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Overview
� Building shared memory data structures

� Lists, queues, hashtables, …

� Why?

� Used directly by applications (e.g., in C/C++, Java, C#, …)

� Used in the language runtime system (e.g., management of 
work, implementations of message passing, …)

� Used in traditional operating systems (e.g., synchronization 
between top/bottom-half code)

� Why not?

� Don’t think of “threads + shared data structures” as a 
default/good/complete/desirable programming model

� It’s better to have shared memory and not need it…
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Correctness

What does it mean 
to be correct?

e.g., if multiple concurrent 
threads are using iterators on a 

shared data structure at the 
same time?

Ease to 
write

What do we care about?
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Does it matter?  Who is the 
target audience?  How much 
effort can they put into it?  Is 

implementing a data structure 
an undergrad programming 

exercise?  …or a research 
paper?

When can it 
be used?

How well 
does it scale?

How fast is it?

Between threads in the same 
process?  Between processes 
sharing memory?  Within an 

interrupt handler?  
With/without some kind of 
runtime system support?

Suppose I have a sequential 
implementation (no 

concurrency control at all): is 
the new implementation 5% 

slower?  5x slower? 100x 
slower?

How does performance change 
as we increase the number of 

threads?  When does the 
implementation add or avoid 

synchronization?



Correctness

Ease to 
write

What do we care about?
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When can it 
be used?

How well 
does it scale?

How fast is it?



What do we care about?
1. Be explicit about goals and trade-offs

� A benefit in one dimension often has costs in another

� Does a perf increase prevent a data structure being used in 
some particular setting?

� Does a technique to make something easier to write make the 
implementation slower?

� Do we care?  It depends on the setting

2. Remember, parallel programming is rarely a recreational 
activity

� The ultimate goal is to increase perf (time, or resources used)

� Does an implementation scale well enough to out-perform a 
good sequential implementation?

6



Suggested reading
� “The art of multiprocessor programming”, Herlihy & Shavit 

– excellent coverage of shared memory data structures, 
from both practical and theoretical perspectives

� “Transactional memory, 2nd edition”, Harris, Larus, Rajwar –
recently revamped survey of TM work, with 350+ references

� “NOrec: streamlining STM by abolishing ownership 
records”, Dalessandro, Spear, Scott, PPoPP 2010

� “Simplifying concurrent algorithms by exploiting 
transactional memory”, Dice, Lev, Marathe, Moir, 
Nussbaum, Olszewski, SPAA 2010

� Intel “Haswell” spec for SLE (speculative lock elision) and 
RTM (restricted transactional memory)
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Amdahl’s law



Amdahl’s law
� “Sorting takes 70% of the execution time of a sequential 

program.  You replace the sorting algorithm with one that 
scales perfectly on multi-core hardware.  On a machine 
with n cores, how many cores do you need to use to get a 
4x speed-up on the overall algorithm?”
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Amdahl’s law, f=70%
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Amdahl’s law, f=70%
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f = fraction of code speedup applies to
c = number of cores used
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Amdahl’s law, f=70%
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Amdahl’s law, f=10%
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Amdahl’s law, f=98%
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Amdahl’s law & multi-core

Suppose that the same h/w budget (space or power) can make us:
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Perf of big & small cores
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Amdahl’s law, f=98%
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Amdahl’s law, f=75%
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Amdahl’s law, f=5%
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Asymmetric chips
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Amdahl’s law, f=75%
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Amdahl’s law, f=5%
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Amdahl’s law, f=98%
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Amdahl’s law, f=98%
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Amdahl’s law, f=98%
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Basic spin-locks



Test and set (pseudo-code)

bool testAndSet(bool *b) {
bool result;
atomic {
result = *b;
*b = TRUE;

}
return result;

}

Pointer to a location 
holding a boolean

value (TRUE/FALSE)

Read the current 
contents of the 

location b points to…

…set the contents of 
*b to TRUE
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Test and set

time

• Suppose two threads use it at once

Thread 2:

Thread 1:

testAndSet(b)->true

testAndSet(b)->false

Non-blocking data structures and transactional memory 28



FALSE
lock:

void acquireLock(bool *lock) {
while (testAndSet(lock)) {

/* Nothing */
}

}

void releaseLock(bool *lock) {
*lock = FALSE;

}

Test and set lock

FALSE => lock available
TRUE => lock held

Each call tries to acquire 
the lock, returning TRUE 

if it is already held

NB: all this is pseudo-
code, assuming SC 

memory

Non-blocking data structures and transactional memory 29



Test and set lock

FALSE
lock:

void acquireLock(bool *lock) {
while (testAndSet(lock)) {

/* Nothing */
}

}

void releaseLock(bool *lock) {
*lock = FALSE;

}

Thread 1

TRUE

Thread 2

Non-blocking data structures and transactional memory 30



What are the problems here?

testAndSet
implementation 

causes contention

Non-blocking data structures and transactional memory 31



Single-
threaded

core

Contention from testAndSet

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Non-blocking data structures and transactional memory 32



Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 33



Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k
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Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory

Does this still happen in 
practice?  Do modern 

CPUs avoid fetching the 
line in exclusive mode 

on  failing TAS?
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What are the problems here?

Spinning may waste 
resources while 

waiting

No control over 
locking policy

testAndSet
implementation 

causes contention

Only supports mutual 
exclusion: not reader-

writer locking
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General problem
� No logical conflict between two failed lock acquires

� Cache protocol introduces a physical conflict

� For a good algorithm: only introduce physical conflicts if a 
logical conflict occurs

� In a lock: successful lock-acquire & failed lock-acquire

� In a set: successful insert(10) & failed insert(10)

� But not:

� In a lock: two failed lock acquires

� In a set: successful insert(10) & successful insert(20)

� In a non-empty queue: enqueue on the left and remove on the 
right
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Test and test and set lock

FALSE
lock:

void acquireLock(bool *lock) {
do {
while (*lock) { }         

} while (testAndSet(lock));
}

void releaseLock(bool *lock) {
*lock = FALSE;

}

FALSE => lock available
TRUE => lock held

Spin while the lock is 
held… only do 

testAndSet when it is 
clear

38



Performance

# Threads

T
im

e

Ideal

TATAS
TAS

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming” 39



Stampedes

TRUE
lock:

void acquireLock(bool *lock) {
do {
while (*lock) { }         

} while (testAndSet(lock));
}

void releaseLock(bool *lock) {
*lock = FALSE;

}

Non-blocking data structures and transactional memory 40



Back-off algorithms

1. Start by spinning, watching the lock for “s”
iterations

2. If the lock does not become free, wait 
locally for “w” (without watching the lock)

What should “s” be?
What should “w” be?

Non-blocking data structures and transactional memory 41



Time spent spinning on the lock “s”

� Lower values:
� Less time to build up a set of threads that will 

stampede

� Less contention in the memory system, if 
remote reads incur a cost

� Risk of a delay in noticing when the lock 
becomes free if we are not watching

� Higher values:
� Less likelihood of a delay between a lock being 

released and a waiting thread noticing

Non-blocking data structures and transactional memory 42



Local waiting time “w”

� Lower values:
� More responsive to the lock becoming available

� Higher values:
� If the lock doesn’t become available then the 

thread makes fewer accesses to the shared 
variable

Non-blocking data structures and transactional memory 43



Methodical approach

� For a given workload and performance model:
� What is the best that could be done (i.e. given an 

“oracle” with perfect knowledge of when the lock 
becomes free)?

� How does a practical algorithm compare with this?

� Look for an algorithm with a bound between its 
performance and that of the oracle

� “Competitive spinning”

Non-blocking data structures and transactional memory 44



Rule of thumb

� Spin on the lock for a duration that’s comparable 
with the shortest back-off interval

� Exponentially increase the per-thread back-off 
interval (resetting it when the lock is acquired)

� Use a maximum back-off interval that is large 
enough that waiting threads don’t interfere with 
the other threads’ performance

Non-blocking data structures and transactional memory 45



Systems problems

46

Shared physical 
memory

Cache(s)

Lots of h/w threads 
multiplexed over a core

Core

…

� The threads need to “wait 
efficiently”

� Not consuming processing 
resources (contending with lock 
holder) & not consuming power

� “monitor” / “mwait” operations –
e.g., SPARC M7



Systems problems

47

Shared physical 
memory

Cache(s)

S/W threads multiplexed 
on cores

� Spinning gets in the way of other 
s/w threads, even if done efficiently

� For long delays, may need to 
actually block and unblock

� ...as with back-off, how long to 
spin for before blocking?

CoreCore …



Queue-based locks
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Queue-based locks

� Lock holders queue up: immediately provides FCFS 
behavior

� Each spins locally on a flag in their queue entry: no 
remote memory accesses while waiting

� A lock release wakes the next thread directly: no 
stampede

Non-blocking data structures and transactional memory 49



MCS locks

lock:

FALSEFALSEFALSE

QNode 1 QNode 2 QNode 3

Head Tail

Local flag

Lock 
identifies tail

Non-blocking data structures and transactional memory 50



MCS lock acquire

lock:

FALSEvoid acquireMCS(mcs *lock, QNode *qn) {
QNode *prev;
qn->flag = false;
qn->next = NULL;
while (true) {
prev = lock->tail;
/* Label 1 */
if (CAS(&lock->tail, prev, qn)) break;

}
if (prev != NULL) {
prev->next = qn; /* Label 2 */
while (!qn->flag) { } // Spin

} }

Find previous 
tail node

Atomically replace 
“prev” with “qn” in 

the lock itself

Add link within 
the queue

Non-blocking data structures and transactional memory 51



MCS lock release

lock:

FALSE

void releaseMCS(mcs *lock, QNode *qn) {
if (lock->tail = qn) {
if (CAS(&lock->tail, qn, NULL)) return;

}
while (qn->next == NULL) { }
qn->next->flag = TRUE;

}

TRUE
qn:

If we were at the tail 
then remove us

Wait for next lock holder 
to announce themselves; 

signal them

Non-blocking data structures and transactional memory 52



Hierarchical locks



Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Non-blocking data structures and transactional memory



Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory
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Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Pass lock 
“nearby” if 

possible

Call this a 
“cluster” of 

cores

Non-blocking data structures and transactional memory 56



Hierarchical TATAS with backoff

-1
lock:

void acquireLock(bool *lock) {
do {
holder = *lock;
if (holder != -1) {
if (holder == MY_CLUSTER) {
BackOff(SHORT);

} else {
BackOff(LONG);

}
} 

} while (!CAS(lock, -1, MY_CLUSTER));
}

-1 => lock available
n => lock held by cluster n

Non-blocking data structures and transactional memory 57



Hierarchical locks: unfairness v throughput

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Avoid this cycle 
repeating, 

starving 5 & 7…

Non-blocking data structures and transactional memory 58



Lock cohorting
� “Lock Cohorting: A General Technique for Designing NUMA 

Locks”, Dice et al PPoPP 2012
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Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide 
arbitration lock G



Lock cohorting
� Lock acquire, uncontended
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Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide 
arbitration lock G

(1) Acquire local lock

(2) Acquire global lock



Lock cohorting
� Lock acquire, contended
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Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide 
arbitration lock G

(1) Wait for local lock (e.g., MCS)



Lock cohorting
� Lock release, with successor
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Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide 
arbitration lock G

(1) Pass global lock to successor



Lock cohorting, requirements
� Global: “thread oblivious” (acq one thread, release another)

� Local lock: “cohort detection” (can test for successors)
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Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide 
arbitration lock G



Reader-writer locks



Reader-writer locks (TATAS-like)

65

0
lock:

void acquireWrite(int *lock) {
do {
if ((*lock == 0) &&

(CAS(lock, 0, -1))) {
break;

} while (1);
}

void releaseWrite(int *lock) {
*lock = 0;

}

-1 => Locked for write
0 => Lock available

+n => Locked by n readers

void acquireRead(int *lock) {
do {

int oldVal = *lock;
if ((oldVal >= 0) &&

(CAS(lock, oldVal, oldVal+1))) { 
break;

} } while (1);
}

void releaseRead(int *lock) {
FADD(lock, -1); // Atomic fetch-and-add

}



The problem with readers

66

int readCount() {
acquireRead(lock);
int result = count;
releaseRead(lock);
return result;

}

void incrementCount() {
acquireWrite(lock);
count++;
releaseWrite(lock);

}

� Each acquireRead fetches the cache line holding the lock in 
exclusive mode

� Again: acquireRead are not logically conflicting, but this 
introduces a physical confliect

� The time spent managing the lock is likely to vastly 
dominate the actual time looking at the counter

� Many workloads are read-mostly…



Keeping readers separate

67

Owner Flag-1 Flag-2 Flag-3 Flag-N

Acquire write on core i: 
CAS the owner from 0 to i

…then spin until all of the 
flags are clear

…then check that the owner is 0 
(if not then clear own flag and wait)

Acquire read on core i: set 
own flag to true…



Keeping readers separate
� With care, readers do not need to synchronize with other 

readers

� Extend the flags to be whole cache lines 

� Pack multiple locks flags for the same thread onto the same 
line 

� Exploit the cache structure in the machine: Dice & Shavit’s
TLRW byte-lock on SPARC Niagara

� If “N” threads is very large..

� Dedicate the flags to specific important threads

� Replace the flags with ordinary multi-reader locks

� Replace the flags with per-NUMA-domain multi-reader locks
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Other locking techniques
� Affinity

� Allow one thread fast access to the lock

� “One thread” – e.g., previous lock holder

� “Fast access” – e.g., with fewer / no atomic CAS operations

� Mike Burrows “Implementing unnecessary mutexes” 
(Do the assumptions hold?  How slow is an uncontended CAS 
on a modern machine?  Are these techniques still useful?)
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Other locking techniques
� Affinity

� Allow one thread fast access to the lock

� “One thread” – e.g., previous lock holder

� “Fast access” – e.g., with fewer / no atomic CAS operations

� Mike Burrows “Implementing unnecessary mutexes” 
(Do the assumptions hold?  How slow is an uncontended CAS 
on a modern machine?  Are these techniques still useful?)

� Inflation

� Start out with a simple lock for likely-to-be-uncontended use

� Replace with a “proper” lock if contended

� David Bacon (thin locks), Agesen et al (meta-locks)

� Motivating example: standard libraries in Java
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Where are we
� Amdahl’s law: to scale to large numbers of cores, we need 

critical sections to be rare and/or short

� A lock implementation may involve updating a few 
memory locations

� Accessing a data structure may involve only a few memory 
locations too

� If we try to shrink critical sections then the time in the lock 
implementation becomes proportionately greater

� So:

� try to make the cost of the operations in the critical section 
lower, or

� try to write critical sections correctly without locking
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Reading without 
locking
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What if updates are very rare

73

No updates at 
all: no need for 

locking

Modest number 
of updates: could 
use reader-writer 

locks 



Version numbers

74

100

Per-data-
structure 
version 
number

Sequential 
data structure 

with write 
lock



Version numbers: writers
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100



Version numbers: writers
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101
1. Take write lock
2. Increment 

version number

Writers:



Version numbers: writers
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101
1. Take write lock
2. Increment 

version number
3. Make update

Writers:



Version numbers: writers
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102
1. Take write lock
2. Increment 

version number
3. Make update
4. Increment 

version number
5. Release write

lock

Writers:



Version numbers: readers
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102
1. Take write lock
2. Increment 

version number
3. Make update
4. Increment 

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

Readers:



Version numbers: readers
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102
1. Take write lock
2. Increment 

version number
3. Make update
4. Increment 

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation

Readers:



Version numbers: readers
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102
1. Take write lock
2. Increment 

version number
3. Make update
4. Increment 

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation
3. Has the version 

number changed?
4. Yes?   Go to 1

Readers:



Why do we need the two steps?

82

102
1. Take write lock
2. Increment 

version number
3. Make update
4. Increment 

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation
3. Has the version 

number changed?
4. Yes?   Go to 1

Readers:



Read-Copy-Update (RCU)
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Read-Copy-Update (RCU)

84

1. Copy existing structure



Read-Copy-Update (RCU)
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1. Copy existing structure
2. Update copy



Read-Copy-Update (RCU)
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1. Copy existing structure
2. Update copy
3. Install copy with CAS on root pointer



Read-Copy-Update (RCU)

87

� Use locking to serialize updates (typically)
� …but allow readers to operate concurrently with updates

� Ensure that readers don’t go wrong if they access data 
mid-update
� Have data structures reachable via a single root pointer: 

update the root pointer rather than updating the data 
structure in-place

� Ensure that updates don’t affect readers – e.g., initializing 
nodes before splicing them into a list, and retaining “next” 
pointers in deleted nodes

� Exact semantics offered can be subtle (ongoing research 
direction)

� Memory management problems common with lock-free 
data structures 



When will these techniques be effective?
� Update rate low

� So the need to serialize updates is OK

� Readers behaviour is OK mid-update

� E.g., structure small enough to clone, rather than update in 
place

� Readers will be OK until a version number check (not enter 
endless loops / crash / etc.)

� Deallocation or re-use of memory can be controlled

88



Flat combining
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Flat combining
� “Flat Combining and the Synchronization-Parallelism 

Tradeoff”, Hendler et al

� Intuition:

� Acquiring and releasing a lock involves numerous cache line 
transfers on the interconnect

� These may take hundreds of cycles (e.g., between cores in 
different NUMA nodes)

� The work protected by the lock may involve only a few 
memory accesses…

� …and these accesses may be likely to hit in the cache of the 
previous lock holder (but miss in your own)

� So: if a lock is not available, request that the current lock 
holder does the work on your behalf
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Lock
Sequential data 

structure

Request / response 
table

Thread 1

Thread 2

Thread 3 
…



Flat combining: uncontended acquire
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Lock
Sequential data 

structure

Request / response 
table

Thread 1

Thread 2

Thread 3 
…

1. Write proposed op

to req/resp table

2. Acquire lock if it is

free

3. Process requests

4. Release lock

5. Pick up response

Lock

Thread 2’s requestThread 2’s response



Flat combining: contended acquire
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Lock
Sequential data 

structure

Request / response 
table

Thread 1

Thread 2

Thread 3 
…

1. Write proposed op

to req/resp table

2. See lock is not free

3. Wait for response

4. Pick up response

Lock

Thread 2’s requestThread 2’s response

Thread 3’s requestThread 3’s response


