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What is Quantum Mechanics?

Quantum Mechanics is a framework for the development of physical
theories.

It is not itself a physical theory.

It states four mathematical postulates that a physical theory must satisfy.

Actual physical theories, such as Quantum Electrodynamics are built
upon a foundation of quantum mechanics.



What are the Postulates About

The four postulates specify a general framework for describing the
behaviour of a physical system.

1. How to describe the state of a closed system.—Statics or state space
2. How to describe the evolution of a closed system.—Dynamics
3. How to describe the interactions of a system with external

systems.—Measurement
4. How to describe the state of a composite system in terms of its

component parts.



First Postulate

Associated to any physical system is a complex inner product space (or
Hilbert space) known as the state space of the system.
The system is completely described at any given point in time by its state
vector, which is a unit vector in its state space.

Note: Quantum Mechanics does not prescribe what the state space is
for any given physical system. That is specified by individual physical
theories.



Example: A Qubit

Any system whose state space can be described by C2—the
two-dimensional complex vector space—can serve as an implementation
of a qubit.

Example: An electron spin.

Some systems may require an infinite-dimensional state space.
We always assume, for the purposes of this course, that our systems have
a finite dimensional state space.



Second Postulate

The time evolution of closed quantum system is described by the
Schrödinger equation:

i~
d |ψ〉
dt

= H|ψ〉

where
• ~ is Planck’s constant; and
• H is a fixed Hermitian operator known as the Hamiltonian of the
system.



Second Postulate—Simpler Form

The state |ψ〉 of a closed quantum system at time t1 is related to the
state |ψ′〉 at time t2 by a unitary operator U that depends only on t1 and
t2.

|ψ′〉 = U|ψ〉

U is obtained from the Hamiltonian H by the equation:

U(t1, t2) = exp[
−iH(t2 − t1)

~
]

This allows us to consider time as discrete and speak of computational
steps
Exercise: Check that if H is Hermitian, U is unitary.



Why Unitary?

Unitary operations are the only linear maps that preserve norm.

|ψ′〉 = U|ψ〉

implies

|| |ψ′〉|| = ||U|ψ〉|| = || |ψ〉|| = 1

Exercise: Verify that unitary operations are norm-preserving.



Gates, Operators, Matrices

In this course, most linear operators we will be interested in are unitary.
They can be represented as matrices where each column is a unit vector
and columns are pairwise orthogonal.

Another useful representation of unitary operators we will use is as gates:

G

A 2-qubit gate is a unitary operator on C4.



Pauli Gates

A particularly useful set of 1-qubit gates are the Pauli Gates.
The X gate

X

X |0〉 = |1〉 X |1〉 = |0〉 X =

[
0 1
1 0

]
The Y gate

Y

Y |0〉 = i |1〉 Y |1〉 = −i |0〉 Y =

[
0 −i
i 0

]



Pauli Gates–contd.

The Z gate

Z

Z |0〉 = |0〉 Z |1〉 = −|1〉 Z =

[
1 0
0 −1

]

Sometimes we include the identity I =
[

1 0
0 1

]
as a fourth Pauli gate.



Third Postulate

A measurement on a quantum system has some set M of outcomes.
Quantum measurements are described by a collection {Pm : m ∈ M} of
measurement operators. These are linear (not unitary) operators acting
on the state space of the system.
If the state of the system is |ψ〉 before the measurement, then the
probability of outcome m is:

p(m) = 〈ψ|P†mPm|ψ〉

The state of the system after measurement is

Pm|ψ〉√
〈ψ|P†mPm|ψ〉



Third Postulate—contd.

The measurement operators satisfy the completeness equation.∑
m∈M

P†mPm = I

This guarantees that the sum of the probabilities of all outcomes adds up
to 1. ∑

m

p(m) =
∑
m

〈ψ|P†mPm|ψ〉 = 〈ψ|I |ψ〉 = 1



Measurement in the Computational Basis

We are generally interested in the special case where the measurement
operators are projections onto a particular orthonormal basis of the state
space (which we call the computational basis).

So, for a single qubit, we take measurement operators P0 = |0〉〈0| and
P1 = |1〉〈1|

This gives, for a qubit in state α|0〉+ β|1〉:

p(0) = |α|2 p(1) = |β|2

Exercise: Verify!



Global Phase

For any state |ψ〉, and any θ, we can form the vector e iθ|ψ〉.

Then, for any unitary operator U,

Ue iθ|ψ〉 = e iθU|ψ〉

Moreover, for any measurement operator Pm

〈ψ|e−iθP†mPme iθ|ψ〉 = 〈ψ|P†mPm|ψ〉

Thus, such a global phase is unobservable and the states are physically
indistinguishable.



Relative Phase

In contrast, consider the two states |ψ1〉 = 1√
2
(|0〉+ |1〉) and

|ψ2〉 = 1√
2
(|0〉 − |1〉).

Measured in the computational basis, they yield the same outcome
probabilities.

However, measured in a different orthonormal basis (say 1√
2
(|0〉+ |1〉)

and 1√
2
(|0〉 − |1〉)), the results are different.

Also, if H = 1√
2

[
1 1
1 −1

]
, then

H|ψ1〉 = |0〉 H|ψ2〉 = |1〉



Fourth Postulate

The state space of a composite physical system is the tensor product of
the state spaces of the individual component physical systems.

If one component is in state |ψ1〉 and a second component is in state
|ψ2〉, the state of the combined system is

|ψ1〉 ⊗ |ψ2〉

Not all states of a combined system can be separated into the tensor
product of states of the individual components.



Separable States

A state of a combined system is separable if it can be expressed as the
tensor product of states of the components.
E.g.

1
2
(|00〉+ |01〉+ |10〉+ |11〉) = 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

If Alice has a system in state |ψ1〉 and Bob has a system in
state |ψ1〉, the state of their combined system is |ψ1〉 ⊗ |ψ1〉.

If Alice applies U to her state, this is equivalent to applying the
operator U ⊗ I to the combined state.



Entangled States

The following states of a 2-qubit system cannot be separated into
components parts.

1√
2
(|10〉+ |01〉) and

1√
2
(|00〉+ |11〉)

Note: Physical separation does not imply separability. Two particles that
are physically separated could still be entangled.



Summary

Postulate 1: A closed system is described by a unit vector in a complex
inner product space.
Postulate 2: The evolution of a closed system in a fixed time interval is
described by a unitary transform.
Postulate 3: If we measure the state |ψ〉 of a system in an orthonormal
basis |0〉 · · · |n − 1〉, we get the result |j〉 with probability |〈j |ψ〉|2. After
the measurement, the state of the system is the result of the
measurement.
Postulate 4: The state space of a composite system is the tensor product
of the state spaces of the components.


