
1

Workbook 4

Introduction
The implementation of PatternLife you wrote last week is brittle in the sense that the program does not
cope well when input data is malformed or missing. This week you will improve PatternLife using Java
exceptions to handle erroneous or missing input data. In addition, you will learn how to read files from
disk and from a website and use the retrieved data to initialise a Game of Life.

Important

The recommended text book for this course is Thinking in Java by Bruce Eckel. You can download a
copy of the 3rd Edition for free from Bruce's website:

http://www.mindview.net/Books/TIJ/

Remember to check the course website regularly for announcements and errata:

http://www.cl.cam.ac.uk/teaching/current/ProgJava

You will find the Java standard library documentation useful:

http://java.sun.com/javase/6/docs/api/

Managing errors with Java Exceptions
Try invoking your copy of PatternLife from last week as follows:

• java -jar crsid-tick3.jar

• java -jar crsid-tick3.jar "Glider:Richard Guy:20:20:1:"

• java -jar crsid-tick3.jar "Glider:Richard Guy:twenty:20:1:1:010 001 111"

What does your program print out in each of the above cases? It's likely that in each case your
implementation will print out a stack trace which describes an error in the program. Here is a typical
stack trace from a student submission:

crsid@machine~> java -jar crsid-tick3.jar "Glider:Richard Guy:20:20:1:"
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5
 at uk.ac.cam.your-crsid.tick3.Pattern.<init>(Pattern.java:48)
 at uk.ac.cam.your-crsid.tick3.PatternLife.main(PatternLife.java:96)

In this case the input string "Glider:Richard Guy:20:20:1:" provided on the command line to
the program did not conform correctly to the specification described in Workbook 3. The stack trace
explains where the error in the program occurred. The first line of the stack trace explains that an
exception of the type java.lang.ArrayIndexOutOfBoundsException occurred when the sixth
element of the array was accessed. The remaining lines provide a little history of program execution
which led the computer to make the array access which generated the exception. In this case, program
execution was taking place at line 48 of Pattern.java when the error occurred; this location was
reached because the method on line 48 of Pattern.java was invoked by the constructor on line 96
of PatternLife.java. The detail in the stack trace helps the programmer determine why the error
occurred and provides clues on how to fix it.

The exception java.lang.ArrayIndexOutOfBoundsException is actually a class inside
the package java.lang. The java.lang package is special in Java because, unlike

http://www.mindview.net/Books/TIJ/
http://www.cl.cam.ac.uk/teaching/current/ProgJava
http://java.sun.com/javase/6/docs/api/

Workbook 4

2

classes in all other packages, the contents of this package are always available in a
Java program. Consequently, you can write ArrayIndexOutOfBoundsException instead of
java.lang.ArrayIndexOutOfBoundsException.

Take a second look at each of the errors generated by your code with the three test cases mentioned
at the start of this section. Can you determine which assumptions were made by your program which
led to the error occurring? In some cases you can avoid generating errors by checking inputs carefully
before using them; in other cases you will need to write additional code to catch the error and handle it.
For example, you can probably avoid an exception of the type ArrayIndexOutOfBoundsException
by checking the length field of the array before accessing particular elements of the array. In contrast,
exceptions of the type NumberFormatException need to be caught and handled appropriately.

If you need to handle an error, then you can do this by using a try-catch block. Consider the following
example:

int width;
try {
 width = Integer.parseInt("twenty"); //error: not an integer value
} catch (NumberFormatException error) {
 //handle the error, perhaps by using a default:
 width = 10;
}

The above code attempts to convert the Java string "twenty" into a number, which fails since the
contents of the string doesn't contain digits describing an integer literal. The static method parseInt
then throws an exception of type NumberFormatException which is caught by the try-catch block. In
the case above, the programmer has decided to hard-code the value of width to 10. In some cases,
using a default value like this is satisfactory. In the case of PatternLife, providing a default value for
width is not ideal because the programmer cannot know the size of the world the user wishes to
simulate—this is why the format string provides the information in the first place!

In cases where no default value is sensible, the only option is to throw an exception, as opposed to a
normal return value, back to the calling method in the hope that this method might know what to do to
handle the error. Ultimately, the programmer might not know what to do at any point in the program, in
which case all the programmer can do is display an error message to the user. You will explore how to
throw exceptions between methods after the next exercise.

In more complex cases, you may need to handle multiple types of exception separately. You can attach
multiple catch blocks to a single try block as shown in the following example:

try {
 //code which may generate multiple types of exception
} catch (TypeAException a) {
 //handle TypeAException here
} catch (TypeBException b) {
 //handle TypeBException here
}

Workbook 4

3

Create a class called Repeat in package uk.ac.cam.your-crsid.tick4 with the following
contents:

package uk.ac.cam.your-crsid.tick4;

public class Repeat {
 public static void main(String[] args) {
 System.out.println(parseAndRep(args));
 }

 /*
 * Return the first string repeated by the number of times
 * specified by the integer in the second string, for example
 *
 * parseAndRep(new String[]{"one","3"})
 *
 * should return "one one one". Adjacent copies of the repeated
 * string should be separated by a single space.
 *
 * Return a suitable error message in a string when there are
 * not enough arguments in "args" or the second argument is
 * not a valid positive integer. For example:
 *
 * - parseAndRep(new String[]{"one"}) should return
 * "Error: insufficient arguments"
 *
 * - parseAndRep(new String[]{"one","five"}) should return
 * "Error: second argument is not a positive integer"
 */
 public static String parseAndRep(String[] args) {
 //TODO
 }
}

1. Complete the method parseAndRep in the class Repeat, taking care to adhere to the
specification provided in the comment written above the method.

You can test your implementation by passing zero, one or two arguments on the command line.
Here is an example:

crsid@machine:~> java uk.ac.cam.your-crsid.tick4.Repeat "UoC" 5
UoC UoC UoC UoC UoC
crsid@machine:~>

The error handling you provided in the Repeat class above works well for the small example at hand,
but passing around strings containing messages for the user is cumbersome and messy. As you have
already seen for Integer.parseInt, Java provides a mechanism for passing exceptions (as opposed
to return values) between methods. In Java terminology, we say that a method throws an exception. For
example, the Integer.parseInt method throws an exception of type NumberFormatException.

To throw an exception you use the keyword throw. If the exception is thrown inside the body of a try-
catch block, execution passes to the first line of the catch body which catches an exception of the
appropriate type. If the call to throw is not contained within the body of a try-catch block, then the
exception is propagated back to the method which invoked the current method, and so on recursively,
until an enclosing try-catch block is found. If no try-catch block exists, then the java runtime halts the
program and prints a stack trace, just as we saw earlier. Here is an example:

Workbook 4

4

package uk.ac.cam.your-crsid.tick4;

class ExceptionTest {
 public static void main(String[] args) {
 System.out.print("C");
 try {
 a();
 } catch (Exception e) {
 System.out.print(e.getMessage());
 }
 System.out.println("A");
 }

 public static void a() throws Exception {
 System.out.print("S");
 b();
 System.out.print("J");
 }

 public static void b() throws Exception {
 System.out.print("T");
 if (1+2+3==6)
 throw new Exception("1");
 System.out.print("V");
 }
}

2. What does this program print out when executed? Type the program in to check your answer.

In the above example you should have noticed that methods a and b have an extra phrase throws
Exception appended on the end of the method prototype. This phrase is required, and informs the
programmer and the Java compiler that this method may throw an exception of type Exception. If you
forget to type throws Exception, then you will get a compile error; you may like to temporarily delete
the phrase from your copy of ExceptionTest to see the compile error.

A new exception can be defined by creating a new class and declaring that it is of type Exception.
For example the following code snippet creates a new exception called PatternFormatException:

package uk.ac.cam.your-crsid.tick4;

public class PatternFormatException extends Exception {

}

This code should be placed in a file called PatternFormatException.java inside a suitable
directory structure to match the package declaration, just as you would do for any other class in Java.
You can place methods and fields inside PatternFormatException, just as you would in other
Java classes. The syntax "extends Exception" indicates that PatternFormatException is of
type Exception. This is an example of inheritance in Java; you will learn more about inheritance in
Workbook 5. In this workbook we will limit use of inheritance to the creation of new types of exception
as shown above.

As you saw in the example above, if you throw a PatternFormatException inside a method
body and do not enclose the use of throw inside a try-catch block, you should append "throws
PatternFormatException" on to the end of the method prototype. A method can throw more than
one type of exception, in which case the method prototype should include a comma separated list of
exceptions, such as "throws PatternFormatException, NumberFormatException".

Workbook 4

5

Java actually supports two types of exception: checked exceptions and unchecked exceptions, and
some of the common exceptions in Java, such as NumberFormatException, are unchecked
exceptions. A piece of code which may potentially throw a checked exception must either catch it in
a try-catch block or declare that the method body may throw the exception; an unchecked exception
does not need to be caught or declared thrown. When defining your own exceptions it is generally good
programming practise to use checked exceptions (by inheriting from Exception as shown earlier), and
you should do so in all cases in this course.

Your next task is to modify your implementation of Conway's Game of Life from last week to
provide the user of your program with clear feedback on any errors in the format string. You should:

3. Make a copy of Pattern.java and PatternLife.java which you wrote for Tick 3 and
place them inside the package uk.ac.cam.your-crsid.tick4.

4. Declare a new exception called PatternFormatException inside the same package.

5. Modify your implementation of Pattern so that the constructor for the class as well as the
method initialise throws PatternFormatException when an error is discovered in the
format string describing the world.

6. Catch the PatternFormatException thrown by either the creation of an instance of
Pattern or by the use of the initialise method inside the main method of PatternLife,
and print out a helpful message describing the error to the user.

The following invocations of PatternLife should print out helpful error messages. None should
produce a stack trace.

• java uk.ac.cam.your-crsid.tick4.PatternLife

• java uk.ac.cam.your-crsid.tick4.PatternLife RandomString

• java uk.ac.cam.your-crsid.tick4.PatternLife \
"Glider:Richard Guy:20:20:1:"

• java uk.ac.cam.your-crsid.tick4.PatternLife \
"Glider:Richard Guy:a:b:1:1:010 001 111"

• java uk.ac.cam.your-crsid.tick4.PatternLife \
"Glider:Richard Guy:20:20:one:1:010 001 111"

• java uk.ac.cam.your-crsid.tick4.PatternLife \
"Glider:Richard Guy:20:20:1:1:010 0a1 111"

Do not forget to check that your program still produces the correct output if it is given a correctly
formatted string.

Reading data from files and websites
In the rest of this Workbook you will improve the facilities used to load patterns in your implementation of
Conway's Game of Life so that, by the end of this workbook, your program will be able to load patterns
from files in the filesystem, or download them from websites. To do this we are going to investigate the
Input-Output (IO) facilities available in the Java standard library. Handling input and output is a common
source of errors in most programming languages because lots of things can go wrong: files might not
exist, the contents of the file may be corrupt, or the network connection may disappear whilst data is
being retrieved. Good IO programming requires careful checking of error conditions.

The Java IO standard library has two main methods of accessing data: Streams and Readers. Both
of these mechanisms use exceptions to communicate erroneous states to the programmer using the
library. A Stream is used for reading and writing sequences of binary data—examples might be images
or Java class files. A Reader is used for reading and writing sequences of characters—such as text

Workbook 4

6

files, or in case the case of this workbook, strings which specify the state of the world in the Game of
Life. In principle, sequences of characters can be read using a Stream, however character data can be
saved in a variety of different formats which the programmer would then have to interpret and decode.
In contrast, a Reader presents the same interface to character data regardless of the underlying format.

Start a web browser and take a look at Sun's documentation for the Reader class, paying particular
attention to the methods defined for reading characters. For example, the method prototype int
read(char[] cbuf) describes a method which reads data into a char array and may throw an
IOException if an error occurs during the reading process; the return value indicates the number of
characters read or -1 if no more data is available. You may have noticed that the Reader class is an
abstract class; the details of what an abstract class is and how to use it will be described in Workbook 5.
This week it is sufficient to appreciate that an abstract class provides a specification which describes how
a specific implementation of a "Reader" must behave. For example, FileReader provides a concrete
implementation of Reader, and is able to read data from files in the filesystem.

Now is an appropriate point to explore how System.out.println works. The System class is part
of the package java.lang and is therefore available by default. If you look for the class System in
Sun's documentation, you see that it has a public static field called out of type PrintStream.1 If you
view the documentation for PrintStream you will see that the field out supports a variety of method
calls including the now familiar println method. For completeness, the interested reader might like to
explore what System.err and System.in do too.

Your final task this week is to write a new class called PatternLoader, which is capable of loading
patterns from the disk or downloading them from a website. Create a new class with the following
contents, making sure you give the class the correct filename and you place it in an appropriate directory
structure:

package uk.ac.cam.your-crsid.tick4;

import java.io.Reader;
import java.io.IOException;
import java.util.List;

public class PatternLoader {

 public static List<Pattern> load(Reader r) throws IOException {
 //TODO: Complete the implementation of this method.
 }
}

This class introduces a number of new concepts which require further explanation. You should read the
rest of this section of the workbook before completing your implementation of PatternLoader.

In your implementation of PatternLoader you will need to make use of some classes in the standard
library such as Reader which you looked up in the documentation earlier. To save you from typing
java.io.Reader at every point in the program when you want to refer to the Reader class, the code
above makes use of the import statement. The statement "import java.io.Reader;" tells the
compiler that all occurrences of Reader in the source file actually refer to java.io.Reader. Using
the import statement will save you some typing, make your code more readable, and provide you with
an explicit list of dependencies for the program at the top of the source file.

There is nothing special about classes defined in the standard library. For example, including

import uk.ac.cam.your-crsid.tick1.TestBit;

at the top of a Java source file would allow you to write TestBit to refer to your implementation of
uk.ac.cam.your-crsid.tick1.TestBit you wrote for Tick 1.

1The astute reader will have noticed that we stated earlier that a Reader should be used for character data and the type of
System.out is PrintStream! This is because Reader was not introduced into Java until version 1.1.

Workbook 4

7

You may recall from last week that a static method is associated with a class rather than an
instance of a class. Therefore you can make use of PatternLoader just as you used PackedLong
in previous weeks—as a library of useful methods which you can call without first creating an instance
of class PatternLoader. For example, to call the load method from another class, you simply write
PatternLoader.load followed by a reference to a Reader object inside round brackets.

The load method takes a single argument of type Reader. When the load method is invoked, a specific
kind of Reader will be provided (for example, a FileReader). By specifying the type of the argument
to load as Reader the method is agnostic to the actual type of Reader provided: the implementation
of load does not need to consider where the data is coming from—it can simply read characters using
the support provided by the particular instance of Reader provided by the calling method.

The return type of the load method is List<Pattern>. A List is another class from the Java standard
library. A List records an ordered sequence of items and the main difference between a List and a
Java array is that a list can change its size dynamically: the programmer can add or delete items to it
without stating how large it should be in advance. The phrase "<Pattern>" is an example of something
called Java generics, the details of which are beyond the scope of this course. This year, all you need
to know is how to use classes which use Java generics. As you've seen already, all you need to do is
provide the class you want to use inside the angle brackets (< and >). For example, List<Pattern>
is a List which stores elements of type Pattern; you will learn more about Java generics next year.

The phrase "throws IOException" states that the load method may throw an exception of type
IOException. The IOException class is defined as part of the Java standard library and is used
to communicate that something unexpected happened whilst data was read or written. For example, if
the network connection to the computer breaks whilst a Java program is downloading content from a
website, then the Reader object may throw an IOException.

To complete PatternLoader you will need to implement the method load, which should read all the
data available from the Reader object reference r, and create a List<Pattern> object. The type
of the return value provides a strong hint that your implementation of the load method may well find
several pattern strings available in the input. Therefore some method of separating patterns in the input
stream is required.

A common technique for separating text data in Unix-like systems such as Linux is to look for "new
line" characters, which in Java are written using the character literal '\n' and appear as new lines
when printed. In contrast, Windows usually uses separate characters for "new line" ('\n') and "carriage
return" ('\r') and therefore it's also common to see the two character string "\r\n" as a line separator.
You might like to try writing a simple test program which executes:

System.out.println("A sentence on one line.\nThis is on a second line.");

and examine the output. This course will use a Unix-style line separator to place multiple patterns into
a single file.

The methods provided by Reader do not provide a mechanism for dividing the input based on the
presence of new line characters. This is because the Reader class provides low-level access to
character data. The functionality to split on new lines is provided by BufferedReader; this functionality
is possible with BufferedReader because the class caches data read internally, allowing the class to
search for new line characters in its cache. If you check the documentation for BufferedReader you
will see it provides a readLine method which will read a line from the underlying reader and return
a reference to a String object containing the data, or alternatively return null if there are no more
lines to be read. The method readLine will function correctly regardless of whether Unix- or Windows-
style line separators are used. You can create a reference to a BufferedReader object by passing
an instance of the Reader object in as an argument to the constructor:

BufferedReader buff = new BufferedReader(r);

To complete your implementation of load you will also need to create an instance of List to save
Patterns as you load them:

Workbook 4

8

List<Pattern> resultList = new LinkedList<Pattern>();

Just as we saw earlier with the Reader class, the List class may have multiple implementations; in the
case above, we use the LinkedList implementation. Given an instance of type List you can then
add objects of the correct type as follows:

Pattern p =
resultList.add(p);

You can determine the current number of elements stored in a List object by using the size method,
and retrieve elements using the get method; Sun's documentation contains further detail which you will
need to review. There is also a special for-loop syntax for Java Collection objects such as List which
allows you to iterate though all the elements in the list:

for(Pattern p: resultList) {
 //p references each element of "resultList" in order so that first time
 //round the loop, p references the first element, second time round the
 //second element, and so on. The loop terminates when "resultList" has
 //no more elements.
}

7. Complete your implementation of load. Your implementation should read in all available
patterns from the Reader object, convert the pattern strings into Pattern objects, and store
all valid patterns in a List object. Your load method should return the List object to the
caller. If the Reader object contains no valid patterns, your implementation should return an
empty List object.

Now add the following two methods to your implementation of PatternLoader:

public static List<Pattern> loadFromURL(String url) throws IOException {
 URL destination = new URL(url);
 URLConnection conn = destination.openConnection();
 return load(new InputStreamReader(conn.getInputStream()));
}

public static List<Pattern> loadFromDisk(String filename) throws IOException {
 return load(new FileReader(filename));
}

These two methods use your load method to load patterns from either a file on disk or a website. They
do this by constructing a suitable Reader object and passing a reference to it to your method. Since
your method is agnostic to the type of Reader provided, your implementation of load will function with
data from either disk or from the web. You will need to add import statements to describe the location
of the extra classes used inside the method bodies of loadFromURL and loadFromDisk; you can find
the full names for the classes by looking them up in the Java documentation.

Workbook 4

9

Java Tick 4
Copy your implementation of PatternLife which you wrote earlier in this workbook, rename it
LoaderLife and put it inside the package uk.ac.cam.your-crsid.tick4. You should modify
LoaderLife so that an invocation of LoaderLife with a single argument will print out the details
of all the valid patterns found in a file or on a website. Each valid pattern should be prefixed by the
line number of the pattern in the source file or webpage, starting at zero. For example, if the filename
MyPatterns.txt is provided as the single argument, and the file MyPatterns.txt contains a single
pattern describing a Glider, then your program should output:

crsid@machine:~> java uk.ac.cam.your-crsid.tick4.LoaderLife MyPatterns.txt
0) Glider:Richard Guy (1970):20:20:1:1:010 001 111
crsid@machine:~>

Similarly, if your program receives a valid URL as a single argument on the command line then your
program should load data from the URL and display any valid patterns found. For example,

crsid@machine:~> java uk.ac.cam.your-crsid.tick4.LoaderLife \
http://www.cl.cam.ac.uk/teaching/current/ProgJava/life.txt
0) Glider:Richard Guy (1970):8:8:1:1:010 001 111
1) [additional patterns should be listed here]
2) ...
crsid@machine:~>

The URL used in the example above contains many interesting worlds which you might like to view. You
may also like to load entries provided by students who have completed Tick 3*, which are available from:

http://www.cl.cam.ac.uk/teaching/current/ProgJava/competition.txt

To complete this part of the Tick successfully, you will need some method of determining whether the
string provided on the command line is a filename or a URL. You might like to use the startsWith
method of the String class to determine whether the string starts with "http://" or not.

If your implementation of LoaderLife is invoked with two arguments on the command line, your
program should should treat the first argument as a pattern source as above, and the second as the
pattern index to initialize a world with, and display successive generations of the world to the user as
you have done in previous weeks. For example, the following invocation of LoaderLife

crsid@machine:~> java uk.ac.cam.your-crsid.tick4.LoaderLife \
http://www.cl.cam.ac.uk/teaching/current/ProgJava/life.txt 0
-

___#____
##____
__##____

displays successive generations of a Glider just as PatternLife did last week.

Important: your program should handle all exceptions gracefully by printing an error message to the
user describing what has gone wrong and exiting cleanly. You will find it useful to pipe (|) the output
of your Java program into the command line program less to view long lists of patterns such as those
downloadable from the course website; if you do so q can be used to quit the program less once you
have located the index of a pattern you would like to view. In other words, you can type:

crsid@machine:~> java uk.ac.cam.your-crsid.tick4.LoaderLife \
http://www.cl.cam.ac.uk/teaching/current/ProgJava/life.txt | less

Workbook 4

10

Once you believe you have completed all the exercises in this workbook successfully, you should
produce a jar file called crsid-tick4.jar with the following contents:

META-INF
META-INF/MANIFEST.MF
uk/ac/cam/your-crsid/tick4/Repeat.java
uk/ac/cam/your-crsid/tick4/Repeat.class
uk/ac/cam/your-crsid/tick4/ExceptionTest.java
uk/ac/cam/your-crsid/tick4/ExceptionTest.class
uk/ac/cam/your-crsid/tick4/Pattern.java
uk/ac/cam/your-crsid/tick4/Pattern.class
uk/ac/cam/your-crsid/tick4/PatternLife.java
uk/ac/cam/your-crsid/tick4/PatternLife.class
uk/ac/cam/your-crsid/tick4/PatternLoader.java
uk/ac/cam/your-crsid/tick4/PatternLoader.class
uk/ac/cam/your-crsid/tick4/PatternFormatException.java
uk/ac/cam/your-crsid/tick4/PatternFormatException.class
uk/ac/cam/your-crsid/tick4/LoaderLife.java
uk/ac/cam/your-crsid/tick4/LoaderLife.class

You should set the entry point of the jar file to uk.ac.cam.your-crsid.tick4.LoaderLife so you
can execute your implementation of LoaderLife without explicitly specifying a class to execute. To
submit your work, email your jar file to ticks1a-java@cl.cam.ac.uk.

	Workbook 4
	Introduction
	Managing errors with Java Exceptions
	Reading data from files and websites
	Java Tick 4

