
NON-BLOCKING DATA STRUCTURES

AND TRANSACTIONAL MEMORY

Tim Harris, 14 November 2014

Lecture 6

� Introduction

� Amdahl’s law

� Basic spin-locks

� Queue-based locks

� Hierarchical locks

� Reader-writer locks

� Reading without locking

� Flat combining

Overview
� Building shared memory data structures

� Lists, queues, hashtables, …

� Why?

� Used directly by applications (e.g., in C/C++, Java, C#, …)

� Used in the language runtime system (e.g., management of
work, implementations of message passing, …)

� Used in traditional operating systems (e.g., synchronization
between top/bottom-half code)

� Why not?

� Don’t think of “threads + shared data structures” as a
default/good/complete/desirable programming model

� It’s better to have shared memory and not need it…

3

Correctness

What does it mean
to be correct?

e.g., if multiple concurrent
threads are using iterators on a

shared data structure at the
same time?

Ease to
write

What do we care about?

4

Does it matter? Who is the
target audience? How much
effort can they put into it? Is

implementing a data structure
an undergrad programming

exercise? …or a research
paper?

When can it
be used?

How well
does it scale?

How fast is it?

Between threads in the same
process? Between processes
sharing memory? Within an

interrupt handler?
With/without some kind of
runtime system support?

Suppose I have a sequential
implementation (no

concurrency control at all): is
the new implementation 5%

slower? 5x slower? 100x
slower?

How does performance change
as we increase the number of

threads? When does the
implementation add or avoid

synchronization?

Correctness

Ease to
write

What do we care about?

5

When can it
be used?

How well
does it scale?

How fast is it?

What do we care about?
1. Be explicit about goals and trade-offs

� A benefit in one dimension often has costs in another

� Does a perf increase prevent a data structure being used in
some particular setting?

� Does a technique to make something easier to write make the
implementation slower?

� Do we care? It depends on the setting

2. Remember, parallel programming is rarely a recreational
activity

� The ultimate goal is to increase perf (time, or resources used)

� Does an implementation scale well enough to out-perform a
good sequential implementation?

6

Suggested reading
� “The art of multiprocessor programming”, Herlihy & Shavit

– excellent coverage of shared memory data structures,
from both practical and theoretical perspectives

� “Transactional memory, 2nd edition”, Harris, Larus, Rajwar –
recently revamped survey of TM work, with 350+ references

� “NOrec: streamlining STM by abolishing ownership
records”, Dalessandro, Spear, Scott, PPoPP 2010

� “Simplifying concurrent algorithms by exploiting
transactional memory”, Dice, Lev, Marathe, Moir,
Nussbaum, Olszewski, SPAA 2010

� Intel “Haswell” spec for SLE (speculative lock elision) and
RTM (restricted transactional memory)

7

Amdahl’s law

Amdahl’s law
� “Sorting takes 70% of the execution time of a sequential

program. You replace the sorting algorithm with one that
scales perfectly on multi-core hardware. On a machine
with n cores, how many cores do you need to use to get a
4x speed-up on the overall algorithm?”

9

Amdahl’s law, f=70%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

ee
d

up

#cores

Desired 4x
speedup

Speedup achieved
(perfect scaling on 70%)

10

Amdahl’s law, f=70%

����������(
, �) =
1

�(1 −
) +

�� �

f = fraction of code speedup applies to
c = number of cores used

11

Amdahl’s law, f=70%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

ee
d

up

#cores

Desired 4x
speedup

Speedup achieved
(perfect scaling on 70%)

Limit as c→∞ = 1/(1-f) = 3.33

12

Amdahl’s law, f=10%

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

ee
d

up

#cores

Speedup achieved
with perfect scaling

Amdahl’s law limit,
just 1.11x

13

Amdahl’s law, f=98%

0

10

20

30

40

50

60
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

S
p

ee
d

up

#cores
14

Amdahl’s law & multi-core

Suppose that the same h/w budget (space or power) can make us:

1 2

5 6

3 4

7 8

9 10

13 14

11 12

15 16

1

1 2

3 4

15

Perf of big & small cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1/16 1/8 1/4 1/2 1

C
o

re
 p

er
f(

re
la

ti
ve

 t
o

 1
 b

ig
 c

o
re

Resources dedicated to core

Assumption: perf = α √resource

Total perf:
16 * 1/4 = 4

Total perf:
1 * 1 = 1

16

Amdahl’s law, f=98%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

(r
el

at
iv

e
to

 1
 b

ig
 c

o
re

)

#Cores

1 big

4 medium

16 small

17

Amdahl’s law, f=75%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

(r
el

at
iv

e
to

 1
 b

ig
 c

o
re

)

#Cores

1 big

4 medium

16 small

18

Amdahl’s law, f=5%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

 (r
el

at
iv

e
to

 1
 b

ig
 c

o
re

)

#Cores

1 big

4 medium

16 small

19

Asymmetric chips

1

3 4

7 8

9 10

13 14

11 12

15 16

20

Amdahl’s law, f=75%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

(r
el

at
iv

e
to

 1
 b

ig
 c

o
re

)

#Cores

1 big

4 medium

16 small

1+12

21

Amdahl’s law, f=5%

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

(r
el

at
iv

e
to

 1
 b

ig
 c

o
re

)

#Cores

1 big

4 medium

16 small

1+12

22

Amdahl’s law, f=98%

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

(r
el

at
iv

e
to

 1
 b

ig
 c

o
re

)

#Cores

1 big

4 medium 16 small

1+12

23

Amdahl’s law, f=98%

0

1

2

3

4

5

6

7

8

9

S
p

ee
d

up
 (r

el
at

iv
e

to
 1

 b
ig

 c
o

re
)

#Cores

256 small

1+192

24

Amdahl’s law, f=98%

0

1

2

3

4

5

6

7

8

9

S
p

ee
d

up
 (r

el
at

iv
e

to
 1

 b
ig

 c
o

re
)

#Cores

256 small

1+192

Leave larger core idle
in parallel section

25

Basic spin-locks

Test and set (pseudo-code)

bool testAndSet(bool *b) {
bool result;
atomic {
result = *b;
*b = TRUE;

}
return result;

}

Pointer to a location
holding a boolean

value (TRUE/FALSE)

Read the current
contents of the

location b points to…

…set the contents of
*b to TRUE

27

Test and set

time

• Suppose two threads use it at once

Thread 2:

Thread 1:

testAndSet(b)->true

testAndSet(b)->false

Non-blocking data structures and transactional memory 28

FALSE
lock:

void acquireLock(bool *lock) {
while (testAndSet(lock)) {

/* Nothing */
}

}

void releaseLock(bool *lock) {
*lock = FALSE;

}

Test and set lock

FALSE => lock available
TRUE => lock held

Each call tries to acquire
the lock, returning TRUE

if it is already held

NB: all this is pseudo-
code, assuming SC

memory

Non-blocking data structures and transactional memory 29

Test and set lock

FALSE
lock:

void acquireLock(bool *lock) {
while (testAndSet(lock)) {

/* Nothing */
}

}

void releaseLock(bool *lock) {
*lock = FALSE;

}

Thread 1

TRUE

Thread 2

Non-blocking data structures and transactional memory 30

What are the problems here?

testAndSet
implementation

causes contention

Non-blocking data structures and transactional memory 31

Single-
threaded

core

Contention from testAndSet

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Non-blocking data structures and transactional memory 32

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 33

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 34

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory

Does this still happen in
practice? Do modern

CPUs avoid fetching the
line in exclusive mode

on failing TAS?

35

What are the problems here?

Spinning may waste
resources while

waiting

No control over
locking policy

testAndSet
implementation

causes contention

Only supports mutual
exclusion: not reader-

writer locking

36

General problem
� No logical conflict between two failed lock acquires

� Cache protocol introduces a physical conflict

� For a good algorithm: only introduce physical conflicts if a
logical conflict occurs

� In a lock: successful lock-acquire & failed lock-acquire

� In a set: successful insert(10) & failed insert(10)

� But not:

� In a lock: two failed lock acquires

� In a set: successful insert(10) & successful insert(20)

� In a non-empty queue: enqueue on the left and remove on the
right

37

Test and test and set lock

FALSE
lock:

void acquireLock(bool *lock) {
do {
while (*lock) { }

} while (testAndSet(lock));
}

void releaseLock(bool *lock) {
*lock = FALSE;

}

FALSE => lock available
TRUE => lock held

Spin while the lock is
held… only do

testAndSet when it is
clear

38

Performance

Threads

T
im

e

Ideal

TATAS
TAS

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming” 39

Stampedes

TRUE
lock:

void acquireLock(bool *lock) {
do {
while (*lock) { }

} while (testAndSet(lock));
}

void releaseLock(bool *lock) {
*lock = FALSE;

}

Non-blocking data structures and transactional memory 40

Back-off algorithms

1. Start by spinning, watching the lock for “s”
iterations

2. If the lock does not become free, wait
locally for “w” (without watching the lock)

What should “s” be?
What should “w” be?

Non-blocking data structures and transactional memory 41

Time spent spinning on the lock “s”

� Lower values:
� Less time to build up a set of threads that will

stampede

� Less contention in the memory system, if
remote reads incur a cost

� Risk of a delay in noticing when the lock
becomes free if we are not watching

� Higher values:
� Less likelihood of a delay between a lock being

released and a waiting thread noticing

Non-blocking data structures and transactional memory 42

Local waiting time “w”

� Lower values:
� More responsive to the lock becoming available

� Higher values:
� If the lock doesn’t become available then the

thread makes fewer accesses to the shared
variable

Non-blocking data structures and transactional memory 43

Methodical approach

� For a given workload and performance model:
� What is the best that could be done (i.e. given an

“oracle” with perfect knowledge of when the lock
becomes free)?

� How does a practical algorithm compare with this?

� Look for an algorithm with a bound between its
performance and that of the oracle

� “Competitive spinning”

Non-blocking data structures and transactional memory 44

Rule of thumb

� Spin on the lock for a duration that’s comparable
with the shortest back-off interval

� Exponentially increase the per-thread back-off
interval (resetting it when the lock is acquired)

� Use a maximum back-off interval that is large
enough that waiting threads don’t interfere with
the other threads’ performance

Non-blocking data structures and transactional memory 45

Systems problems

46

Shared physical
memory

Cache(s)

Lots of h/w threads
multiplexed over a core

Core

…

� The threads need to “wait
efficiently”

� Not consuming processing
resources (contending with lock
holder) & not consuming power

� “monitor” / “mwait” operations –
e.g., SPARC M7

Systems problems

47

Shared physical
memory

Cache(s)

S/W threads multiplexed
on cores

� Spinning gets in the way of other
s/w threads, even if done efficiently

� For long delays, may need to
actually block and unblock

� ...as with back-off, how long to
spin for before blocking?

CoreCore …

Queue-based locks

48

Queue-based locks

� Lock holders queue up: immediately provides FCFS
behavior

� Each spins locally on a flag in their queue entry: no
remote memory accesses while waiting

� A lock release wakes the next thread directly: no
stampede

Non-blocking data structures and transactional memory 49

MCS locks

lock:

FALSEFALSEFALSE

QNode 1 QNode 2 QNode 3

Head Tail

Local flag

Lock
identifies tail

Non-blocking data structures and transactional memory 50

MCS lock acquire

lock:

FALSEvoid acquireMCS(mcs *lock, QNode *qn) {
QNode *prev;
qn->flag = false;
qn->next = NULL;
while (true) {
prev = lock->tail;
/* Label 1 */
if (CAS(&lock->tail, prev, qn)) break;

}
if (prev != NULL) {
prev->next = qn; /* Label 2 */
while (!qn->flag) { } // Spin

} }

Find previous
tail node

Atomically replace
“prev” with “qn” in

the lock itself

Add link within
the queue

Non-blocking data structures and transactional memory 51

MCS lock release

lock:

FALSE

void releaseMCS(mcs *lock, QNode *qn) {
if (lock->tail = qn) {
if (CAS(&lock->tail, qn, NULL)) return;

}
while (qn->next == NULL) { }
qn->next->flag = TRUE;

}

TRUE
qn:

If we were at the tail
then remove us

Wait for next lock holder
to announce themselves;

signal them

Non-blocking data structures and transactional memory 52

Hierarchical locks

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Non-blocking data structures and transactional memory

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Non-blocking data structures and transactional memory 55

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Pass lock
“nearby” if

possible

Call this a
“cluster” of

cores

Non-blocking data structures and transactional memory 56

Hierarchical TATAS with backoff

-1
lock:

void acquireLock(bool *lock) {
do {
holder = *lock;
if (holder != -1) {
if (holder == MY_CLUSTER) {
BackOff(SHORT);

} else {
BackOff(LONG);

}
}

} while (!CAS(lock, -1, MY_CLUSTER));
}

-1 => lock available
n => lock held by cluster n

Non-blocking data structures and transactional memory 57

Hierarchical locks: unfairness v throughput

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Avoid this cycle
repeating,

starving 5 & 7…

Non-blocking data structures and transactional memory 58

Lock cohorting
� “Lock Cohorting: A General Technique for Designing NUMA

Locks”, Dice et al PPoPP 2012

59

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

Lock cohorting
� Lock acquire, uncontended

60

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

(1) Acquire local lock

(2) Acquire global lock

Lock cohorting
� Lock acquire, contended

61

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

(1) Wait for local lock (e.g., MCS)

Lock cohorting
� Lock release, with successor

62

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

(1) Pass global lock to successor

Lock cohorting, requirements
� Global: “thread oblivious” (acq one thread, release another)

� Local lock: “cohort detection” (can test for successors)

63

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

Reader-writer locks

Reader-writer locks (TATAS-like)

65

0
lock:

void acquireWrite(int *lock) {
do {
if ((*lock == 0) &&

(CAS(lock, 0, -1))) {
break;

} while (1);
}

void releaseWrite(int *lock) {
*lock = 0;

}

-1 => Locked for write
0 => Lock available

+n => Locked by n readers

void acquireRead(int *lock) {
do {

int oldVal = *lock;
if ((oldVal >= 0) &&

(CAS(lock, oldVal, oldVal+1))) {
break;

} } while (1);
}

void releaseRead(int *lock) {
FADD(lock, -1); // Atomic fetch-and-add

}

The problem with readers

66

int readCount() {
acquireRead(lock);
int result = count;
releaseRead(lock);
return result;

}

void incrementCount() {
acquireWrite(lock);
count++;
releaseWrite(lock);

}

� Each acquireRead fetches the cache line holding the lock in
exclusive mode

� Again: acquireRead are not logically conflicting, but this
introduces a physical confliect

� The time spent managing the lock is likely to vastly
dominate the actual time looking at the counter

� Many workloads are read-mostly…

Keeping readers separate

67

Owner Flag-1 Flag-2 Flag-3 Flag-N

Acquire write on core i:
CAS the owner from 0 to i

…then spin until all of the
flags are clear

…then check that the owner is 0
(if not then clear own flag and wait)

Acquire read on core i: set
own flag to true…

Keeping readers separate
� With care, readers do not need to synchronize with other

readers

� Extend the flags to be whole cache lines

� Pack multiple locks flags for the same thread onto the same
line

� Exploit the cache structure in the machine: Dice & Shavit’s
TLRW byte-lock on SPARC Niagara

� If “N” threads is very large..

� Dedicate the flags to specific important threads

� Replace the flags with ordinary multi-reader locks

� Replace the flags with per-NUMA-domain multi-reader locks

68

Other locking techniques
� Affinity

� Allow one thread fast access to the lock

� “One thread” – e.g., previous lock holder

� “Fast access” – e.g., with fewer / no atomic CAS operations

� Mike Burrows “Implementing unnecessary mutexes”
(Do the assumptions hold? How slow is an uncontended CAS
on a modern machine? Are these techniques still useful?)

69

Other locking techniques
� Affinity

� Allow one thread fast access to the lock

� “One thread” – e.g., previous lock holder

� “Fast access” – e.g., with fewer / no atomic CAS operations

� Mike Burrows “Implementing unnecessary mutexes”
(Do the assumptions hold? How slow is an uncontended CAS
on a modern machine? Are these techniques still useful?)

� Inflation

� Start out with a simple lock for likely-to-be-uncontended use

� Replace with a “proper” lock if contended

� David Bacon (thin locks), Agesen et al (meta-locks)

� Motivating example: standard libraries in Java

70

Where are we
� Amdahl’s law: to scale to large numbers of cores, we need

critical sections to be rare and/or short

� A lock implementation may involve updating a few
memory locations

� Accessing a data structure may involve only a few memory
locations too

� If we try to shrink critical sections then the time in the lock
implementation becomes proportionately greater

� So:

� try to make the cost of the operations in the critical section
lower, or

� try to write critical sections correctly without locking

71

Reading without
locking

72

What if updates are very rare

73

No updates at
all: no need for

locking

Modest number
of updates: could
use reader-writer

locks

Version numbers

74

100

Per-data-
structure
version
number

Sequential
data structure

with write
lock

Version numbers: writers

75

100

Version numbers: writers

76

101
1. Take write lock
2. Increment

version number

Writers:

Version numbers: writers

77

101
1. Take write lock
2. Increment

version number
3. Make update

Writers:

Version numbers: writers

78

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

Version numbers: readers

79

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

Readers:

Version numbers: readers

80

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation

Readers:

Version numbers: readers

81

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation
3. Has the version

number changed?
4. Yes? Go to 1

Readers:

Why do we need the two steps?

82

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation
3. Has the version

number changed?
4. Yes? Go to 1

Readers:

Read-Copy-Update (RCU)

83

Read-Copy-Update (RCU)

84

1. Copy existing structure

Read-Copy-Update (RCU)

85

1. Copy existing structure
2. Update copy

Read-Copy-Update (RCU)

86

1. Copy existing structure
2. Update copy
3. Install copy with CAS on root pointer

Read-Copy-Update (RCU)

87

� Use locking to serialize updates (typically)
� …but allow readers to operate concurrently with updates

� Ensure that readers don’t go wrong if they access data
mid-update
� Have data structures reachable via a single root pointer:

update the root pointer rather than updating the data
structure in-place

� Ensure that updates don’t affect readers – e.g., initializing
nodes before splicing them into a list, and retaining “next”
pointers in deleted nodes

� Exact semantics offered can be subtle (ongoing research
direction)

� Memory management problems common with lock-free
data structures

When will these techniques be effective?
� Update rate low

� So the need to serialize updates is OK

� Readers behaviour is OK mid-update

� E.g., structure small enough to clone, rather than update in
place

� Readers will be OK until a version number check (not enter
endless loops / crash / etc.)

� Deallocation or re-use of memory can be controlled

88

Flat combining

89

Flat combining
� “Flat Combining and the Synchronization-Parallelism

Tradeoff”, Hendler et al

� Intuition:

� Acquiring and releasing a lock involves numerous cache line
transfers on the interconnect

� These may take hundreds of cycles (e.g., between cores in
different NUMA nodes)

� The work protected by the lock may involve only a few
memory accesses…

� …and these accesses may be likely to hit in the cache of the
previous lock holder (but miss in your own)

� So: if a lock is not available, request that the current lock
holder does the work on your behalf

90

Flat combining

91

Lock
Sequential data

structure

Request / response
table

Thread 1

Thread 2

Thread 3
…

Flat combining: uncontended acquire

92

Lock
Sequential data

structure

Request / response
table

Thread 1

Thread 2

Thread 3
…

1. Write proposed op

to req/resp table

2. Acquire lock if it is

free

3. Process requests

4. Release lock

5. Pick up response

Lock

Thread 2’s requestThread 2’s response

Flat combining: contended acquire

93

Lock
Sequential data

structure

Request / response
table

Thread 1

Thread 2

Thread 3
…

1. Write proposed op

to req/resp table

2. See lock is not free

3. Wait for response

4. Pick up response

Lock

Thread 2’s requestThread 2’s response

Thread 3’s requestThread 3’s response

