;
 for (month = 3; month <= 12; month++) {
 previous = current;
 System.out.print(month + “th: ");
 current = UserInputReader.readInt();
 if (current - previous > biggestDiff)
 biggestDiff = current - previous;
 }
 System.out.println(“Biggest difference was " + biggestDiff);
 }

}

27

Temporary
•  Needed only for very short period (e.g. between two lines).
•  Example: output two numbers in size order, swapping if

necessary.
•  Values are swapped using a temporary variable tmp whose value is

later meaningless (no matter how long the program would run).

public class Swap {
 public static void main(String[] args) {
 int number1, number2, tmp;
 System.out.print("Enter num: ");
 number1 = UserInputReader.readInt();
 System.out.print("Enter num: ");
 number2 = UserInputReader.readInt();
 if (number1 > number2) {
 tmp = number1;
 number1 = number2;
 number2 = tmp;
 }
 System.out.println(“Order is " + number1 + “,"

 + number2 + ".");
 }

}

Organizer
•  An array for rearranging elements
•  Example: input ten characters and output in reverse order.

•  The reversal is performed in organizer variable word.
•  tmp is a temporary and i is a stepper.)

public class Reverse {
 public static void main(String[] args) {
 char[] word = new char[10];
 char tmp; int i;
 System.out.print("Enter ten letters: ");
 for (i = 0; i < 10; i++) word[i] =
 UserInputReader.readChar();
 for (i = 0; i < 5; i++) {
 tmp = word[i];
 word[i] = word[9-i];
 word[9-i] = tmp;
 }
 for (i = 0; i < 10; i++) System.out.print(word[i]);
 System.out.println();
 }

}

Verifying variables by role

• Many student program errors result from using the
same variable in more than one role.

•  Identify role of each variable during design
• There are opportunities to check correct operation

according to constraints on role
• Check stepper within range
• Check most-wanted meets selection criterion
• De-allocate temporary value
• Confirm size of organizer array is invariant
• Use compiler to guarantee final fixed value

• Either do runtime safety checks (noting efficiency
tradeoff), or use language features.

Type-checking as modeling tool

• Refine types to reflect meaning, not just to satisfy the
compiler (C++ example below)

• Valid (to compiler), but incorrect, code:
•  float totalHeight, myHeight, yourHeight;
•  float totalWeight, myWeight, yourWeight;
•  totalHeight = myHeight + yourHeight + myWeight;

• Type-safe version:
•  type t_height, t_weight: float;
•  t_height totalHeight, myHeight, yourHeight;
•  t_weight totalWeight, myWeight, yourWeight;
•  totalHeight = myHeight + yourHeight + myWeight;

Compile error!

28

Language support for user types

• Smalltalk
• All types are classes – consistent, but inefficient

• C++
• Class overhead very low
• User-defined types have no runtime cost

• Java
• Unfortunately a little inefficient
• But runtime inefficiency in infrequent calculations far

better than lost development time.

Construction of data lifecycles

object state

UML Statechart diagram UML Statechart diagram

• Lifecycle of an
object from internal
perspective

• Related to “state”
design pattern

• Shares properties of
finite state machine

• … but transitions and
states can be more
complex.

29

Maintaining valid system state

• Pioneers (e.g. Turing) talked of proving program
correctness using mathematics

•  In practice, the best we can do is confirm that the state
of the system is consistent

• State of an object valid before and after operation
• Parameters and local variables valid at start and

end of routine
• Guard values define state on entering & leaving

control blocks (loops and conditionals)
•  Invariants define conditions to be maintained

throughout operations, routines, loops.

Pioneers – Tony Hoare

• Assertions and proof
• 1969, Queen’s University Belfast

• Program element behaviour can be defined
• by a post-condition that will result …
• … given a known pre-condition.

•  If the previous and next states are accurately defined:
•  Individual elements can be composed
• Program correctness is potentially provable

• This is the field of (Floyd-)Hoare logic

Basics of Hoare logic

• How can you reason about the correctness of a
program?

• Example
•  If a number is between 0 and 1

•  (e.g. a valid fraction of a whole)

• … and you multiply it by 100 …
• Then the result will be between 0 and 100

•  (e.g. a valid percentage)

• Note that a formal treatment comes in CST Part II

Pre- and post- conditions

Pre-condition:
0 <= CakeProportion <= 1

Post-condition:
0 <= CakeShare <= 100

Invariant:
CakeProportion
does not change

CakeShare = CakeProportion * 100;

30

Pre-condition:
0 <= CakeShare <= 100

Post-condition:
0 <= RemainingCake <= 100

Invariant:
CakeProportion
does not change

RemainingCake = 100 - CakeShare;

Pre-condition:
0 <= CakeProportion <= 1

Post-condition:
0 <= CakeShare <= 100

CakeShare = CakeProportion * 100;

Pre-condition:
0 <= CakeShare <= 100

Post-condition:
0 <= RemainingCake <= 100

RemainingCake = 100 - CakeShare;

Pre-condition:
0 <= CakeProportion <= 1

CakeShare = CakeProportion * 100;

Post-condition:
0 <= RemainingCake <= 100

RemainingCake = 100 - CakeShare;

Formal design models: Z notation

• Definitions of the BirthdayBook state space:
•  known is a set of NAMEs
•  birthday is a partial map from NAMEs to DATEs

•  Invariants:
•  known must be the domain of birthday

31

• An operation to change state
•  AddBirthday modifies the state of BirthdayBook
•  Inputs are a new name and date
•  Precondition is that name must not be previously known
•  Result of the operation, birthday’ is defined to be a new and

enlarged domain of the birthday map function

Formal design models: Z notation

• An operation to inspect state of BirthdayBook
•  This schema does not change the state of BirthdayBook
•  It has an output value (a set of people to send cards to)
•  The output set is defined to be those people whose birthday

is equal to the input value today.

Formal design models: Z notation

Advantages of formal models

• Requirements can be analysed at a fine level of detail.

• They are declarative (specify what the code should do,
not how), so can be used to check specifications from
an alternative perspective.

• As a mathematical notation, offer the promise of tools
to do automated checking, or even proofs of
correctness (“verification”).

• They have been applied in some real development
projects.

Disadvantages of formal models

• Notations that have lots of Greek letters and other
weird symbols look scary to non-specialists.

•  Not a good choice for communicating with clients, users, rank-
and-file programmers and testers.

• Level of detail (and thinking effort) is similar to that of
code, so managers get impatient.

•  If we are working so hard,
why aren’t we just writing the code?

• Tools are available, but not hugely popular.
•  Applications so far in research / defence / safety critical

• Pragmatic compromise from UML developers
•  “Object Constraint Language” (OCL).
•  Formal specification of some aspects of the design, so that

preconditions, invariants etc. can be added to models.

32

Language support for assertions

• Eiffel (pioneering OO language)
• supported pre- and post-conditions on every

method.

• C++ and Java support “assert” keyword
• Programmer defines a statement that must evaluate

to boolean true value at runtime.
•  If assertion evaluates false, exception is raised

• Some languages have debug-only versions, turned off
when system considered correct.

• Dubious trade-off of efficiency for safety.

• Variable roles could provide rigorous basis for fine-
granularity assertions in future.

Defensive programming

• Assertions and correctness proofs are useful tools, but
not always available.

• Defensive programming includes additional code to
help ensure local correctness

• Treat function interfaces as a contract

• Each function / routine
• Checks that input parameters meet assumptions
• Checks output values are valid

• System-wide considerations
• How to report / record detected bugs
• Perhaps include off-switch for efficiency

Construction using objects

components

UML Component diagram

33

Component documentation

• Your own classes should be documented the same
way library classes are.

• Other people should be able to use your class without
reading the implementation.

• Make your class a 'library class'!

Elements of documentation

Documentation for a class should include:

•  the class name

• a comment describing the overall purpose and
characteristics of the class

• a version number

•  the authors’ names

• documentation for each constructor and each method

Elements of documentation

The documentation for each constructor and method
should include:

•  the name of the method
•  the return type
•  the parameter names and types
• a description of the purpose and function of the method
• a description of each parameter
• a description of the value returned

•  In Java, just use Javadoc

Transition

testing and optimisation

34

What is the goal of testing?

• A) To define the end point of the software
development process as a managed objective?

• B) To prove that the programmers have implemented
the specification correctly?

• C) To demonstrate that the resulting software product
meets defined quality standards?

• D) To ensure that the software product won’t fail, with
results that might be damaging?

• E) None of the above?

Testing and quality

• Wikipedia (2013)
•  “Software testing is the process used to assess the

quality of computer software. It is an empirical
technical investigation conducted to provide
stakeholders with information about the quality of
the product or service under test, with respect to the
context in which it is intended to operate.”

• Edsger Dijkstra
•  “Program testing can be used to show the

presence of bugs, but never to show their
absence”

Remember design as learning?

• Design is the process of learning about a problem and
describing a solution

• at first with many gaps …
• eventually in sufficient detail to build it.

• We describe both the problem and the solution in a
series of design models.

• Testing those models in various ways helps us gather
more knowledge.

• Source code is simply the most detailed model used in
software development.

Learning through testing

A bug is a system’s way of telling you that you don’t
know something (P. Armour)

• Testing searches for the presence of bugs.
•  (not for the absence of bugs)

• Later: ‘debugging’ searches for the cause of bugs,
once testing has found that a bug exists.

• The manifestation of an bug as observable
behaviour of the system may well occur some
‘distance’ from its cause.

35

Testing principles

• Look for violations of the interface contract.
• Aim is to find bugs, not to prove that unit works as

expected from its interface contract
• Use positive tests (expected to pass)

in the hope that they won’t pass
• Use negative tests (expected to fail)

in the hope that they don’t fail

• Try to test boundaries of the contract
• e.g. zero, one, overflow, search empty collection,

add to a full collection.

Unit testing priorities

• Concentrate on modules most likely to contain errors:
• Particularly complex
• Novel things you’ve not done before
• Areas known to be error-prone

• Some habits in unit test ordering
• Start with small modules
• Try to get input/output modules working early

•  Allows you to work with real test data

• Add new ones gradually
• You probably want to test critical modules early

•  For peace of mind, not because you expect errors

How to do it: testing strategies

• Manual techniques
• Software inspections and code walkthrough

• Black box testing
• Based on specified unit interfaces, not internal

structure, for test case design

• White box testing
• Based on knowing the internal structure

• Stress testing
• At what point will it fail?

•  ‘Random’ (unexpected) testing
• Remember the goal: most errors in least time

Pioneers – Michael Fagan

• Software Inspections
• 1976, IBM

• Approach to design checking, including planning,
control and checkpoints.

• Try to find errors in design and code by systematic
walkthrough

• Work in teams including designer, coder, tester and
moderator.

36

Software inspections

• A low-tech approach, relatively underused, but more
powerful than appreciated.

• Read the source code in execution order, acting out
the role of the computer

• High-level (step) or low-level (step-into) views.
• An expert tries to find common errors

• Array bound errors
• Off-by-one errors
• File I/O (and threaded network I/O)
• Default values
• Comparisons
• Reference versus copy

Inspection by yourself

• Get away from the computer and ‘run’ a program by
hand

• Note the current object state on paper

• Try to find opportunities for incorrect behaviour by
creating incorrect state.

• Tabulate values of fields, including invalid
combinations.

•  Identify the state changes that result from each
method call.

Black box testing

• Based on interface specifications for whole system or
individual modules

• Analyse input ranges to determine test cases

• Boundary values
• Upper and lower bounds for each value
•  Invalid inputs outside each bound

• Equivalence classes
•  Identify data ranges and combinations that are

‘known’ to be equivalent
• Ensure each equivalence class is sampled, but not

over-represented in test case data

White box testing

• Design test cases by looking at internal structure,
including all possible bug sources
•  Test each independent path at least once
•  Prepare test case data to force paths
•  Focus on error-prone situations (e.g. empty list)
•  The goal is to find as many errors as you can

• Control structure tests:
•  conditions – take each possible branch
•  data flow – confirm path through parameters
•  loops – executed zero, one, many times
•  exceptions – ensure that they occur

37

Stress testing

• The aim of stress testing is to find out
at what point the system will fail

• You really do want to know what that point is.
• You have to keep going until the system fails.
•  If it hasn’t failed, you haven’t done stress testing.

• Consider both volume and speed

• Note difference from performance testing, which aims
to confirm that the system will perform as specified.

• Used as a contractual demonstration
•  It’s not an efficient way of finding errors

Random testing

• There are far more combinations of state and data
than can be tested exhaustively

• Systematic test case design helps explore the range of
possible system behaviour

• But remember the goal is to make the system fail,
not to identify the many ways it works correctly.

• Experienced testers have an instinct for the kinds of
things that make a system fail

• Usually by thinking about the system in ways the
programmer did not expect.

• Sometimes, just doing things at random can be an
effective strategy for this.

Regression testing

•  ‘Regression’ is when you go backwards, or things get
worse

• Regression in software usually results from re-
introducing faults that were previously fixed.

• Each bug fix has around 20% probability of
reintroducing some other old problem.

• Refactoring can reintroduce design faults

• So regression testing is designed to ensure that a new
version gives the same answers as the old version did

Regression testing

• Use a large database of test cases

•  Include all bugs reported by customers:
• customers are much more upset by failure of an

already familiar feature than of a new one
•  reliability of software is relative to a set of inputs, so

better test inputs that users actually generate!

• Regression testing is boring and unpopular
•  test automation tools reduce mundane repetition
• perhaps biggest single advance in tools for software

engineering of packaged software

38

Test automation

• Thorough testing (especially regression testing) is time
consuming and repetitive.

• Write special classes to test interfaces of other classes
automatically

•  “test rig” or “test harness”
•  “test stubs” substitute for unwritten code, or

simulate real-time / complex data

• Use standard tools to exercise external API,
commands, or UI (e.g. mouse replay)

•  In commercial contexts, often driven from build and
configuration tools.

Unit testing

• Each unit of an application may be tested.
• Method, class, interface, package

• Can (should) be done during development.
• Finding and fixing early lowers development costs

(e.g. programmer time).
• Build up a test suite of necessary harnesses, stubs

and data files

• JUnit is often used to manage and run tests
• you use this to check your practical exercises
• www.junit.org

Other system tests

• Security testing
• automated probes, or
• a favour from your Russian friends

• Efficiency testing
•  test expected increase with data size
• use code profilers to find hot spots

• Usability testing
• essential to product success
• often involves studying users

Testing efficiency: optimisation

• Worst error is using wrong algorithm
• e.g. lab graduate reduced 48 hours to 2 minutes
• Try different size data sets – does execution time

vary as N, 2N, N2, N3, N4, kN ...?

•  If this is the best algorithm, and you know it scales in a
way appropriate to your data, but still goes too slow for
some reason, ask:

• How often will this program / feature be run?
• Hardware gets faster quickly
• Optimisation may be a waste of your time

39

Testing efficiency: optimisation

• When optimisation is required
• First: check out compiler optimisation flags
• For some parts of extreme applications

•  Use code profiler to find hotspots/bottlenecks
• Most likely cause: overuse of some library/OS function

• When pushing hardware envelope
•  Cache or pre-calculate critical data
•  Recode a function in C or assembler
•  Use special fast math tricks & bit-twiddling
•  Unroll loops (but compilers should do this)

• But if this is an interactive system …
• … how fast will the user be?

User interface efficiency

• Usability testing can measure speed of use
• How long did Fred take to order a book from Amazon?
• How many errors did he make?

• But every observation is different.
• Fred might be faster (or slower) next time
• Jane might be consistently faster

• So we compare averages:
• over a number of trials
• over a range of people (experimental subjects)

• Results usually have a normal distribution

Experimental (A/B) interface testing

• Experimental treatment is some change that we
expect to have an effect on usability:

• Hypothesis: we expect new interface to be faster (&
produce less errors) than old one

number of
observation

trials

time taken to order CD
(faster)

new old

® Expected answer: usually faster, but not always

Hypothesis testing

• Null hypothesis:
• What is the probability that this amount of difference

in means could be random variation between
samples?

• Hopefully very low (p < 0.01, or 1%)
• Use a statistical significance test, such as the t-test.

only
random
variation
observed

observed effect
probably does

result from
treatment

very significant
effect of

treatment

40

A/B testing for decisions

• e.g. Do more people click the “buy” button if it’s round
or square?

•  It would be ridiculous to test every aspect of a
design this way.

• But if you have a lot of users/data (e.g. you’re Google)
• make different versions of a page
• compare numbers of user choices from logs

• Difference might still result from random variation
• Use the binomial test to see if the difference

between versions is greater than chance
• Remember coin-tossing experiments at school!

Usability testing in the field

• Brings advantages of ethnography / contextual task
analysis to testing phase of product development.

• Case study: Intuit Inc.’s Quicken product
• originally based on interviews and observation
•  follow-me-home programme after product release:

•  random selection of shrink-wrap buyers;
•  observation while reading manuals, installing, using.

• Quicken success was attributed to the programme:
•  survived predatory competition, later valued at $15

billion.

Think-aloud testing

• Black-box testing for the user interface

• Observe and record a system user performing sample
tasks

• Could be using paper prototype or mockup
• Ask them to think aloud while working
• Record and capture their understanding

• Goal is to identify their mental model, so you can
assess gulfs of execution/evaluation.

• Essential to find users who don’t think the same way
you do!

Cognitive walkthrough

• White-box testing for the user interface
• Like software inspection of your user theory

• No user involved – the design/test team follows a
structured inspection process:

• Break the user’s task down into subgoals
• For each subgoal:

• What is the user trying to achieve at this moment?
•  Can they see the control they need?
•  Is it labelled in a way that matches their goal?
• Why would they choose the action you expect?
•  Does the feedback help them learn (even if correct)?

41

Philosophy of testing

Classic testing advice

• The Art of Software Testing
• Glenford J. Myers
• John Wiley, 1979

• Seven Principles of Software Testing
• Bertrand Meyer, ETH Zürich and Eiffel Software
•  IEEE Computer, August 2008, 99-101

Myers’ classic book Myers’ 10 principles

• A necessary part of a test case is a definition of the
expected output or result.

• A programmer should avoid attempting to test his or
her own program.

• A programming organisation should not test its own
programs.

• Thoroughly inspect the results of each test.

42

Myers’ 10 principles (cont.)

• Test cases must be written for input conditions that are
invalid and unexpected, as well as for those that are
valid and expected.

• Examining a program to see if it does not do what it is
supposed to do is only half the battle; the other half is
seeing whether the program does what it is not
supposed to do.

• Do not plan a testing effort under the tacit assumption
that no errors will be found.

Myers’ 10 principles (cont.)

• Avoid throwaway test cases unless the program is
truly a throwaway program.

• The probability of the existence of more errors in a
section of a program is proportional to the number of
errors already found in that section.

• Testing is an extremely creative and intellectually
challenging task.

Meyer’s new classic article Meyer’s 7 Principles

• Principle 1: Definition
• To test a program is to try to make it fail.

• Principle 2: Tests versus specs
• Tests are no substitute for specifications.

• Principle 3: Regression testing
• Any failed execution must yield a test case, to

remain a permanent part of the project’s test suite.

43

Meyer’s 7 Principles (cont.)

• Principle 4: Applying ‘oracles’
• Determining success or failure of tests must be an

automatic process.

• Principle 4 (variant): Contracts as oracles
• Oracles should be part of the program text, as

contracts. Determining test success or failure
should be an automatic process consisting of
monitoring contract satisfaction during execution.

• Principle 5: Manual and automatic test cases
• An effective testing process must include both

manually and automatically produced test cases.

Meyer’s 7 Principles (cont.)

• Principle 6: Empirical assessment of testing strategies
• Evaluate any testing strategy, however attractive in

principle, through objective assessment using
explicit criteria in a reproducible testing process.

• Principle 7: Assessment criteria
• A testing strategy’s most important property is the

number of faults it uncovers as a function of time.

Fixing bugs – ‘debugging’

• Treat debugging as a series of experiments
• As with testing, debugging is about learning things

• Don’t just make a change in the hope that it might fix
a bug

• Form a hypothesis of what is causing the
unexpected behaviour

• Make a change that is designed to test the
hypothesis

•  If it works, good, if not, you’ve learned something
• Either way, check what else you broke

Debugging strategy

• Your goal is to find and fix the error (gain information),
not disguise the symptom

• Step 1: THINK
• Which is the relevant data?
• Why is it behaving that way?
• Which part is correct, and which incorrect?

• Step 2: search and experiment
• Backtrack from the place that is incorrect
• Test on local state in each place
• Try to localise changes

44

Print statements

• The most popular debugging technique.

• No special tools required.

• All programming languages support them.

• But often badly used …
•  Printing things at random in hope of seeing something wrong

•  Instead:
• Make a hypothesis about the cause of a bug
•  Use a print statement to test it

• Output may be voluminous
•  Turning off and on requires forethought.

Walkthroughs

• Read through the code, explaining what state changes
will result from each line.

• Explain to someone else what the code is doing.
• They might spot the error.
• The process of explaining might help you to spot it

for yourself (the cardboard software engineer)

• Can be done on-screen from source code, on paper
(as in a software inspection), or using a debugger

Debuggers

• Usual features include:
• Breakpoints

•  Similar to print statements – can be used to test state at
a particular program point

• Step-over or step-into methods/routines
•  Identify specific routine or statement responsible for

unexpected effect.
• Call sequence (stack) inspectors

•  Explore parameters preceding unexpected effect
• Object and variable state inspectors

•  Also continuous “watch” windows.

• However, debuggers are both language-specific and
environment-specific.

If all else fails …

• Sleep on it.

45

Iterative Development

within any design phase or any combination
of phases

The economics of phase tests

Relative cost to fix an fault [Boehm 1980]

Phase in which found Cost ratio
requirements 1
design 3-6
coding 10
development testing 15-40
acceptance testing 30-70
operation 40-1000

… & these figures are considered conservative!

Waterfall vs Spiral

Implementation

 Maintenance

Integration

Requirements

Specification

user
decisions

technical
approach
finalised

check units
against

 specification
check

requirements
are met

Life-cycle plan

Risk analysis

Prototype 1

Development
plan

Requirements
validation

Plan next phases

Determine objectives,
alternatives,
constraints

Evaluate alternatives
and resolve risks

Develop and verify
next level product

Prototyping

• Supports early investigation of a system.
• Early problem identification.

•  Incomplete components can be simulated.
• e.g. always returning a fixed result.
• May want to avoid random or time-dependent

behavior which is difficult to reproduce.

• Allows early interaction with clients
• Perhaps at inception phase of project
• Especially (if feasible) with actual users!

•  In product design, creative solutions are discovered by
building many prototypes

46

Prototyping product concepts

• Emphasise appearance of the interface, create some
behaviour with scripting functions:

• Visio – diagrams plus behaviour
• Animation tools – movie sequence
• JavaScript – simulate application as web page
• PowerPoint – ‘click-through’ prototype

• Cheap prototypes are good prototypes
• More creative solutions are often discovered by

building more prototypes.
• Glossy prototypes can be mistaken for the real thing

– either criticised more, or deployed!

Prototypes without programming

• Low-fidelity prototypes (or mockups)
• Paper-and-glue simulation of interface
• User indicates action by pointing at buttons on the

paper “screen”
• Experimenter changes display accordingly

•  “Wizard of Oz” simulation method
• Computer user interface is apparently operational
• Actual system responses are produced by an

experimenter in another room.
• Can cheaply assess effects of “intelligent” interfaces

Software continues changing

• Even after project completion!

• There are only two options for software:
• Either it is continuously maintained …
• … or it dies.

• Software that cannot be maintained will be thrown
away.

• Not like a novel (written then finished).
• Software is extended, corrected, maintained,

ported, adapted…

• The work will be done by different people over time
(often decades).

Versioning

• More on version and configuration management next
year.

• Versioning is about communicating change

• e.g. semantic versioning on open source projects:
• 1.3.15 => MAJOR.MINOR.PATCH.
• MAJOR version when you make incompatible API

changes,
• MINOR version when you add functionality in a

backwards-compatible manner, and
• PATCH version when you make backwards-

compatible bug fixes.

47

User-centred Design

• Focus on ‘end-users’, not just specifications from
contract and/or client

• Use ethnographic methods at inception stage

• Design based on user conceptual models

• Early prototyping to assess conceptual model

• Contextual evaluation to assess task relevance

• Frequent iteration

Agile methods (e.g. XP)

• Deliver working software from the outset

• Collect user stories describing features

• Design leader prioritises implementation

• Build functional increments in “sprints”

• Refactor as required

• Stop when the money runs out

• Some tension with user-centred processes

• Many proprietary alternatives!

Extreme Programming (1)

•  From Portland Smalltalk group (Beck & Cunningham)
• Software development as collaboration
•  Invented patterns, wikis, agile methods

• Customers work on-site with developers
• No project manager, but a “coach”

• User stories are written on little cards
•  “A promise to have a conversation”
• But you must talk to the customer

•  Don’t rely on documents
•  Show them the working system instead

Extreme Programming (2)

• Technical practices included:
•  Iterations and releases are timeboxed

•  Planning game to estimate and negotiate

• Test-driven development:
•  start with an example of how the program works

• Pair programming
•  share your code with others all the time
•  learning percolates around the team

• Management:
• A simple daily stand-up for team awareness

48

Scrum: agile management

• Project roles:
• Product owner = “single wringable neck”
• Development team members
• Scrum master = an expert on process

• Manage the backlog
• List of items (user stories) to be implemented

• Plan by timeboxed “sprints”
• Do something, then plan some more

• Not just technical
• Scrum could be a way of managing anything

Participatory Design

• Users become partners in the design team
• Originated in Scandinavian printing industry
• Now used in developing world, with children, …

• PICTIVE method
• Users generate scenarios of use in advance
• Low fidelity prototyping tools (simple office supplies)

are provided for collaborative session
• The session is videotaped for data analysis

• CARD method
• Cards with screen-dumps on them are arranged on

a table to explore workflow options

UML review: Modelling for uncertainty Eventually … a Deployment diagram

49

The ‘quick and dirty’ version of USDP
• Plan using general UML phase principles

• Make sure you visit / talk to end-users
• show them pictures of proposed screens

• Write use case “stories”
• note the parts that seem to be common

• Keep a piece of paper for each class
• write down attributes, operations, relationships
•  lay them out on table, and “talk through” scenarios

• Think about object multiplicity and lifecycle
• collections, state change, persistence

• Test as early as possible

Software Design: beyond “correct”

The requirements for design conflict and cannot be
reconciled. All designs for devices are in some
degree failures, either because they flout one or
another of the requirements or because they are
compromises, and compromise implies a degree of
failure ... quite specific conflicts are inevitable once
requirements for economy are admitted; and conflicts
even among the requirements of use are not
unknown. It follows that all designs for use are
arbitrary. The designer or his client has to choose in
what degree and where there shall be failure. … It is
quite impossible for any design to be the “logical
outcome of the requirements” simply because, the
requirements being in conflict, their logical outcome is
an impossibility.

David Pye, The Nature and Aesthetics of Design (1978).

