
Natural Language Processing: Part II
Overview of Natural Language Processing (L90): Part III/ACS

2014, 12 Lectures, Michaelmas Term
October 3, 2014
Ann Copestake (aac@cl.cam.ac.uk)
http://www.cl.cam.ac.uk/users/aac/

Copyright c⃝ Ann Copestake, 2003–2014

Lecture Synopsis

Aims

This course introduces the fundamental techniques of natural language processing. It aims to explain the potential and
the main limitations of these techniques. Some current research issues are introduced and some current and potential
applications discussed and evaluated.

1. Introduction. Brief history of NLP research, current applications, components of NLP systems.

2. Finite-state techniques. Inflectional and derivational morphology, finite-state automata in NLP, finite-state
transducers.

3. Prediction and part-of-speech tagging. Corpora, simple N-grams, word prediction, stochastic tagging, evalu-
ating system performance.

4. Context-free grammars and parsing. Generative grammar, context-free grammars, parsing with context-free
grammars, weights and probabilities. Limitations of context-free grammars.

5. Constraint-based grammars. Constraint-based grammar, unification.

6. Compositional semantics. Simple compositional semantics in constraint-based grammar. Compositional se-
mantics with lambda calculus. Inference and robust entailment.

7. Lexical semantics Semantic relations, WordNet, word senses, word sense disambiguation.

8. Distributional semantics Representing lexical meaning with distributions. Similarity metrics. Clustering.

9. Discourse and dialogue. Anaphora resolution, discourse relations.

10. Language generation Generation and regeneration. Components of a generation system. Generation of refer-
ring expressions.

11. Computational psycholinguistics Modelling human language use.

12. Applications. Examples of practical applications of NLP techniques.

Objectives

At the end of the course students should

• be able to discuss the current and likely future performance of several NLP applications;

• be able to describe briefly a fundamental technique for processing language for several subtasks, such as mor-
phological processing, parsing, word sense disambiguation etc.;

• understand how these techniques draw on and relate to other areas of computer science.

1

Overview

NLP is a large and multidisciplinary field, so this course can only provide a very general introduction. The idea is that
this is a ‘taster’ course that gives an idea of the different subfields and shows a few of the huge range of computational
techniques that are used. The first lecture is designed to give an overview including a very brief idea of the main
applications and the methodologies which have been employed. The history of NLP is briefly discussed as a way of
putting this into perspective. The next nine lectures describe some of the main subdisciplines in more detail. The
organisation is mainly based on increased ‘depth’ of processing, starting with relatively surface-oriented techniques
and progressing to considering meaning of sentences and meaning of utterances in context. Most lectures will start off
by considering the subarea as a whole and then go on to describe one or more sample algorithms which tackle particular
problems. The algorithms have been chosen because they are relatively straightforward to describe and because they
illustrate a specific technique which has been shown to be useful, but the idea is to exemplify an approach, not to
give a detailed survey (which would be impossible in the time available). Lectures 2-9 are primarily about analysing
language: lecture 10 discusses generation. Lecture 11 introduces some issues in computational psycholinguistics. The
final lecture is intended to give further context: it will include discussion of one or more NLP systems. The material in
Lectures 11 and 12 will not be directly examined. Slides for Lectures 11 and 12 will be made available via the course
webpage after the lecture.
There are various themes running throughout the lectures. One theme is the connection to linguistics and the tension
that sometimes exists between the predominant view in theoretical linguistics and the approaches adopted within NLP.
A somewhat related theme is the distinction between knowledge-based and probabilistic approaches. Evaluation will
be discussed in the context of the different algorithms.
Because NLP is such a large area, there are many topics that aren’t touched on at all in these lectures. Speech
recognition and speech synthesis is almost totally ignored. Information Retrieval is the topic of a separate Part II
course.
Feedback on the handout, lists of typos etc, would be greatly appreciated.

Recommended Reading

Recommended Book:
Jurafsky, Daniel and James Martin, Speech and Language Processing, Prentice-Hall, 2008 (second edition): referenced
as J&M throughout this handout. This doesn’t have anything on language generation (lecture 10): there is a chapter
on this in the first edition of J&M but it is not useful for this course.
Background:
These books are about linguistics rather that NLP/computational linguistics. They are not necessary to understand the
course, but should give readers an idea about some of the properties of human languages that make NLP interesting
and challenging, without being technical.
Pinker, S., The Language Instinct, Penguin, 1994.
This is a thought-provoking and sometimes controversial ‘popular’ introduction to linguistics.
Matthews, Peter, Linguistics: a very short introduction, OUP, 2003.
The title is accurate . . .
Background/reference:
The Internet Grammar of English, http://www.ucl.ac.uk/internet-grammar/home.htm
Syntactic concepts and terminology.
Bender, Emily M. 2013. Linguistic Fundamentals for Natural Language Processing: 100 Essentials from Morphology
and Syntax. Synthesis Lectures on Human Language Technologies #20. Morgan and Claypool Publishers.
This is based on a tutorial which was entitled ‘100 things you always wanted to know about Linguistics but were
afraid to ask’1. It is an extremely succinct introduction to the concepts in morphology and syntax most relevant to
computational linguistics, looking at a wide range of languages.

1‘. . . for fear of being told 1000 more’

2

Study Guide

These lectures are now available to ACS/Part III students (as part of module L90, ‘Overview of Natural Language
Processing’) as well as to Part II students. The other component of L90 is a practical exercise, organized by Simone
Teufel, which will be described in a separate document. Part II students are not expected to do that practical. ACS/Part
III students will not take an exam.
The handouts and lectures should contain enough information to enable students to adequately answer the Part II exam
questions, but the handout is not intended to substitute for a textbook (or for thought). In most cases, J&M go into a
considerable amount of further detail: rather than put lots of suggestions for further reading in the handout, in general
I have assumed that students will look at J&M, and then follow up the references in there if they are interested. The
notes at the end of each lecture give details of the sections of J&M that are relevant and details of any discrepancies
with these notes.
Supervisors (Part II only) should look at the supervision guide available from the course webpage and familiarise
themselves with the relevant parts of Jurafsky and Martin (see notes at the end of each lecture). However, good
students should find it quite easy to come up with questions that the supervisors (and the lecturer) can’t answer!
Language is like that . . .
Generally I’m taking a rather informal/example-based approach to concepts such as finite-state automata, context-free
grammars etc. The assumption is that students will have already covered this material in other contexts and that this
course will illustrate some NLP applications.
This course inevitably assumes some very basic linguistic knowledge, such as the distinction between the major parts
of speech. It introduces some linguistic concepts that won’t be familiar to all students: since I’ll have to go through
these quickly, reading the first few chapters of an introductory linguistics textbook may help students understand the
material. The idea is to introduce just enough linguistics to motivate the approaches used within NLP rather than
to teach the linguistics for its own sake. At the end of this handout, there are some mini-exercises to help students
understand the concepts: it would be very useful if these were attempted before the lectures as indicated. There are
also some suggested post-lecture exercises: answers to these are made available to supervisors only.
Exam questions won’t rely on students remembering the details of any specific linguistic phenomenon. As far as
possible, exam questions will be suitable for people who speak English as a second language. For instance, if a
question relied on knowledge of the ambiguity of a particular English word, a gloss of the relevant senses would be
given.
Of course, I’ll be happy to try and answer questions about the course or more general NLP questions, preferably by
email.

Changes to the course since previous years.

There are quite a large number of changes to the lecture notes compared to the 2013-14 Part II course but all are minor
(clarifications, removal of some superfluous discussion, a little additional background). The course was expanded
from 8 to 12 lectures in 2013: for details, see the 2013-14 lecture notes.
Generally, past exam questions from 2003 onwards are still relevant. 2004 Paper 9 Question 14 is no longer applicable
since the Lappin and Leass algorithm is no longer taught (it was replaced in 2009 by a description of pronoun resolution
using a classifier). In 2005/2006 there was one change in terminology to make the notes easier to follow: current notes
use subject (SUBJ) and object (OBJ) for syntactic roles in lecture 5 and 6 rather than specifier (SPR) and complement
(COMP) as in the versions prior to 2005/2006. This means that an exam question for 2005 needs minor modification
to be usable with this version of the notes.

URLs

Nearly all the URLs given in these notes should be linked from:
http://www.cl.cam.ac.uk/˜aac10/stuff.html
(apart from this one of course . . .). If any links break, I will put corrected versions there, if available.

3

1 Lecture 1: Introduction to NLP

The primary aim of this lecture is to give students some idea of the objectives of NLP. The main subareas of NLP
will be introduced, especially those which will be discussed in more detail in the rest of the course. There will be a
preliminary discussion of the main problems involved in language processing by means of examples taken from NLP
applications. This lecture also introduces some methodological distinctions and puts the applications and methodology
into some historical context.

1.1 What is NLP?

Natural language processing (NLP) can be defined as the computational modelling of human language. The term
‘NLP’ is sometimes used rather more narrowly than that, often excluding information retrieval and sometimes even
excluding machine translation. NLP is sometimes contrasted with ‘computational linguistics’, with NLP being thought
of as more applied. Nowadays, alternative terms are often preferred, like ‘Language Technology’ or ‘Language Engi-
neering’. The term ‘language’ is often used in contrast with ‘speech’ (e.g., Speech and Language Technology). But
I’m going to simply refer to NLP and use the term broadly.
NLP is essentially multidisciplinary: it is closely related to linguistics (although the extent to which NLP overtly
draws on linguistic theory varies considerably). Like NLP, formal linguistics deals with the development of models
of human languages, but some approaches in linguistics reject the validity of statistical techniques, which are seen
as an essential part of computational linguistics. NLP also has links to research in cognitive science, psychology,
philosophy and maths (especially logic). Within CS, it relates to formal language theory, compiler techniques, theorem
proving, machine learning and human-computer interaction. Of course it is also related to AI, though nowadays it’s
not generally thought of as part of AI.

1.2 Some linguistic terminology

The course is organised so that there are ten lectures after this one corresponding to different NLP subareas. In the
first eight, the discussion moves from relatively ‘shallow’ processing to areas which involve meaning and connections
with the real world. These subareas loosely correspond to some of the standard subdivisions of linguistics:

1. Morphology: the structure of words. For instance, unusually can be thought of as composed of a prefix un-, a
stem usual, and an affix -ly. composed is compose plus the inflectional affix -ed: a spelling rule means we end
up with composed rather than composeed. Morphology will be discussed in lecture 2.

2. Syntax: the way words are used to form phrases. e.g., it is part of English syntax that a determiner (a word such
as the) will come before a noun, and also that determiners are obligatory with certain singular nouns. Formal
and computational aspects of syntax will be discussed in lectures 3, 4 and 5.

3. Semantics. Compositional semantics is the construction of meaning (often expressed as logic) based on syntax.
This is discussed in lecture 6. This is contrasted to lexical semantics, i.e., the meaning of individual words which
is the topic of lectures 7 and 8.

4. Pragmatics: meaning in context. This will come into lecture 9, although linguistics and NLP generally have
very different perspectives here.

Lecture 10 looks at language generation rather than language analysis, and lecture 11 covers some topics in computa-
tional psycholinguistics.

1.3 Why is computational language processing difficult?

Consider trying to build a system that would answer email sent by customers to a retailer selling laptops and accessories
via the Internet. This might be expected to handle queries such as the following:

• Has my order number 4291 been shipped yet?

4

• Is FD5 compatible with a 505G?

• What is the speed of the 505G?

Assume the query is to be evaluated against a database containing product and order information, with relations such
as the following:

ORDER
Order number Date ordered Date shipped

4290 2/2/13 2/2/13
4291 2/2/13 2/2/13
4292 2/2/13

USER: Has my order number 4291 been shipped yet?
DB QUERY: order(number=4291,date shipped=?)
RESPONSE TO USER: Order number 4291 was shipped on 2/2/13
It might look quite easy to write patterns in order to build a system to respond to these queries, but very similar strings
can mean very different things, while very different strings can mean much the same thing. 1 and 2 below look very
similar but mean something completely different, while 2 and 3 look very different but essentially mean the same in
this context.

1. How fast is the TZ?

2. How fast will my TZ arrive?

3. Please tell me when I can expect the TZ I ordered.

While some tasks in NLP can be done adequately without having any sort of account of meaning, others require that
we can construct detailed representations which will reflect the underlying meaning rather than the superficial string.
In fact, in natural languages (as opposed to programming languages), ambiguity is ubiquitous, so exactly the same
string might mean different things. For instance in the query:

Do you sell Sony laptops and disk drives?

the user may or may not be asking about Sony disk drives. This particular ambiguity may be represented by different
bracketings:

Do you sell (Sony laptops) and (disk drives)?
Do you sell (Sony (laptops and disk drives))?

We’ll see lots of examples of different types of ambiguity in these lectures.
Natural language has properties which are essential to communication which are not found in formal languages, such
as predicate calculus, computer programming languages, semantic web languages and so on. Natural language is
incredibly flexible. It is learnable, but compact. Natural languages are emergent, evolving systems. Ambiguity and
synonymy are inherent to flexibility and learnability. Despite ambiguity, natural language can be indefinitely precise:
ambiguity is largely local2 (at least for humans) and natural languages accommodate (semi-)formal additions.
Often humans have knowledge of the world which resolves a possible ambiguity, probably without the speaker or
hearer even being aware that there is a potential ambiguity.3 But hand-coding such knowledge in NLP applications
has turned out to be impossibly hard to do for more than very limited domains: the term AI-complete is sometimes
used (by analogy to NP-complete), meaning that we’d have to solve the entire problem of representing the world

2i.e., immediate context resolves the ambiguity: examples of this will be discussed in later lectures.
3I’ll use hearer generally to mean the person who is on the receiving end, regardless of the modality of the language transmission: i.e., regardless

of whether it’s spoken, signed or written. Similarly, I’ll use speaker for the person generating the speech, text etc and utterance to mean the speech
or text itself. This is the standard linguistic terminology, which recognises that spoken language is primary and text is a later development.

5

and acquiring world knowledge.4 The term AI-complete is intended jokingly, but conveys what’s probably the most
important guiding principle in current NLP: we’re looking for applications which don’t require AI-complete solutions:
i.e., ones where we can either work with very limited domains or approximate full world knowledge and reasoning by
relatively simple techniques.

1.4 Some NLP applications

Useful NLP systems have been built for a large range of applications, including (but not limited to):

• spelling and grammar checking

• predictive text

• optical character recognition (OCR)

• screen readers for blind and partially sighted users

• augmentative and alternative communication (i.e., systems to aid people who have difficulty communicating
because of disability)

• machine aided translation (i.e., systems which help a human translator, e.g., by storing translations of phrases
and providing online dictionaries integrated with word processors, etc)

• lexicographers’ tools

• information retrieval

• document classification (filtering, routing)

• document clustering

• information extraction

• sentiment classification

• text mining

• question answering

• summarization

• text segmentation

• exam marking

• language teaching and assessment

• report generation (possibly multilingual)

• machine translation

• natural language interfaces to databases

• email understanding

• dialogue systems

Several of these applications are discussed briefly below. Roughly speaking, the list is ordered according to the
complexity of the language technology required. The applications towards the top of the list can be seen simply as
aids to human users, while those at the bottom may be perceived as agents in their own right. Perfect performance
on any of these applications would be AI-complete, but perfection isn’t necessary for utility: in many cases, useful
versions of these applications had been built by the late 70s. Commercial success has often been harder to achieve,
however.

4In this course, I will use domain to mean some circumscribed body of knowledge: for instance, information about laptop orders constitutes a
limited domain.

6

1.5 An example application: Sentiment classification

Finding out what people think about politicians, policies, products, services, companies and so on is a huge business.
Increasingly this is done by automatic analysis of web documents and social media. The full problem involves finding
all the references to an entity from some document set (e.g., references to Hillary Clinton in all Daily Mail articles
appearing in September 2014, references to Siri in all tweets with hashtag #apple), and then classifying the references
as positive, negative or neutral. Customers who use opinion mining want to see summaries of the data (e.g., to see
whether popularity is going up or down), but may also want to see actual examples (as text snippets). Companies
generally want a fine-grained classification of aspects of their product (e.g., laptop batteries, phone screens).
A full opinion mining system requires that relevant text is retrieved, references to the objects of interest are recognized
in that text (generally as named entities: e.g., Sony 505G, Hillary Clinton), and the parts of the text that refer to
those entities are determined. Once this is done, the referring text can be classified for positive or negative sentiment.
To be commercially useful, this has to be done very rapidly, especially when analyzing trends on social media, so a
significant software engineering effort is involved. But academic researchers have looked at a simpler version of the
task by starting from a fixed set of documents which are already known to be opinions about a particular topic or entity
(e.g., reviews), where the problem is just to work out whether the author is expressing positive or negative opinions.
This allows researchers to focus on sentiment classification but has still been a challenging problem to address. Some
of the early research work was done on movie reviews (Pang et al, 2002).5 The rating associated with each review is
known (that is, reviewers give each movie a numerical score), so there is an objective standard as to whether the review
is positive or negative. This avoids the need to manually annotate the data before experimenting with it, which is a
time-consuming and error-prone process. The research problem is to assign sentiment automatically to each document
in the entire corpus to agree with the known ratings.6 Pang et al only selected review articles which had clear positive
or negative ratings, and balanced their corpus so the positive/negative split was 50/50.
The most basic technique is to look at the words in the review in isolation of each other, and to classify the document
on the basis of whether those words generally indicate positive or negative reviews. This is a bag-of-words technique:
we model the document as an unordered collection of words (bag rather than set because there will be repetition). A
document with more positive words than negative ones should be a positive review. In principle, this could be done
by using human judgements of positive/negative words, but using machine learning techniques works better7 (humans
don’t consider many words that turn out to be useful indicators). However, Pang et al found that the accuracy of the
classification is only around 80% (for a problem where there was a 50% chance success rate). One source of errors is
negation: (e.g., Ridley Scott has never directed a bad film is a positive statement). Another problem is that the machine
learning technique may match the data too closely: e.g., if a machine learner were trained on reviews which include
a lot of films from before 2005, it would discover that Ridley was a strong positive indicator but it would then tend to
misclassify reviews for ‘Kingdom of Heaven’ (which was panned). More subtle problems arise from not tracking the
contrasts in the discourse. The two extracts below are from Pang et al’s paper:

This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting
cast is good as well, and Stallone is attempting to deliver a good performance. However, it can’t hold
up.. . . [taken from a review by David Wilcock of ‘Cop Land’ http://www.imdb.com/reviews/
101/10185.html]

AN AMERICAN WEREWOLF IN PARIS is a failed attempt . . . Julie Delpy is far too good for this movie.
She imbues Serafine with spirit, spunk, and humanity. This isnt necessarily a good thing, since it prevents
us from relaxing and enjoying AN AMERICAN WEREWOLF IN PARIS as a completely mindless,
campy entertainment experience. Delpys injection of class into an otherwise classless production raises
the specter of what this film could have been with a better script and a better cast . . . She was radiant,
charismatic, and effective . . . [taken from a review by James Berardinelli http://www.imdb.com/
reviews/103/10363.html]

Unfortunately, although in principle NLP techniques can deal with syntax, semantics and discourse and thus address
these sort of problems, doing this in a way that can significantly improve performance over the simple system turns

5Pang, Lee and Vaithyanatha (2002), Thumbs up? Sentiment Classification using Machine Learning Techniques In Proceedings of the 2002
Conference on Empirical Methods in Natural Language Processing (EMNLP).

6A corpus (plural corpora) is the technical term for a body of text that has been collected for some purpose, see §3.1.
7Classifiers are discussed in more detail in lecture 9.

7

out to be hard. Many ‘obvious’ techniques for improving the bag-of-words model did not improve performance.
For instance, although a good model should include negation, it only applies to a small percentage of examples.
Modelling negation requires parsing to determine the scope of negation correctly, but it is easy to introduce errors
which make performance worse overall. Nevertheless, systems have been developed that have considerably better
performance than the simple methods: for instance, Moilanen and Pulman (2007) 8 demonstrated that parsing and a
form of compositional semantics (topics which will be introduced in Lectures 4, 5 and 6) can considerably improve
performance over the simple methods. Ultimately to understand whether a statement is really positive or negative
in a particular context is AI-complete (think about irony, for instance), but the (application-oriented) question is not
whether automatic methods can be perfect but whether they can be good enough to be useful.

1.6 Information retrieval, information extraction and question answering

Information retrieval (IR) involves returning a set of documents in response to a user query: Internet search engines
were developed from traditional IR techniques, but use additional methods such as ranking documents according to
links (e.g., Google’s PageRank).
Information extraction involves trying to discover specific information from a set of documents. The information
required can be described as a template. For instance, for company joint ventures, the template might have slots for
the companies, the dates, the products, the amount of money involved. The slot fillers are generally strings.
Question answering attempts to find a specific answer to a specific question from a set of documents, or at least a short
piece of text that contains the answer.

(1) Q: What is the capital of France?
A: Paris has been the French capital for many centuries.

There have been question-answering systems on the Web since the 1990s, but until recently most used very basic
techniques. One common approach involved employing a large staff of people who searched the web to find pages
which are answers to potential questions. The question-answering system then performed very limited manipulation
on the actual user input to map to a known question. The same basic technique is used in many online help systems.
However, with enough resource, impressive results from automatic QA are now possible: most famously an IBM
research team created a QA system that beat human champions on the quiz show Jeopardy! in 2011 (see Ferrucci et
al, AI Magazine, 2010, for an overview). Current QA systems are very successful at answering questions that humans
find difficult, but very bad at answering many questions that humans find trivial, essentially because such information
is not explicitly stated anywhere online. The problem is that the trivial information is essential for modelling human
reasoning and thus for really understanding language.

1.7 Machine translation

MT work started in the US in the early fifties, concentrating on Russian to English. A prototype system was publicly
demonstrated in 1954 (remember that the first electronic computer had only been built a few years before that). MT
funding was drastically cut in the US in the mid-60s and ceased to be academically respectable in some places, but
Systran was providing useful translations by the late 60s using hand-built transfer rules to map between source and
target languages. Systran is still going (updating it over the years is an amazing feat of software engineering). Systran
was used for most of the language pairs available from Google Translate until about 2007/2008, but Google now
uses a statistical MT (SMT) system which was developed in-house, exploiting Google’s access to the huge amount
of parallel text available on the web (i.e., they mine web pages for pairings of source text and translated text). This
works very well for some language pairs and very badly for others, depending firstly on the availability of properly
translated parallel text and secondly on the closeness of the languages. (But for some language pairs, MT systems
using manually-constructed rules still greatly outperform SMT.)
Until the 80s, the utility of general purpose MT systems was severely limited by the fact that text was not available in
electronic form: for instance, in the 1960s and 70s, teams of skilled typists were needed to input Russian documents
before the MT system was run.

8Moilanen, Karo, and Stephen Pulman. ”Sentiment composition.” In Proceedings of the Recent Advances in Natural Language Processing
International Conference, pp. 378-382. 2007.

8

None of these systems are a substitute for good human translation: they are useful because they allow users to get an
idea of what a document is about, and maybe decide whether it is interesting enough to get translated properly.

1.8 Natural language interfaces and dialogue systems

Natural language interfaces were the ‘standard’ NLP application in the 70s and 80s. LUNAR is the classic example
of a natural language interface to a database (NLID): it concerned lunar rock samples brought back from the Apollo
missions. LUNAR is described by Woods (1978) (but the work was done several years earlier): it was capable of
translating elaborate natural language expressions into database queries.
SHRDLU (Winograd, 1973) was a system capable of participating in a dialogue about a microworld (the blocks world)
and manipulating this world according to commands issued in English by the user. SHRDLU had a big impact on the
perception of NLP at the time since it seemed to show that computers could actually ‘understand’ language: the
impossibility of scaling up from the microworld was not realised.
LUNAR and SHRDLU both exploited the limitations of one particular domain to make the natural language under-
standing problem tractable, particularly with respect to ambiguity. To take a trivial example, if you know your database
is about lunar rock, you don’t need to consider the music or movement senses of rock when you’re analysing a query.
There have been many advances in NLP since these systems were built: natural language interface systems have
become much easier to build, and somewhat easier to use, but they still haven’t become ubiquitous. Natural Language
interfaces to databases were commercially available in the late 1970s, but largely died out by the 1990s: porting to
new databases and especially to new domains requires very specialist skills and is essentially too expensive (automatic
porting was attempted but never successfully developed). Users generally preferred graphical interfaces when these
became available.
Modern ‘intelligent’ personal assistants, such as Siri, use interfaces to databases as part of their functionality, along
with search and question answering. These systems have some model of dialogue context and can adapt to individual
users. Just as importantly, users adapt to the systems, rephrasing queries which are not understood and reusing queries
which are successful.

1.9 Some more history

Before the 1970s, most NLP researchers were concentrating on MT as an application (see above). NLP was a very
early application of computer science and started about the same time as Chomsky was publishing his first major
works in formal linguistics (Chomskyan linguistics quickly became dominant, especially in the US). In the 1950s and
early 1960s, there was little distinction between formal linguistics and computational linguistics: ideas about formal
grammar were being worked out in linguistics, and algorithms for parsing natural language were being developed at
the same time as algorithms for parsing programming languages. However, the approaches that Chomsky and his
colleagues developed turned out to be only somewhat indirectly useful for NLP and the two fields became distinct, at
least in the US and UK.
NLP in the 1970s and first half of the 1980s was predominantly based on a paradigm where extensive linguistic and
real-world knowledge was hand-coded. There was controversy about how much linguistic knowledge was necessary
for processing, with some researchers downplaying syntax, in particular, in favour of world knowledge. NLP re-
searchers were very much part of the AI community (especially in the US and the UK), and the debate that went on in
AI about the use of logic vs other meaning representations (‘neat’ vs ‘scruffy’) also affected NLP. By the 1980s, several
linguistic formalisms had appeared which were fully formally grounded and reasonably computationally tractable, and
the linguistic/logical paradigm in NLP was firmly established. Unfortunately, this didn’t lead to many useful systems,
partly because many of the difficult problems (disambiguation etc) were seen as somebody else’s job (and mainstream
AI was not developing adequate knowledge representation techniques) and partly because most researchers were con-
centrating on the ‘agent-like’ applications and neglecting the user aids. Although the symbolic, linguistically-based
systems sometimes worked quite well as NLIDs, they proved to be of little use when it came to processing less re-
stricted text, for applications such as IE. It also became apparent that lexical acquisition was a serious bottleneck for
serious development of such systems.
Statistical NLP became the most common paradigm in the 1990s, at least in the research community. By this point,
there was a huge divide between mainstream linguists and the NLP community. Chomsky had declared:

9

But it must be recognized that the notion ‘probability of a sentence’ is an entirely useless one, under any
known interpretation of this term. (Chomsky 1969)

Certain linguistics journals would not even review papers which had a quantitative component. But speech and NLP
researchers wanted results:

Whenever I fire a linguist our system performance improves. (Fred Jelinek, allegedly said at a workshop in
1988, various forms of the quotation have been attested. Jelinek later said he never actually fired anyone,
they just left . . .)

Speech recognition had demonstrated that simple statistical techniques worked, given enough training data. NLP
systems were built which required very limited hand-coded knowledge, apart from initial training material. Most
applications were much shallower than the earlier NLIDs, but the switch to statistical NLP coincided with a change
in US funding, which started to emphasise speech recognition and IE. There was also a general realization of the
importance of serious evaluation and of reporting results in a way that could be reproduced by other researchers. US
funding emphasised competitions with specific tasks and supplied test material, which encouraged this, although there
was a downside in that some of the techniques developed were very task-specific. It should be emphasised that there
had been computational work on corpora for many years (much of it by linguists): it became much easier to do corpus
work by the late 1980s as disk space became cheap and machine-readable text became ubiquitous. Despite the shift
in research emphasis to statistical approaches, most commercial systems remained primarily based on hand-coded
linguistic information.
Later the symbolic/statistical split became less pronounced, since most researchers are interested in both.9 Most work
involves some type of machine learning, including machine learning for symbolic processing. Linguistically-based
NLP made something of a comeback, with increasing availability of open source resources, and the realisation that
at least some of the classic statistical techniques seem to be reaching limits on performance, especially because of
difficulties of acquiring training data and in adapting to new types of text. However, modern linguistically-based NLP
approaches make heavy use of machine learning and statistical processing.
The ubiquity of the Internet has completely changed the space of interesting NLP applications since the early 1990s,
and the vast amount of text available can potentially be exploited, especially for statistical techniques. The dotcom
boom and bust at the turn of the millennium considerably affected NLP in industry but interest has increased again
and at the time of writing (2014), another boom is well under way.

1.10 Combining components in NLP systems

Many NLP applications can be adequately implemented with relatively ‘shallow’ processing. For instance, English
spelling checking only requires a word list and simple morphology to be useful. I’ll use the term ‘deep’ NLP for
systems that build a meaning representation (or an elaborate syntactic representation), which is generally agreed to be
required for applications such as NLIDs and email question answering.
The input to an NLP system could be speech or text. It could also be gesture (multimodal input or perhaps a Sign
Language). The output might be non-linguistic, but most systems need to give some sort of feedback to the user, even
if they are simply performing some action (issuing a ticket, paying a bill, etc). However, often the feedback can be
very formulaic.
There’s general agreement that certain NLP subtasks can be described semi-independently and combined to build an
application, although assumptions about the detailed nature of the interfaces between the tasks differ:

• input preprocessing: speech recogniser or text preprocessor (non-trivial in languages like Chinese or for highly
structured text for any language) or gesture recogniser. Such systems might themselves be very complex, but I
won’t discuss them in this course — we’ll assume that the input to the main NLP component is segmented text.

• morphological analysis (lecture 2): this is relatively well-understood for the most common languages that NLP
has considered, but is complicated for many languages (e.g., Turkish, Basque).

9At least, there are now very few researchers who avoid statistical techniques as a matter of principle and all statistical systems have a symbolic
component!

10

• part of speech tagging (lecture 3): (used by deep processing systems as a way of cutting down parser search
space).

• parsing (lectures 4, 5 and 6): this includes syntax and compositional semantics, which are sometimes treated as
separate subtasks.

• further semantic processing includes word sense disambiguation (lecture 7) and inference (lecture 6): these tasks
are supported by lexical meaning representations (lectures 7 and 8).

• context processing: this a range of subtasks, including anaphora resolution (lecture 9).

• discourse structuring: the part of language generation that’s concerned with deciding what meaning to convey
(lecture 10).

• realization (lecture 10): the inverse of parsing, i.e., conversion of meaning representations or syntactic structures
to strings. This may use the same grammar and lexicon10 as the parser.

• morphological generation (lecture 2): as with morphological analysis, this is relatively straightforward for En-
glish.

• output processing: text-to-speech, text formatter, etc. As with input processing, this may be simple or complex.

For a system implementing an NLP subtask to correspond to a module in an application, it obviously needs a well-
defined set of interfaces. What’s less obvious is that it needs its own evaluation strategy and test suites so it can
be developed independently. In principle, at least, components are reusable in various ways: for instance, a parser
could be used with multiple grammars, the same grammar can be processed by different parsers and generators,
a parser/grammar combination could be used in MT or in a natural language interface. However, for a variety of
reasons, it is not easy to reuse components like this, and generally a lot of work is required for each new application.
We can draw schematic diagrams for applications showing how the subtasks fit together.

Natural language interface to a knowledge base

KB
*

KB INTERFACE/CONTEXT MODULE

6

PARSING

6

MORPHOLOGY

6

INPUT PROCESSING

6

user input

j
KB OUTPUT/DISCOURSE STRUCTURING

?
REALIZATION

?
MORPHOLOGY GENERATION

?
OUTPUT PROCESSING

?
output

10The term lexicon is generally used for the part of the NLP system that contains dictionary-like information — i.e. information about individual
words.

11

However, this is an abstraction. Simple pipelining does not work well because each component makes errors. Much
more complex architectures may be used: the IBM Jeopardy playing system has over 100 modules which produce
multiple candidate answers — sophisticated probabilistic methods are used to rank these. Nevertheless, the diagram
should give some indication of the potential role of each subtask in a full application.
In lectures 2–10, various algorithms will be discussed which correspond to implementations of the various subtasks.
Lecture 12 will discuss a few applications in some more detail.

1.11 General comments

• Even ‘simple’ NLP applications need complex knowledge sources for some problems.

• Applications cannot be 100% perfect, because full real world knowledge and reasoning is not possible.

• Applications that are less than 100% perfect can be useful (humans aren’t 100% perfect anyway).

• Applications that aid humans are much easier to construct than applications which replace humans. It is difficult
to make the limitations of ‘agents’ which accept speech or text input clear to naive human users.

• NLP interfaces are nearly always competing with a non-language based approach.

• Currently nearly all applications either do relatively shallow processing on arbitrary input or deep processing on
narrow domains. MT can be domain-specific to varying extents: MT on arbitrary text still isn’t very good (in
general), but can be useful.

• Limited domain systems require extensive and expensive expertise to port. Research that relies on extensive
hand-coding of knowledge for small domains is now generally regarded as a dead-end, though reusable hand-
coding is a different matter.

• The development of NLP has been driven as much by hardware and software advances, and societal and infras-
tructure changes as by great new ideas. Improvements in NLP techniques are generally incremental rather than
revolutionary.

12

2 Lecture 2: Morphology and finite-state techniques

This lecture starts with a brief discussion of morphology, concentrating mainly on English morphology. The concept
of a lexicon in an NLP system is discussed with respect to morphological processing. Spelling rules are introduced
and the use of finite state transducers to implement spelling rules is explained. The lecture concludes with a brief
overview of some other uses of finite state techniques in NLP.

2.1 A very brief and simplified introduction to morphology

Morphology concerns the structure of words. Words are assumed to be made up of morphemes, which are the minimal
information carrying unit. Morphemes which can only occur in conjunction with other morphemes are affixes: words
are made up of a stem (more than one in the case of compounds) and zero or more affixes. For instance, dog is a
stem which may occur with the plural suffix +s i.e., dogs. The compound bookshop has two stems (book and shop):
most English compounds are spelled with a space, however, and therefore not standardly analysed by morphological
processors. English only has suffixes (affixes which come after a stem) and prefixes (which come before the stem — in
English prefixes are limited to derivational morphology), but other languages have infixes (affixes which occur inside
the stem) and circumfixes (affixes which go around a stem, such as the ge-t in German gekauft). For instance, Arabic
has stems (root forms) such as k t b, which are combined with infixes to form words (e.g., kataba, he wrote; kotob,
books). Some English irregular verbs show a relic of inflection by infixation (e.g. sing, sang, sung) but this process is
no longer productive (i.e., it won’t apply to any new words, such as ping).11

Note the requirement that a morpheme can be regarded as a unit. There are cases where there seems to be a similarity
in meaning between some clusters of words with similar spellings: e.g., slink, slide, slither, slip. But such examples
cannot be decomposed (i.e., there is no sl- morpheme) because the rest of the word does not stand as a unit.

2.2 Inflectional vs derivational morphology

Inflectional and derivational morphology can be distinguished, although the dividing line isn’t always sharp. The
distinction is of some importance in NLP, since it means different representation techniques may be appropriate.
Inflectional morphology can be thought of as setting values of slots in some paradigm (i.e., there is a fixed set of slots
which can be thought of as being filled with simple values). Inflectional morphology concerns properties such as tense,
aspect, number, person, gender, and case, although not all languages code all of these: English, for instance, has very
little morphological marking of case and gender. Derivational affixes, such as un-, re-, anti- etc, have a broader range
of semantic possibilities (there seems no principled limit on what they can mean) and don’t fit into neat paradigms.
Inflectional affixes may be combined (though not in English). However, there are always obvious limits to this, since
once all the possible slot values are ‘set’, nothing else can happen. In contrast, there are no obvious limitations on the
number of derivational affixes (antidisestablishmentarianism, antidisestablishmentarianismization) and they may even
be applied recursively (antiantimissile). In some languages, such as the Inuit language(s), derivational morphology is
often used where English would use adjectival modification or other syntactic means. This leads to very long ‘words’
occurring naturally and is responsible for the (misleading/mistaken) claim that ‘Eskimo’ has hundreds of words for
snow.
Inflectional morphology is generally close to fully productive, in the sense that a word of a particular class will show
all the possible inflections although the actual affix used may vary. For instance, an English verb will have a present
tense form, a 3rd person singular present tense form, a past participle and a passive participle (the latter two being the
same for regular verbs). This will also apply to any new words which enter the language: e.g., text as a verb — texts,
texted. Derivational morphology is less productive and the classes of words to which an affix applies is less clearcut.
For instance, the suffix -ee is relatively productive (textee sounds plausible, meaning the recipient of a text message,
for instance), but doesn’t apply to all verbs (?snoree, ?jogee, ?dropee). Derivational affixes may change the part of
speech of a word (e.g., -ise/-ize converts nouns into verbs: plural, pluralise). However, there are also examples of
what is sometimes called zero derivation, where a similar effect is observed without an affix: e.g. tango, waltz etc are
words which are basically nouns but can be used as verbs.

11Arguably, though, spoken English has one productive infixation process, exemplified by absobloodylutely.

13

Stems and affixes can be individually ambiguous. There is also potential for ambiguity in how a word form is split into
morphemes. For instance, unionised could be union -ise -ed or (in chemistry) un- ion -ise -ed. This sort of structural
ambiguity isn’t nearly as common in English morphology as in syntax, however. Note that un- ion is not a possible
form (because un- can’t attach to a noun). Furthermore, although there is a prefix un- that can attach to verbs, it nearly
always denotes a reversal of a process (e.g., untie), whereas the un- that attaches to adjectives means ‘not’, which is
the meaning in the case of un- ion -ise -ed. Hence the internal structure of un- ion -ise -ed has to be (un- ((ion -ise)
-ed)).

2.3 Applications of morphological processing

It is possible to use a full-form lexicon for English NLP: i.e., to list all the inflected forms and to treat derivational
morphology as non-productive. However, when a new word has to be handled (because the lexicon is incomplete,
potentially because a new word has entered the language) it is redundant to have to specify (or learn) the inflected
forms as well as the stem, since the vast majority of words in English have regular morphology. So a full-form lexicon
is best regarded as a form of compilation. Many other languages have many more inflectional forms, which increases
the need to do morphological analysis rather than full-form listing.
Traditional IR systems use stemming rather than full morphological analysis. For IR, what is required is to relate
forms, not to analyse them compositionally, and this can most easily be achieved by reducing all morphologically
complex forms to a canonical form. Although this is referred to as stemming, the canonical form may not be the
linguistic stem. The most commonly used algorithm is the Porter stemmer, which uses a series of simple rules to
strip endings (see J&M, section 3.8) without the need for a lexicon. However, stemming does not necessarily help
IR. Search engines now generally do inflectional morphology, but this can be dangerous. For instance, searching for
corpus as well as corpora when given the latter as input (as some search engines sometimes do) can result in a large
number of spurious results involving Corpus Christi and similar terms.
In most NLP applications, however, morphological analysis is a precursor to some form of parsing. In this case, the
requirement is to analyse the form into a stem and affixes so that the necessary syntactic (and possibly semantic)
information can be associated with it. Morphological analysis is often called lemmatization. For instance, for the part
of speech tagging application which I will discuss in the next lecture, mugged would be assigned a part of speech tag
which indicates it is a verb, though mug is ambiguous between verb and noun. For full parsing, as discussed in lectures
4 and 5, we need more detailed syntactic and semantic information. Morphological generation takes a stem and some
syntactic information and returns the correct form. For some applications, there is a requirement that morphological
processing is bidirectional: that is, can be used for analysis and generation. The finite state transducers we will look
at below have this property.

2.4 Spelling rules

English morphology is essentially concatenative: i.e., we can think of words as a sequence of prefixes, stems and
suffixes. Some words have irregular morphology and their inflectional forms simply have to be listed. However, in
other cases, there are regular phonological or spelling changes associated with affixation. For instance, the suffix -s is
pronounced differently when it is added to a stem which ends in s, x or z and the spelling reflects this with the addition
of an e (boxes etc). For the purposes of this course, I’ll just talk about spelling effects rather than phonological effects:
these effects can be captured by spelling rules (also known as orthographic rules).
English spelling rules can be described independently of the particular stems and affixes involved, simply in terms of
the affix boundary. The ‘e-insertion’ rule can be described as follows:

ε → e/

 s
x
z

 ˆ s

In such rules, the mapping is always given from the ‘underlying’ form to the surface form, the mapping is shown to
the left of the slash and the context to the right, with the indicating the position in question. ε is used for the empty
string and ˆ for the affix boundary. This particular rule is read as saying that the empty string maps to ‘e’ in the context
where it is preceded by an s,x, or z and an affix boundary and followed by an s. For instance, this maps boxˆs to boxes.

14

This rule might look as though it is written in a context sensitive grammar formalism, but actually we’ll see in §2.7
that it corresponds to a finite state transducer. Because the rule is independent of the particular affix, it applies equally
to the plural form of nouns and the 3rd person singular present form of verbs. Other spelling rules in English include
consonant doubling (e.g., rat, ratted, though note, not *auditted) and y/ie conversion (party, parties).12

2.5 Lexical requirements for morphological processing

There are three sorts of lexical information that are needed for full, high precision morphological processing:

• affixes, plus the associated information conveyed by the affix

• irregular forms, with associated information similar to that for affixes

• stems with syntactic categories (plus more detailed information if derivational morphology is to be treated as
productive)

One approach to an affix lexicon is for it to consist of a pairing of affix and some encoding of the syntactic/semantic
effect of the affix.13 For instance, consider the following fragment of a suffix lexicon (we can assume there is a separate
lexicon for prefixes):

ed PAST_VERB
ed PSP_VERB
s PLURAL_NOUN

Here PAST_VERB, PSP_VERB and PLURAL_NOUN are abbreviations for some bundle of syntactic/semantic infor-
mation and form the interface between morphology and the syntax/semantics: I’ll discuss this briefly in §5.6.
A lexicon of irregular forms is also needed. One approach is for this to just be a triple consisting of inflected form,
‘affix information’ and stem, where ‘affix information’ corresponds to whatever encoding is used for the regular affix.
For instance:

began PAST_VERB begin
begun PSP_VERB begin

Note that this information can be used for generation as well as analysis, as can the affix lexicon.
In most cases, English irregular forms are the same for all senses of a word. For instance, ran is the past of run
whether we are talking about athletes, politicians or noses. This argues for associating irregularity with particular
word forms rather than particular senses, especially since compounds also tend to follow the irregular spelling, even
non-productively formed ones (e.g., the plural of dormouse is dormice). However, there are exceptions: e.g., The
washing was hung/*hanged out to dry vs the murderer was hanged.
Morphological analysers also generally have access to a lexicon of regular stems. This is needed for high precision:
e.g. to avoid analysing corpus as corpu -s, we need to know that there isn’t a word corpu. There are also cases where
historically a word was derived, but where the base form is no longer found in the language: we can avoid analysing
unkempt as un- kempt, for instance, simply by not having kempt in the stem lexicon. Ideally this lexicon should have
syntactic information: for instance, feed could be fee -ed, but since fee is a noun rather than a verb, this isn’t a possible
analysis. However, in the approach I’ll assume, the morphological analyser is split into two stages. The first of these
only concerns morpheme forms and returns both fee -ed and feed given the input feed. A second stage which is
closely coupled to the syntactic analysis then rules out fee -ed because the affix and stem syntactic information are not
compatible (see §5.6 for one approach to this).
If morphology was purely concatenative, it would be very simple to write an algorithm to split off affixes. Spelling
rules complicate this somewhat: in fact, it’s still possible to do a reasonable job for English with ad hoc code, but a
cleaner and more general approach is to use finite state techniques.

12Note the use of * (‘star’) above: this notation is used in linguistics to indicate a word or sentence which is judged (by the author, at least) to be
incorrect. ? is generally used for a sentence which is questionable, or at least doesn’t have the intended interpretation. # is used for a pragmatically
anomalous sentence.

13J&M describe an alternative approach which is to make the syntactic information correspond to a level in a finite state transducer. However, at
least for English, this considerably complicates the transducers.

15

2.6 Finite state automata for recognition

The approach to spelling rules that I’ll describe involves the use of finite state transducers (FSTs). Rather than jumping
straight into this, I’ll briefly consider the simpler finite state automata and how they can be used in a simple recogniser.
Suppose we want to recognise dates (just day and month pairs) written in the format day/month. The day and the
month may be expressed as one or two digits (e.g. 11/2, 1/12 etc). This format corresponds to the following simple
FSA, where each character corresponds to one transition:

0,1,2,3 digit / 0,1 0,1,2

digit digit

1 2 3 4 5 6

Accept states are shown with a double circle. This is a non-deterministic FSA: for instance, an input starting with the
digit 3 will move the FSA to both state 2 and state 3. This corresponds to a local ambiguity: i.e., one that will be
resolved by subsequent context. By convention, there must be no ‘left over’ characters when the system is in the final
state.
To make this a bit more interesting, suppose we want to recognise a comma-separated list of such dates. The FSA,
shown below, now has a cycle and can accept a sequence of indefinite length (note that this is iteration and not full
recursion, however).

0,1,2,3 digit / 0,1 0,1,2

digit digit

,

1 2 3 4 5 6

Both these FSAs will accept sequences which are not valid dates, such as 37/00. Conversely, if we use them to generate
(random) dates, we will get some invalid output. In general, a system which generates output which is invalid is said
to overgenerate. In fact, in many language applications, some amount of overgeneration can be tolerated, especially if
we are only concerned with analysis.

2.7 Finite state transducers

FSAs can be used to recognise particular patterns, but don’t, by themselves, allow for any analysis of word forms.
Hence for morphology, we use finite state transducers (FSTs) which allow the surface structure to be mapped into the
list of morphemes. FSTs are useful for both analysis and generation, since the mapping is bidirectional. This approach
is known as two-level morphology.
To illustrate two-level morphology, consider the following FST, which recognises the affix -s allowing for environ-
ments corresponding to the e-insertion spelling rule shown in §2.4 and repeated below.14

14Actually, I’ve simplified this slightly so the FST works correctly but the correspondence to the spelling rule is not exact: J&M give a more
complex transducer which is an accurate reflection of the spelling rule. They also use an explicit terminating character while I prefer to rely on the
‘use all the input’ convention, which results in simpler rules.

16

ε → e/

 s
x
z

 ˆ s

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : s
x : x
z : z e : ˆ

s : s
x : x
z : z

Transducers map between two representations, so each transition corresponds to a pair of characters. As with the
spelling rule, we use the special character ‘ε’ to correspond to the empty character and ‘ˆ’ to correspond to an affix
boundary. The abbreviation ‘other : other’ means that any character not mentioned specifically in the FST maps to
itself.15 As with the FSA example, we assume that the FST only accepts an input if the end of the input corresponds
to an accept state (i.e., no ‘left-over’ characters are allowed).
For instance, with this FST, the surface form cakes would start from 1 and go through the transitions/states (c:c) 1,
(a:a) 1, (k:k) 1, (e:e) 1, (ε:ˆ) 2, (s:s) 3 (accept, underlying cakeˆs) and also (c:c) 1, (a:a) 1, (k:k) 1, (e:e) 1, (s:s) 4
(accept, underlying cakes). ‘d o g s’ maps to ‘d o g ˆ s’, ‘f o x e s’ maps to ‘f o x ˆ s’ and to ‘f o x e ˆ s’, and ‘b u z z
e s’ maps to ‘b u z z ˆ s’ and ‘b u z z e ˆ s’.16 When the transducer is run in analysis mode, this means the system can
detect an affix boundary (and hence look up the stem and the affix in the appropriate lexicons). In generation mode, it
can construct the correct string. This FST is non-deterministic.
Similar FSTs can be written for the other spelling rules for English (although to do consonant doubling correctly, in-
formation about stress and syllable boundaries is required and there are also differences between British and American
spelling conventions which complicate matters). Morphology systems are usually implemented so that there is one
FST per spelling rule and these operate in parallel.
One issue with this use of FSTs is that they do not allow for any internal structure of the word form. For instance, we
can produce a set of FSTs which will result in unionised being mapped into unˆionˆiseˆed, but as we’ve seen, the
affixes actually have to be applied in the right order and the bracketing isn’t modelled by the FSTs.

2.8 Some other uses of finite state techniques in NLP

• Grammars for simple spoken dialogue systems. Finite state techniques are not adequate to model grammars of
natural languages: I’ll discuss this a little in §4.11. However, for very simple spoken dialogue systems, a finite-

15The solution notes for the 2003 FST question are slightly wrong in that they should have y : y as well as other : other on one transition.
16In all cases they also map to themselves: e.g., ‘b u z z e s’ maps to ‘b u z z e s’ without the affix marker: this is necessary because words ending

in ‘s’ and ‘es’ are not always inflected forms. e.g., Moses

17

state grammar may be adequate. More complex grammars can be written as context free grammars (CFGs) and
compiled into finite state approximations.

• Partial grammars for named entity recognition (briefly discussed in §4.11).

• Dialogue models for spoken dialogue systems (SDS). SDS use dialogue models for a variety of purposes: in-
cluding controlling the way that the information acquired from the user is instantiated (e.g., the slots that are
filled in an underlying database) and limiting the vocabulary to achieve higher recognition rates. FSAs can be
used to record possible transitions between states in a simple dialogue. For instance, consider the problem of
obtaining a date expressed as a day and a month from a user. There are four possible states, corresponding to
the user input recognised so far:

1. No information. System prompts for month and day.
2. Month only is known. System prompts for day.
3. Day only is known. System prompts for month.
4. Month and day known.

The FSA is shown below. The loops that stay in a single state correspond to user responses that aren’t recognised
as containing the required information (mumble is the term generally used for an unrecognised input).

1

mumble

month day

day &
month2

mumble

day

3

mumble

month

4

2.9 Probabilistic FSAs

In many cases, it is useful to augment the FSA with information about transition probabilities. For instance, in the
SDS system described above, it is more likely that a user will specify a month alone than a day alone. A probabilistic
FSA for the SDS is shown below. Note that the probabilities on the outgoing arcs from each state must sum to 1.

1

0.1

0.5 0.1

0.32

0.1

0.9

3

0.2

0.8

4

2.10 Further reading

Chapters 2 and 3 of J&M. Much of Chapter 2 should be familiar from other courses in the CST. Chapter 3 uses more
elaborate transducers than I’ve discussed. See Bender (2013) for a much broader discussion of morphology.

18

3 Lecture 3: Prediction and part-of-speech tagging

This lecture introduces some simple statistical techniques and illustrates their use in NLP for prediction of words and
part-of-speech categories. It starts with a discussion of corpora, then introduces word prediction. Word prediction can
be seen as a way of (crudely) modelling some syntactic information (i.e., word order). Similar statistical techniques
can also be used to discover parts of speech for uses of words in a corpus. The lecture concludes with some discussion
of evaluation.

3.1 Corpora

A corpus (corpora is the plural) is simply a body of text that has been collected for some purpose. A balanced
corpus contains texts which represent different genres (newspapers, fiction, textbooks, parliamentary reports, cooking
recipes, scientific papers etc etc): early examples were the Brown corpus (US English: 1960s) and the Lancaster-
Oslo-Bergen (LOB) corpus (British English: 1970s) which are each about 1 million words: the more recent British
National Corpus (BNC: 1990s) contains approximately 100 million words, including about 10 million words of spoken
English. Corpora are important for many types of linguistic research, although mainstream linguists in the past mostly
dismissed their use in favour of reliance on intuitive judgements about whether or not an utterance is grammatical
(a corpus can only (directly) provide positive evidence about grammaticality). However, many linguists do now use
corpora. Corpora are essential for most modern NLP research, though NLP researchers have often used newspaper
text (particularly the Wall Street Journal) or text extracted from webpages rather than balanced corpora. Distributed
corpora are often annotated in some way: the most important type of annotation for NLP is part-of-speech tagging
(POS tagging), which I’ll discuss further below. Corpora may also be collected for a specific task. For instance, when
implementing an email answering application, it is essential to collect samples of representative emails. For interface
applications in particular, collecting a corpus requires a simulation of the actual application: this has often been done
by a Wizard of Oz experiment, where a human pretends to be a computer.
Corpora are needed in NLP for two reasons. Firstly, we have to evaluate algorithms on real language: corpora are
required for this purpose for any style of NLP. Secondly, corpora provide the data source for many machine-learning
approaches.

3.2 Prediction

The essential idea of prediction is that, given a sequence of words, we want to determine what’s most likely to come
next. There are a number of reasons to want to do this: the most important is as a form of language modelling for
automatic speech recognition (ASR). Speech recognisers cannot accurately determine a word from the sound signal
for that word alone, and they cannot reliably tell where each word in an utterance starts and finishes. For instance, have
an ice Dave, heaven ice day and have a nice day could easily be confused. 17 For ASR, an initial signal processing
phase produces a lattice of hypotheses of the words uttered, which are then ranked and filtered using the probabilities
of the possible sequences according to the language model. The language models which are currently most practically
effective work on the basis of n-grams (a type of Markov chain), where the sequence of the prior n− 1 words is used
to derive a probability for the next. Trigram models use the preceding 2 words, bigram models the preceding word
and unigram models use no context at all, but simply work on the basis of individual word probabilities. Bigrams are
discussed below, though I won’t go into details of exactly how they are used in speech recognition.
Word prediction has been used for decades in communication aids: i.e., systems for people who can’t speak because
of some form of disability. People who use text-to-speech systems to talk because of a non-linguistic disability usually
have some form of general motor impairment which also restricts their ability to type at normal rates (stroke, ALS,
cerebral palsy etc). Often they use alternative input devices, such as adapted keyboards, puffer switches, mouth sticks
or eye trackers. Generally such users can only construct text at a few words a minute, which is too slow for anything
like normal communication to be possible (normal speech is around 150 words per minute). As a partial aid, a word
prediction system is sometimes helpful: this gives a list of candidate words that changes as the initial letters are entered
by the user. The user chooses the desired word from a menu when it appears. The main difficulty with using statistical

17In fact, although humans are better at doing this than speech recognisers, we also need context to recognise words, especially words like the
and a. If a recording is made of normal, fluently spoken, speech and the segments corresponding to the and a are presented to a human subject in
isolation, it’s generally not possible for them to tell the difference.

19

prediction models in such applications is in finding enough data: to be useful, the model really has to be trained on an
individual speaker’s output, but of course very little of this is likely to be available. Training a conversational aid on
newspaper text can be worse than using a unigram model from the user’s own data. Of course, predictive text is now
commonplace on mobile devices, where users are disabled by not having a proper keyboard.
Prediction is important in estimation of entropy, including estimations of the entropy of English. The notion of entropy
is important in language modelling because it gives a metric for the difficulty of the prediction problem. For instance,
speech recognition is vastly easier in situations where the speaker is only saying two easily distinguishable words (e.g.,
when a dialogue system prompts by saying answer ‘yes’ or ‘no’) than when the vocabulary is unlimited: measurements
of entropy can quantify this, but won’t be discussed further in this course.
Other applications for prediction include handwriting recognition, spelling correction and text segmentation for lan-
guages such as Chinese, which are conventionally written without explicit word boundaries. A form of prediction
is used to model the target language in statistical MT systems, and can also be used to rank the output of grammar-
based language realizers in symbolic MT or other language generation applications. Some approaches to word sense
disambiguation, to be discussed in lecture 7, can also be treated as a form of prediction.

3.3 bigrams

A bigram model assigns a probability to a word based on the previous word alone: i.e., P (wn|wn−1) (the probability
of wn conditional on wn−1) where wn is the nth word in some string. For application to communication aids, we
are simply concerned with predicting the next word: once the user has made their choice, the word can’t be changed.
However, for speech recognition and similar applications, we require the probability of some string of words P (wn

1)
which is approximated by the product of the bigram probabilities:

P (wn
1) ≈

n∏
k=1

P (wk|wk−1)

This assumes independence of the individual probabilities, which is clearly wrong, but the approximation nevertheless
works reasonably well. Note that, although the n-gram probabilities are based only on the preceding words, the effect
of this combination of probabilities is that the choice between possibilities at any point is sensitive to both preceding
and following contexts. For instance, the decision between a and the in a lattice may be influenced by the following
noun, which is a much better predictor than the words before the determiner.
We acquire these probabilities from a corpus. The bigram probabilities are given as:

C(wn−1wn)∑
w C(wn−1w)

i.e., the count of a particular bigram, normalised by dividing by the total number of bigrams starting with the same
word (which is equivalent to the total number of occurrences of that word, except in the case of the last token, a
complication which can be ignored for a reasonable size of corpus). For example, suppose we have the following tiny
corpus of utterances:

⟨s⟩ good morning ⟨/s⟩ ⟨s⟩ good afternoon ⟨/s⟩ ⟨s⟩ good afternoon ⟨/s⟩ ⟨s⟩ it is very good ⟨/s⟩ ⟨s⟩ it is good ⟨/s⟩

I have used the symbol ⟨s⟩ to indicate the beginning of the utterance and ⟨/s⟩ to indicate the end.

sequence count bigram probability
<s> 5
<s> good 3 .6
<s> it 2 .4
good 5
good morning 1 .2
good afternoon 2 .4
good </s> 2 .4
morning 1

20

morning </s> 1 1
afternoon 2
afternoon </s> 2 1
it 2
it is 2 1
is 2
is very 1 .5
is good 1 .5
very 1
very good 1 1
</s> 5
</s><s> 4 1

This yields a probability of 0.24 for the string ‘⟨s⟩ good ⟨/s⟩’ and also for ‘⟨s⟩ good afternoon ⟨/s⟩’.
Notice that we can regard bigrams as comprising a simple deterministic weighted FSA. The Viterbi algorithm, a
dynamic programming technique for efficiently applying n-grams in speech recognition and other applications to find
the highest probability sequence (or sequences), is usually described in terms of an FSA.
With the approach described, the probability of ‘⟨s⟩ very good ⟨/s⟩’ based on this toy corpus is 0: the conditional
probability of ‘very’ given ‘⟨s⟩’ is 0 since there are no examples of this in the training data. Even for realistically sized
corpora, zero probabilities are problematic: we will never have enough data to ensure that we will see all possible
events and so we don’t want to rule out unseen events entirely. To allow for sparse data we have to use smoothing,
which simply means that we make some assumption about the ‘real’ probability of unseen or very infrequently seen
events and distribute that probability appropriately. A common approach is simply to add one to all counts: this is add-
one smoothing which is not sound theoretically, but is simple to implement. A better approach in the case of bigrams
is to backoff to the unigram probabilities: i.e., to distribute the unseen probability mass so that it is proportional to the
unigram probabilities. This sort of estimation is extremely important to get good results from n-gram techniques, but
is not discussed further here.

3.4 Part of speech tagging

Sometimes we are interested in a form of prediction that involves assigning classes to items in a sequence rather than
predicting the next item. One important application is to part-of-speech tagging (POS tagging), where the words in a
corpus are associated with a tag indicating some syntactic information that applies to that particular use of the word.
For instance, consider the example sentence below:

They can fish.

This has two readings: one (the most likely) about ability to fish and other about putting fish in cans. fish is ambiguous
between a singular noun, plural noun and a verb, while can is ambiguous between singular noun, verb (the put into
cans use) and modal verb (the ‘possibility’ use). However, they is unambiguously a pronoun. (I am ignoring some less
likely possibilities, such as proper names.) These distinctions could be indicated by POS tags:

They pronoun can modal fish verb.
They pronoun can verb fish plural-noun.

In fact, much less mnemonic tag names are used in the standard tagsets for POS tagging. For the examples in this
lecture I’ll use the CLAWS 5 (C5) tagset which is given in full in Figure 5.9 in J&M. The tags needed for the example
above are:

NN1 singular noun
NN2 plural noun
PNP personal pronoun
VM0 modal auxiliary verb
VVB base form of verb (except infinitive)
VVI infinitive form of verb (i.e. occurs with ‘to’ and in similar contexts)

21

The lexicon which associates the words with the tags includes:

they PNP
can VM0 VVB VVI NN1
fish NN1 NN2 VVB VVI

A POS tagger resolves the lexical ambiguities to give the most likely set of tags for the sentence, i.e., for this example:

They PNP can VM0 fish VVI . PUN

Note the tag for the full stop: punctuation is treated as unambiguous.
The other syntactically possible reading mentioned above corresponds to the following using C5 tags:

They PNP can VVB fish NN2 . PUN

However, POS taggers (unlike full parsers) don’t attempt to produce globally coherent analyses. Thus a POS tagger
might also return:

They PNP can VM0 fish NN2 . PUN

despite the fact that this doesn’t correspond to a possible reading of the sentence.
POS tagging can be regarded as a form of very basic, coarse-grained, sense disambiguation. It is useful as a way of
annotating a corpus because it makes it easier to extract some types of information (for linguistic research or NLP
experiments). It also acts as a basis for more complex forms of annotation. Named entity recognisers (discussed
in lecture 4) are generally run on POS-tagged data. As mentioned in lecture 1, POS taggers are sometimes run as
preprocessors to full parsing, since this can cut down the search space to be considered by the parser. They can also
be used as part of a method for dealing with words which are not in the parser’s lexicon (unknown words).

3.5 Stochastic POS tagging using Hidden Markov Models

One form of POS tagging uses a technique known as Hidden Markov Modelling (HMM). It involves an n-gram
technique, but in this case the n-grams are sequences of POS tags rather than of words. The most common approaches
depend on a small amount of manually tagged training data from which POS n-grams can be extracted.18 I’ll illustrate
this with respect to another trivial corpus:

They used to can fish in those towns. But now few people fish in these areas.

This might be tagged as follows:

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP those_DT0 towns_NN2 ._PUN
But_CJC now_AV0 few_DT0 people_NN2 fish_VVB in_PRP these_DT0 areas_NN2 ._PUN

This yields the following counts and probabilities:

sequence count bigram probability
AV0 1
AV0 DT0 1 1
CJC 1
CJC AV0 1 1
DT0 3
DT0 NN2 3 1
NN2 4

18It is possible to build POS taggers that work without a hand-tagged corpus, but they don’t perform as well as a system trained on even a very
small manually-tagged corpus and they still require a lexicon associating possible tags with words. Completely unsupervised approaches also exist,
where no lexicon is used, but the categories induced do not correspond to any standard tagset.

22

NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25
PNP 1
PNP VVD 1 1
PRP 1
PRP DT0 2 1
PUN 1
PUN CJC 1 1
TO0 1
TO0 VVI 1 1
VVB 1
VVB PRP 1 1
VVD 1
VVD TO0 1 1
VVI 1
VVI NN2 1 1

I’ve used the correct PUN CJC probability, allowing for the final PUN. We also obtain a lexicon from the tagged data:

word tag count word tag count

they PNP 1 towns NN2 1
used VVD 1 . PUN 1
to TO0 1 but CJC 1
can VVI 1 now AV0 1
fish NN2 1 few DT0 1

VVB 1 people NN2 1
in PRP 2 these DT0 1
those DT0 1 areas NN2 1

The idea of stochastic POS tagging is that the tag can be assigned based on consideration of the lexical probability
(how likely it is that the word has that tag), plus the sequence of prior tags (for a bigram model, the immediately prior
tag). This is more complicated than prediction because we have to take into account both words and tags.
We wish to produce a sequence of tags which have the maximum probability given a sequence of words. I will follow
J&M’s notation: the hat,ˆ, means “estimate of”; t̂n1 means “estimate of the sequence of n tags”; argmax

x
f(x) means

“the x such that f(x) is maximized”. Hence:

t̂n1 = argmax
tn1

P (tn1 |wn
1)

We can’t estimate this directly (mini-exercise: explain why not). By Bayes theorem:

P (tn1 |wn
1) =

P (wn
1 |tn1)P (tn1)

P (wn
1)

Since we’re looking at assigning tags to a particular sequence of words, P (wn
1) is constant, so for a relative measure

of probability we can use:
t̂n1 = argmax

tn1

P (wn
1 |tn1)P (tn1)

We now have to estimate P (tn1) and P (wn
1 |tn1). If we make the bigram assumption, then the probability of a tag

depends on the previous tag, hence the tag sequence is estimated as a product of the probabilities:

P (tn1) ≈
n∏

i=1

P (ti|ti−1)

23

We will also assume that the probability of the word is independent of the words and tags around it and depends only
on its own tag:

P (wn
1 |tn1) ≈

n∏
i=1

P (wi|ti)

These values can be estimated from the corpus frequencies. So our final equation for the HMM POS tagger using
bigrams is:

t̂n1 = argmax
tn1

n∏
i=1

P (wi|ti)P (ti|ti−1)

Note that we end up multiplying P (ti|ti−1) with P (wi|ti) (the probability of the word given the tag) rather than
P (ti|wi) (the probability of the tag given the word). For instance, if we’re trying to choose between the tags NN2
and VVB for fish in the sentence they fish, we calculate P (NN2|PNP), P (fish|NN2), P (VVB|PNP) and P (fish|VVB)
(assuming PNP is the only possible tag for they).
As the equation above indicates, in order to POS tag a sentence, we maximise the overall tag sequence probability
(again, this can be implemented efficiently using the Viterbi algorithm). So a tag which has high probability consid-
ering its individual bigram estimate will not be chosen if it does not form part of the highest probability path. For
example, consider:
they PNP can VVB fish NN2
they PNP can VM0 fish VVI
The product of P (VVI|VM0) and P (fish|VVI) may be lower than that of P (NN2|VVB) and P (fish|NN2) but the
overall probability depends also on P (can|VVB) versus P (can|VM0) and the latter (modal) use has much higher
frequency in a balanced corpus.
In fact, POS taggers generally use trigrams rather than bigrams — the relevant equations are given in J&M, 5.5.4. As
with word prediction, backoff (to bigrams) and smoothing are crucial for reasonable performance because of sparse
data.
When a POS tagger sees a word which was not in its training data, we need some way of assigning possible tags to the
word. One approach is simply to use all possible open class tags, with probabilities based on the unigram probabilities
of those tags.19 A better approach is to use a morphological analyser (without a lexicon) to restrict the candidates:
e.g., words ending in -ed are likely to be VVD (simple past) or VVN (past participle), but can’t be VVG (-ing form).

3.6 Evaluation of POS tagging

POS tagging algorithms are evaluated in terms of percentage of correct tags. The standard assumption is that every
word should be tagged with exactly one tag, which is scored as correct or incorrect: there are no marks for near
misses. Generally there are some words which can be tagged in only one way, so are automatically counted as correct.
Punctuation is generally given an unambiguous tag. Success rates of about 97% are possible for English POS tagging
(performance seems to have reached a plateau, probably partly because of errors in the manually-tagged corpora) but
the baseline of choosing the most common tag based on the training set often gives about 90% accuracy.20 Some POS
taggers return multiple tags in cases where more than one tag has a similar probability.
Increasing the size of the tagset does not necessarily result in decreased performance: some additional tags could be
assigned more-or-less unambiguously and more fine-grained tags can increase performance. For instance, suppose we
wanted to distinguish between present tense verbs according to whether they were 1st, 2nd or 3rd person. With the C5
tagset, and the stochastic tagger described, this would be impossible to do with high accuracy, because all pronouns
are tagged PRP, hence they provide no discriminating power. On the other hand, if we tagged I and we as PRP1,
you as PRP2 and so on, the n-gram approach would allow some discrimination. In general, predicting on the basis
of classes means we have less of a sparse data problem than when predicting on the basis of words, but we have less
discriminating power. There is also something of a trade-off between the utility of a set of tags and their effectiveness
in POS tagging. For instance, C5 assigns separate tags for the different forms of be, which is redundant for many

19Open class words are ones for which we can never give a complete list for a living language, since words are always being invented: i.e., verbs,
nouns, adjectives and adverbs. Other words (prepositions, determiners, conjunctions and so on) are considered closed class.

20Accuracy differs between languages mainly because of differences in morphology: Japanese POS-tagging is almost deterministic but accuracy
for Turkish is only around 90%.

24

purposes, but helps make distinctions between other tags in tagging models such as the HMM described here where
the context is given by a tag sequence alone (i.e., rather than considering words prior to the current one).
POS tagging exemplifies some general issues in NLP evaluation:

Training data and test data The assumption in NLP is always that a system should work on novel data, therefore
test data must be kept unseen.

For machine learning approaches, such as stochastic POS tagging, the usual technique is to spilt a data set into
90% training and 10% test data. Care needs to be taken that the test data is representative.

For an approach that relies on significant hand-coding, the test data should be literally unseen by the researchers.
Development cycles involve looking at some initial data, developing the algorithm, testing on unseen data,
revising the algorithm and testing on a new batch of data. The seen data is kept for regression testing.

Baselines Evaluation should be reported with respect to a baseline, which is normally what could be achieved with a
very basic approach, given the same training data. For instance, a baseline for POS tagging with training data is
to choose the most common tag for a particular word on the basis of the training data (and to simply choose the
most frequent tag of all for unseen words).

Ceiling It is often useful to try and compute some sort of ceiling for the performance of an application. This is usually
taken to be human performance on that task, where the ceiling is the percentage agreement found between two
annotators (interannotator agreement). For POS tagging, this has been reported as 96% (which makes existing
POS taggers look impressive since some perform at higher accuracy). However this raises lots of questions:
relatively untrained human annotators working independently often have quite low agreement, but trained an-
notators discussing results can achieve much higher performance (approaching 100% for POS tagging). Human
performance varies considerably between individuals. Fatigue can cause errors, even with very experienced
annotators. In any case, human performance may not be a realistic ceiling on relatively unnatural tasks, such as
POS tagging.

Error analysis The error rate on a particular problem will be distributed very unevenly. For instance, a POS tagger
will never confuse the tag PUN with the tag VVN (past participle), but might confuse VVN with AJ0 (adjective)
because there’s a systematic ambiguity for many forms (e.g., given). For a particular application, some errors
may be more important than others. For instance, if one is looking for relatively low frequency cases of de-
nominal verbs (that is verbs derived from nouns — e.g., canoe, tango, fork used as verbs), then POS tagging is
not directly useful in general, because a verbal use without a characteristic affix is likely to be mistagged. This
makes POS-tagging less useful for lexicographers, who are often specifically interested in finding examples of
unusual word uses. Similarly, in text categorisation, some errors are more important than others: e.g. treating
an incoming order for an expensive product as junk email is a much worse error than the converse.

Reproducibility If at all possible, evaluation should be done on a generally available corpus so that other researchers
can replicate the experiments.

3.7 Further reading

N-grams are described in Chapter 4 of J&M, POS tagging in Chapter 5. The description in the second edition is
considerably clearly than that in the first edition.

25

4 Lecture 4: Context-free grammars and parsing.

In this lecture, I’ll discuss syntax in a way which is much closer to the standard notions in formal linguistics than
POS-tagging is. To start with, I’ll briefly motivate the idea of a generative grammar in linguistics, review the notion
of a context-free grammar and then show a context-free grammar for a tiny fragment of English. We’ll then see how
context free grammars can be used to implement parsers, and discuss chart parsing, which allows efficient processing
of strings containing a high degree of ambiguity. Finally we’ll briefly touch on probabilistic context-free approaches.

4.1 Generative grammar

Since Chomsky’s work in the 1950s, much work in formal linguistics has been concerned with the notion of a genera-
tive grammar — i.e., a formally specified grammar that can generate all and only the acceptable sentences of a natural
language. It’s important to realise that nobody has actually written a complete grammar of this type for any living
natural language:21 what most linguists are really interested in is the principles that underlie such grammars, espe-
cially to the extent that they apply to all natural languages. NLP researchers, on the other hand, are at least sometimes
interested in actually building and using large-scale detailed grammars.
The formalisms which are of interest to us for modelling syntax assign internal structure to the strings of a language,
which may be represented by bracketing. We already saw some evidence of this in derivational morphology (the
unionised example), but here we are concerned with the structure of phrases. For instance, the sentence:

the big dog slept

can be bracketed

((the (big dog)) slept)

The phrase, big dog, is an example of a constituent (i.e. something that is enclosed in a pair of brackets): the big dog
is also a constituent, but the big and dog slept are not. Constituent structure is generally justified by arguments about
substitution which I won’t go into here: J&M discuss this briefly, as does Bender (2013) but see an introductory syntax
book for a full discussion. In this course, I will simply give bracketed structures and hope that the constituents make
sense intuitively, rather than trying to justify them.
Two grammars are said to be weakly-equivalent if they generate the same strings. Two grammars are strongly-
equivalent if they assign the same structure to all strings they generate.
In most, but not all, approaches, the internal structures are given labels.22 For instance, the big dog is a noun phrase
(abbreviated NP), slept, slept in the park and licked Sandy are verb phrases (VPs). The labels such as NP and VP
correspond to non-terminal symbols in a grammar. In this lecture, I’ll discuss the use of simple context-free grammars
for language description, moving onto a more expressive formalism in lecture 5.

4.2 Context free grammars

The idea of a context-free grammar (CFG) should be familiar from formal language theory. A CFG has four compo-
nents, described here as they apply to grammars of natural languages:

1. a set of non-terminal symbols (e.g., S, VP), conventionally written in uppercase;

2. a set of terminal symbols (i.e., the words), conventionally written in lowercase;

3. a set of rules (productions), where the left hand side (the mother) is a single non-terminal and the right hand
side is a sequence of one or more non-terminal or terminal symbols (the daughters);

4. a start symbol, conventionally S, which is a member of the set of non-terminal symbols.

21There are grammars which cover all recorded utterances of extinct languages.
22For a brief discussion of the alternative dependency approach, see §6.4.

26

The formal description of a CFG generally allows productions with an empty right hand side (e.g., Det → ε). It is
convenient to exclude these however, since they complicate parsing algorithms, and a weakly-equivalent grammar can
always be constructed that disallows such empty productions.
A grammar in which all nonterminal daughters are the leftmost daughter in a rule (i.e., where all rules are of the form
X → Y a∗), is said to be left-associative. A grammar where all the nonterminals are rightmost is right-associative.
Such grammars are weakly-equivalent to regular grammars (i.e., grammars that can be implemented by FSAs), but
natural languages seem to require more expressive power than this (see §4.11).

4.3 A simple CFG for a fragment of English

The following tiny fragment is intended to illustrate some of the properties of CFGs so that we can discuss parsing.
It has some serious deficiencies as a representation of even this fragment, which I’ll ignore for now, though we’ll see
some of them at the end of the lecture. Notice that for this fragment there is no distinction between main verb can and
the modal verb can.

S -> NP VP
VP -> VP PP
VP -> V
VP -> V NP
VP -> V VP
NP -> NP PP
PP -> P NP
;;; lexicon
V -> can
V -> fish
NP -> fish
NP -> rivers
NP -> pools
NP -> December
NP -> Scotland
NP -> it
NP -> they
P -> in

The rules with terminal symbols on the right hand side correspond to the lexicon. Here and below, comments are
preceded by ;;;
Here are some strings which this grammar generates, along with their bracketings:

they fish
(S (NP they) (VP (V fish)))

they can fish
(S (NP they) (VP (V can) (VP (V fish))))
;;; the modal verb ‘are able to’ reading
(S (NP they) (VP (V can) (NP fish)))
;;; the less plausible, put fish in cans, reading

they fish in rivers
(S (NP they) (VP (VP (V fish)) (PP (P in) (NP rivers))))

they fish in rivers in December
(S (NP they) (VP (VP (V fish)) (PP (P in) (NP (NP rivers) (PP (P in) (NP December))))))
;;; i.e. the implausible reading where the rivers are in December
;;; (cf rivers in Scotland)
(S (NP they) (VP (VP (VP (V fish)) (PP (P in) (NP rivers))) (PP (P in) (NP December))))
;;; i.e. the fishing is done in December

27

One important thing to notice about these examples is that there’s lots of potential for ambiguity. In the they can
fish example, this is due to lexical ambiguity (it arises from the dual lexical entries for fish), but the last example
demonstrates purely structural ambiguity. In this case, the ambiguity arises from the two possible attachments of the
prepositional phrase (PP) in December: it can attach to the NP (rivers) or to the VP. These attachments correspond
to different semantics, as indicated by the glosses. PP attachment ambiguities are a major headache in parsing, since
sequences of four or more PPs are common in real texts and the number of readings increases as the Catalan series,
which is exponential. Other phenomena have similar properties: for instance, compound nouns (e.g. long-stay car
park shuttle bus). Humans disambiguate such attachments as they hear a sentence, but they’re relying on the meaning
in context to do this, in a way we cannot currently emulate, except when the sentences are restricted to a very limited
domain.
Notice that fish could have been entered in the lexicon directly as a VP, but that this would cause problems if we were
doing inflectional morphology, because we want to say that suffixes like -ed apply to Vs. Making rivers etc NPs rather
than nouns is a simplification I’ve adopted here just to keep the example grammar smaller.

4.4 Parse trees

Parse trees are equivalent to bracketed structures, but are easier to read for complex cases. A parse tree and bracketed
structure for one reading of they can fish in December is shown below. The correspondence should be obvious.

S

NP VP

they V VP

can VP PP

V

fish

P NP

in December

(S (NP they)
(VP (V can)

(VP (VP (V fish))
(PP (P in)

(NP December)))))

4.5 Chart parsing

In order to parse with reasonable efficiency, we need to keep a record of the rules that we have applied so that we don’t
have to backtrack and redo work that we’ve done before. This works for parsing with CFGs because the rules are
independent of their context: a VP can always expand as a V and an NP regardless of whether or not it was preceded
by an NP or a V, for instance. (In some cases we may be able to apply techniques that look at the context to cut down
the search space, because we can tell that a particular rule application is never going to be part of a sentence, but this is
strictly a filter: we’re never going to get incorrect results by reusing partial structures.) This record keeping strategy is
an application of dynamic programming/memoization which is used in processing formal languages too. In NLP the
data structure used for recording partial results is generally known as a chart and algorithms for parsing using such

28

structures are referred to as chart parsers.23 Chart parsing strategies are designed to be complete: that is, the chart
parser will find all valid analyses according to a grammar (though there are some minor caveats e.g., concerning rules
which can apply to their own output).
A chart is a collection of edges, usually implemented as a vector of edges, indexed by edge identifiers. In the simplest
version of chart parsing, each edge records a rule application and has the following structure:

[id,left vertex, right vertex,mother category, daughters]

A vertex is an integer representing a point in the input string, as illustrated below:

. they . can . fish .
0 1 2 3

mother category refers to the rule that has been applied to create the edge. daughters is a list of the edges that acted
as the daughters for this particular rule application: it is there purely for record keeping so that the output of parsing
can be a labelled bracketing.
For instance, the following edges would be among those found on the chart after a complete parse of they can fish
according to the grammar given above (id numbering is arbitrary):

id left right mother daughters
3 1 2 V (can)
4 2 3 NP (fish)
5 2 3 V (fish)
6 2 3 VP (5)
7 1 3 VP (3 6)
8 1 3 VP (3 4)

The daughters for the terminal rule applications are simply the input word strings.
Note that local ambiguities correspond to situations where a particular span has more than one associated edge. We’ll
see below that we can pack structures so that we never have two edges with the same category and the same span, but
we’ll ignore this for the moment (see §4.8). Also, in this chart we’re only recording complete rule applications: this is
passive chart parsing. The more efficient active chart is discussed below, in §4.9.

4.6 A bottom-up passive chart parser

The following pseudo-code sketch is for a very simple chart parser. Informally, it proceeds by adding the next word
(in left to right order), and adding each lexical category possible for that word, doing everything it can immediately
after each lexical category is added. The main function is Add new edge which is called for each word in the input
going left to right. Add new edge recursively scans backwards looking for other daughters.

Parse:
Initialise the chart (i.e., clear previous results)
For each word word in the input sentence, let from be the left vertex, to be the right vertex and daughters be (word)

For each category category that is lexically associated with word
Add new edge from, to, category, daughters

Output results for all spanning edges
(i.e., ones that cover the entire input and which have a mother corresponding to the root category)

Add new edge from, to, category, daughters:
Put edge in chart: [id,from,to, category,daughters]
For each rule in the grammar of form lhs -> cat1 . . . catn−1,category

Find set of lists of contiguous edges [id1,from1,to1, cat1,daughters1] . . . [idn−1,fromn−1,from, catn−1,daughtersn−1]

23Natural languages have vastly higher degrees of ambiguity than programming languages: chart parsing is well-suited to this.

29

(such that to1 = from2 etc)
(i.e., find all edges that match a rule)
For each list of edges, Add new edge from1, to, lhs, (id1 . . . id)
(i.e., apply the rule to the edges)

Notice that this means that the grammar rules are indexed by their rightmost category, and that the edges in the chart
must be indexed by their to vertex (because we scan backward from the rightmost category). Consider:

. they . can . fish .
0 1 2 3

The following diagram shows the chart edges as they are constructed in order (when there is a choice, taking rules in
a priority order according to the order they appear in the grammar):

id left right mother daughters
1 0 1 NP (they)
2 1 2 V (can)
3 1 2 VP (2)
4 0 2 S (1 3)
5 2 3 V (fish)
6 2 3 VP (5)
7 1 3 VP (2 6)
8 0 3 S (1 7)
9 2 3 NP (fish)
10 1 3 VP (2 9)
11 0 3 S (1 10)

The spanning edges are 11 and 8: the output routine to give bracketed parses simply outputs a left bracket, outputs
the category, recurses through each of the daughters and then outputs a right bracket. So, for instance, the output from
edge 11 is:

(S (NP they) (VP (V can) (NP fish)))

This chart parsing algorithm is complete: it returns all possible analyses (except in the case where it does not terminate
because there is a unary rule that applies to its own output).

4.7 A detailed trace of the simple chart parser

Parse
word = they
categories = NP
Add new edge 0, 1, NP, (they)

they can fish

1

Matching grammar rules are:

VP -> V NP
PP -> P NP

No matching edges corresponding to V or P

word = can
categories = V
Add new edge 1, 2, V, (can)

30

they can fish

1 2

Matching grammar rules are:

VP -> V

set of edge lists = {(2)}

Add new edge 1, 2, VP, (2)

they can fish

1 2

3

Matching grammar rules are:

S -> NP VP
VP -> V VP

set of edge lists corresponding to NP VP = {(1, 3)}

Add new edge 0, 2, S, (1, 3)

they can fish

1 2

3

4

No matching grammar rules for S

No edges matching V VP

word = fish
categories = V, NP
Add new edge 2, 3, V, (fish)

they can fish

1 2

3

4

5

Matching grammar rules are:

VP -> V

set of edge lists = {(5)}

Add new edge 2, 3, VP, (5)

they can fish

1 2

3

4

5

6

31

Matching grammar rules are:

S -> NP VP
VP -> V VP

No edges match NP
set of edge lists for V VP = {(2, 6)}

Add new edge 1, 3, VP, (2, 6)

they can fish

1 2

3

4

5

6

7

Matching grammar rules are:

S -> NP VP
VP -> V VP

set of edge lists for NP VP = {(1, 7)}
Add new edge 0, 3, S, (1, 7)

they can fish

1 2

3

4

5

6

7

8

No matching grammar rules for S

No edges matching V

Add new edge 2, 3, NP, (fish)

they can fish

1 2

3

4

5

6

7

8 9

Matching grammar rules are:

VP -> V NP
PP -> P NP

set of edge lists corresponding to V NP = {(2, 9)}

Add new edge 1, 3, VP, (2, 9)

32

they can fish

1 2

3

4

5

6

7

8 9

10

Matching grammar rules are:

S -> NP VP
VP -> V VP

set of edge lists corresponding to NP VP = {(1, 10)}

Add new edge 0, 3, S, (1, 10)

they can fish

1 2

3

4

5

6

7

8 9

10

11

No matching grammar rules for S

No edges corresponding to V VP

No edges corresponding to P NP
No further words in input
Spanning edges are 8 and 11: Output results for 8

(S (NP they) (VP (V can) (VP (V fish))))

Output results for 11

(S (NP they) (VP (V can) (NP fish)))

4.8 Packing

The algorithm given above is exponential in the case where there are an exponential number of parses. The body
of the algorithm can be modified so that it runs in cubic time, though producing the output is still exponential. The
modification is simply to change the daughters value on an edge to be a set of lists of daughters and to make an equality
check before adding an edge so we don’t add one that’s equivalent to an existing one. That is, if we are about to add
an edge:

[id,left vertex, right vertex,mother category, daughters]

and there is an existing edge:

33

[id-old,left vertex, right vertex,mother category, daughters-old]

we simply modify the old edge to record the new daughters:

[id-old,left vertex, right vertex,mother category, daughters-old ⊔ daughters]

There is no need to recurse with this edge, because we couldn’t get any new results: once we’ve found we can pack an
edge, we always stop that part of the search. Thus packing saves computation and in fact leads to cubic time operation,
though I won’t go through the proof of this.
For the example above, everything proceeds as before up to edge 9:

id left right mother daughters
1 0 1 NP {(they)}
2 1 2 V {(can)}
3 1 2 VP {(2)}
4 0 2 S {(1 3)}
5 2 3 V {(fish)}
6 2 3 VP {(5)}
7 1 3 VP {(2 6)}
8 0 3 S {(1 7)}
9 2 3 NP {(fish)}

However, rather than add edge 10, which would be:

10 1 3 VP (2 9)

we match this with edge 7, and simply add the new daughters to that.

7 1 3 VP {(2 6), (2 9)}

The algorithm then terminates. We only have one spanning edge (edge 8) but the display routine is more complex
because we have to consider the alternative sets of daughters for edge 7. (You should go through this to convince
yourself that the same results are obtained as before.) Although in this case, the amount of processing saved is small,
the effects are much more important with longer sentences (consider he believes they can fish, for instance).

4.9 Active chart parsing

A more minor efficiency improvement is obtained by storing the results of partial rule applications. This is active
chart parsing, so called because the partial edges are considered to be active: i.e. they ‘want’ more input to make them
complete. An active edge records the input it expects as well as the daughters it has already seen. Active edges are
stored on the chart as well as passive edges. For instance, with an active chart parser, we might have the following
edges when parsing a sentence starting they fish:

id left right mother expected daughters
1 0 1 NP (they)
2 0 1 S VP (1 ?)
3 0 1 NP PP (1,?)
4 1 2 V (fish)
5 1 2 VP (4)
6 0 2 S (2,5)
7 1 2 VP NP (4,?)
8 1 2 VP VP (4,?)
9 1 2 VP PP (5,?)

34

Edge 1 is complete (a passive edge). Edge 2 is active: the daughter marked as ? will be instantiated by the edge
corresponding to the VP when it is found (e.g., edge 5 instantiates the active part of edge 2 to give edge 6).
Each word gives rise to a passive edge. Each passive edge of category C gives rise to active edges corresponding to
rules with leftmost daughter C (although there are various possible pruning strategies than can be used to cut down on
spurious active edges). Every time a passive edge is added, the active edges are searched to see if the new passive edge
can complete an active edge.
I will not give full details of the active chart parser here: there are several possible variants. The main thing to note
is that active edges may be used to create more than one passive edge. For instance, if we have the string they fish in
Scotland, edge 2 will be completed by fish and also by fish in Scotland. Whether this leads to a practical improvement
in efficiency depends on whether the saving in time that results because the NP is only combined with the S rule once
outweighs the overhead of storing the edge. Active edges may be packed. Active chart parsing is generally more
efficient than passive parsing for feature structure grammars (explained in the next lecture) because there is some cost
associated with combining a daughter with a rule.

4.10 Ordering the search space

In the pseudo-code above, the order of addition of edges to the chart was determined by the recursion. In general,
chart parsers make use of an agenda of edges, so that the next edges to be operated on are the ones that are first on the
agenda. Different parsing algorithms can be implemented by making this agenda a stack or a queue, for instance.
So far, we’ve considered bottom up parsing: an alternative is top down parsing, where the initial edges are given by
the rules whose mother corresponds to the start symbol.
Some efficiency improvements can be obtained by ordering the search space appropriately, though which version is
most efficient depends on properties of the individual grammar. However, the most important reason to use an explicit
agenda is when we are returning parses in some sort of priority order, corresponding to weights on different grammar
rules or lexical entries.
Weights can be manually assigned to rules and lexical entries in a manually constructed grammar. However, since the
beginning of the 1990s, a lot of work has been done on automatically acquiring probabilities from a corpus annotated
with syntactic trees (a treebank), either as part of a general process of automatic grammar acquisition, or as auto-
matically acquired additions to a manually constructed grammar. Probabilistic CFGs (PCFGs) can be defined quite
straightforwardly, if the assumption is made that the probabilities of rules and lexical entries are independent of one
another (of course this assumption is not correct, but the orderings given seem to work quite well in practice). The
importance of this is that we rarely want to return all parses in a real application, but instead we want to return those
which are top-ranked: i.e., the most likely parses. This is especially true when we consider that realistic grammars
can easily return many tens of thousands of parses for sentences of quite moderate length (20 words or so). If edges
are prioritised by probability, very low priority edges can be completely excluded from consideration if there is a
cut-off such that we can be reasonably certain that no edges with a lower priority than the cut-off will contribute to the
highest-ranked parse. Limiting the number of analyses under consideration is known as beam search (the analogy is
that we’re looking within a beam of light, corresponding to the highest probability edges). Beam search is linear rather
than exponential or cubic. Just as importantly, a good priority ordering from a parser reduces the amount of work that
has to be done to filter the results by whatever system is processing the parser’s output.

4.11 Why can’t we use FSAs to model the syntax of natural languages?

In this lecture, we started using CFGs. This raises the question of why we need this more expressive (and hence
computationally expensive) formalism, rather than modelling syntax with FSAs.24 The usual answer is that the syntax
of natural languages cannot be described by an FSA, even in principle, due to the presence of centre-embedding, i.e.
structures which map to:

A → αAβ

24Recall that any FSA can be converted to a regular grammar, so grammar rules written in the format we’ve been using could be parsed using an
FSA if they met the restrictions for a regular grammar.

35

and which generate grammars of the form anbn. For instance:

the students the police arrested complained

has a centre-embedded structure. However, this is not entirely satisfactory, since humans have difficulty processing
more than two levels of embedding:

? the students the police the journalists criticised arrested complained

If the recursion is finite (no matter how deep), then the strings of the language could be generated by an FSA. So it’s
not entirely clear whether an FSA might not suffice, despite centre embedding.
There’s a fairly extensive discussion of the theoretical issues in J&M , but there are two essential points for our
purposes:

1. Grammars written using finite state techniques alone may be very highly redundant, which makes them difficult
to build and slow to run.

2. Without internal structure, we can’t build up good semantic representations.

These are the main reasons for the use of more powerful formalisms from an NLP perspective (in the next section, I’ll
discuss whether simple CFGs are inadequate for similar reasons).
However, FSAs are very useful for partial grammars. In particular, for information extraction, we need to recognise
named entities: e.g. Professor Smith, IBM, 101 Dalmatians, the White House, the Alps and so on. Although NPs are
in general recursive (the man who likes the dog which bites postmen), relative clauses are not generally part of named
entities. Also the internal structure of the names is unimportant for IE. Hence FSAs can be used, with sequences such
as ‘title surname’, ‘DT0 PNP’ etc
CFGs can be automatically compiled into approximately equivalent FSAs by putting bounds on the recursion. This is
particularly important in speech recognition engines.

4.12 Deficiencies in atomic category CFGs

If we consider the sample grammar in §4.3, several problems are apparent. One is that there is no account of subject-
verb agreement, so, for instance, *it fish is allowed by the grammar as well as they fish.25

We could, of course, allow for agreement by increasing the number of atomic symbols in the CFG, introducing NP-sg,
NP-pl, VP-sg and VP-pl, for instance. But this approach would soon become very tedious:

S -> NP-sg VP-sg
S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl
NP-sg -> he
NP-sg -> fish
NP-pl -> fish

Note that we have to expand out the symbols even when there’s no constraint on agreement, since we have no way of
saying that we don’t care about the value of number for a category (e.g., past tense verbs).
Another linguistic phenomenon that we are failing to deal with is subcategorization. This is the lexical property that
tells us how many arguments a verb can have (among other things). Subcategorization tends to mirror semantics,

25In English, the subject of a sentence is generally a noun phrase which comes before the verb, in contrast to the object, which follows the verb.
The subject and the verb must (usually) either both have singular morphology or both have plural morphology: i.e., they must agree. There was
also no account of case: this is only reflected in a few places in modern English, but *they can they is clearly ungrammatical (as opposed to they
can them, which is grammatical with the transitive verb use of can).

36

although there are many complications. A verb such as adore, for instance, relates two entities and is transitive: a
sentence such as *Kim adored is strange, while Kim adored Sandy is usual. A verb such as give is ditransitive: Kim
gave Sandy an apple (or Kim gave an apple to Sandy). Without going into details of exactly how subcategorization is
defined, or what an argument is, it should be intuitively obvious that we’re not encoding this property with our CFG.
The grammar in lecture 4 allows the following, for instance:

they fish fish it
(S (NP they) (VP (V fish) (VP (V fish) (NP it))))

Again this could be dealt with by multiplying out symbols (V-intrans, V-ditrans etc), but the grammar becomes ex-
tremely cumbersome.
Finally, consider the phenomenon of long-distance dependencies, exemplified, for instance, by:

which problem did you say you don’t understand?
who do you think Kim asked Sandy to hit?
which kids did you say were making all that noise?

Traditionally, each of these sentences is said to contain a gap, corresponding to the place where the noun phrase would
normally appear: the gaps are marked by underscores below:

which problem did you say you don’t understand ?
who do you think Kim asked Sandy to hit ?
which kids did you say were making all that noise?

Notice that, in the third example, the verb were shows plural agreement.
Doing this in standard CFGs is possible, but extremely verbose, potentially leading to trillions of rules. Instead of
having simple atomic categories in the CFG, we want to allow for features on the categories, which can have values
indicating things like plurality. As the long-distance dependency examples should indicate, the features need to be
complex-valued. For instance,

* what kid did you say were making all that noise?

is not grammatical. The analysis needs to be able to represent the information that the gap corresponds to a plural
noun phrase.
In the next lecture, I will illustrate a simple constraint-based grammar formalism, using feature structures which
allows us to encode these phenomena.

4.13 Further reading

This lecture has described material which J&M discuss in chapters 12 and 13, though we also touched on PCFGs
(covered in their chapter 14) and issues of language complexity which they discuss in chapter 16. I chose to concentrate
on bottom-up chart parsing in this lecture, mainly because I find it easier to describe than the Earley algorithm and the
full version of chart parsing given in J&M, but also because it is easier to see how to extend this to PCFGs. Bottom-up
parsing also seems to have better practical performance with the sort of grammars we’ll look at in lecture 5.
Bender 2013 (listed in the introduction) has a succinct discussion of constituency and other syntactic issues alluded to
here.

37

5 Lecture 5: Parsing with constraint-based grammars

As discussed at the end of the last lecture, the simple CFG approach which we’ve looked at so far has some serious
deficiencies as a model of natural language. In this lecture, I’ll give an introduction to a class of more expressive
formalisms which are widely used in NLP, describing one of the simpler variants in detail, again with the help of
a sample grammar. As I outlined in the last lecture, instead of simple atomic categories in the CFG, we will allow
for features on the categories, which can have values indicating things like plurality. To allow for long-distance
dependency examples, the features need to be complex-valued. In lecture 6, I will go on to sketch how we can use this
approach to do compositional semantics.
The formalism we will look at is a type of constraint-based grammar: a feature structure grammar. A constraint-based
grammar describes a language using a set of independently stated constraints, without imposing any conditions on
processing or processing order. A CFG can be taken as an example of a constraint-based grammar, but usually the
term is reserved for richer formalisms. The simplest way to think of feature structures (FSs) is that we’re replacing the
atomic categories of a CFG with more complex data structures. I’ll first illustrate this idea intuitively, using a grammar
fragment like the one in lecture 4 but enforcing agreement. I’ll then go through the feature structure formalism in more
detail. This is followed by an example of a more complex grammar, which allows for subcategorization (I won’t show
how case and long-distance dependencies are dealt with).

5.1 A very simple FS grammar encoding agreement

In a FS grammar, rules are described as relating FSs: i.e., lexical entries and phrases are FSs. In these formalisms,
the term sign is often used to refer to lexical entries and phrases collectively. In fact, rules themselves can be treated
as FSs. Feature structures are singly-rooted directed acyclic graphs, with arcs labelled by features and terminal nodes
associated with values. A particular feature in a structure may be atomic-valued, meaning it points to a terminal node
in the graph, or complex-valued, meaning it points to a non-terminal node. A sequence of features is known as a path.
For instance, in the structure below, there are two arcs, labelled with CAT and AGR, and three nodes, with the two
terminal nodes having values NP and sg. Each of the features is thus atomic-valued.

CAT -NP

AGR

j sg

In the graph below, the feature HEAD is complex-valued, and the value of AGR (i.e., the value of the path HEAD AGR)
is unspecified:

HEAD - CAT -NP

AGR

j

FSs are usually drawn as attribute-value matrices or AVMs. The AVMs corresponding to the two FSs above are as
follows: CAT NP

AGR sg

 HEAD

 CAT NP
AGR

[]

Since FSs are graphs, rather than trees, a particular node may be accessed from the root by more than one path: this is
known as reentrancy. In AVMs, reentrancy is conventionally indicated by boxed integers, with node identity indicated
by integer identity. The actual integers used are arbitrary. This is illustrated with an abstract example using features F
and G below:

38

Graph AVM

Non-reentrant

a
F

:

G - a

 F a
G a

Reentrant

F

zG - a
 F 0 a

G 0

When using FSs in grammars, structures are combined by unification. This means that all the information in the two
structures is combined. The empty square brackets (

[]
) in an AVM indicate that a value is unspecified: i.e. this is a

node which can be unified with a terminal node (i.e., an atomic value) or a complex value. More details of unification
are given below.
When FSs are used in a particular grammar, all signs will have a similar set of features (although sometimes there
are differences between lexical and phrasal signs). Feature structure grammars can be used to implement a variety of
linguistic frameworks. For the first example of a FS grammar, we’ll just consider how agreement could be encoded.
Suppose we are trying to model a grammar which is weakly equivalent to the CFG fragment below:

S -> NP-sg VP-sg
S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl
V-pl -> like
V-sg -> likes
NP-sg -> it
NP-pl -> they
NP-sg -> fish
NP-pl -> fish

The FS equivalent shown below replaces the atomic categories with FSs, splitting up the categories so that the main
category and the agreement values are distinct. In the grammar below, I have used the arrow notation for rules as an
abbreviation: I will describe the actual FS encoding of rules shortly. The FS grammar just needs two rules. There is a
single rule corresponding to the S-> NP VP rule, which enforces identity of agreement values between the NP and
the VP by means of reentrancy (indicated by the tag 1). The rule corresponding to VP-> V NP simply makes the
agreement values of the V and the VP the same but ignores the agreement value on the NP.26 The lexicon specifies
agreement values for it, they, like and likes, but leaves the agreement value for fish uninstantiated (i.e., underspecified).
Note that the grammar also has a root FS: a structure only counts as a valid parse if it is unifiable with the root.

FS grammar fragment encoding agreement

Grammar rules
Subject-verb rule

 CAT S
AGR 1

 →
 CAT NP

AGR 1

,
 CAT VP

AGR 1

Verb-object rule
 CAT VP

AGR 1

 →
 CAT V

AGR 1

,
 CAT NP

AGR
[]

Lexicon:
;;; noun phrases

26Note that the reentrancy indicators are local to each rule: the 1 in the subject-verb rule is not the same structure as the 1 in the verb-object
rule.

39

they
 CAT NP

AGR pl

fish
 CAT NP

AGR
[]

it
 CAT NP

AGR sg

;;; verbs

like
 CAT V

AGR pl

likes

 CAT V
AGR sg

Root structure:[

CAT S
]

Consider parsing they like it with this grammar. The lexical structures for like and it are unified with the corresponding
structure to the right hand side of the verb-object rule. Both unifications succeed, and the structure corresponding to
the mother of the rule is:

 CAT VP
AGR pl

The agreement value is pl because of the reentrancy with the agreement value of like. This structure can unify with
the rightmost daughter of the subject-verb rule. The structure for they is unified with the leftmost daughter. The
subject-verb rule says that both daughters have to have the same agreement value, which is true in this example. Rule
application therefore succeeds and since the result unifies with the root structure, there is a valid parse.
To see what is going on a bit more precisely, we need to show the rules as FSs. There are several ways of encoding this,
but for current purposes I will assume that rules have features MOTHER, DTR1, DTR2 . . . DTRN. So the verb-object
rule, which I informally wrote as:

 CAT VP
AGR 1

 →
 CAT V

AGR 1

,
 CAT NP

AGR
[]

is actually:

MOTHER

 CAT VP
AGR 1

DTR1

 CAT V
AGR 1

DTR2

 CAT NP
AGR

[]

Thus the rules in the CFG correspond to FSs in this formalism and we can formalise rule application by unification.
For instance, a rule application in bottom-up parsing involves unifying each of the DTR slots in the rule with the
feature structures for the phrases already in the chart.
Consider parsing they like it again.
STEP1: parsing like it with the rule above.
Step 1a
The structure for like can be unified with the value of DTR1 in the rule.

MOTHER

 CAT VP
AGR 1

DTR1

 CAT V
AGR 1

DTR2

 CAT NP
AGR

[]

⊓
 DTR1

 CAT V
AGR pl

40

Unification means all information is retained, so the result includes the agreement value from like:

MOTHER

 CAT VP
AGR 1 pl

DTR1

 CAT V
AGR 1

DTR2

 CAT NP
AGR

[]

Step 1b
The structure for it is unified with the value for DTR2 in the result of Step 1a:

MOTHER

 CAT VP
AGR 1 pl

DTR1

 CAT V
AGR 1

DTR2

 CAT NP
AGR

[]

⊓
 DTR2

 CAT NP
AGR sg

 =

MOTHER

 CAT VP
AGR 1 pl

DTR1

 CAT V
AGR 1

DTR2

 CAT NP
AGR sg

The rule application thus succeeds.
Step 2: application of the subject verb rule.
Step 2a.
The MOTHER value acts as the DTR2 of the subject-verb rule. That is:

 CAT VP
AGR pl

is unified with the DTR2 value of:

MOTHER

 CAT S
AGR 1

DTR1

 CAT NP
AGR 1

DTR2

 CAT VP
AGR 1

This gives:

MOTHER

 CAT S
AGR 1 pl

DTR1

 CAT NP
AGR 1

DTR2

 CAT VP
AGR 1

Step 2b
The FS for they is:

 CAT NP
AGR pl

The unification of this with the value of DTR1 from Step 2a succeeds but adds no new information:

MOTHER

 CAT S
AGR 1 pl

DTR1

 CAT NP
AGR 1

DTR2

 CAT VP
AGR 1

41

Step 3:
Finally, the MOTHER of this structure unifies with the root structure, so this is a valid parse.
Note however, that if we had tried to parse it like it, a unification failure would have occurred at Step 2b, since the AGR
on the lexical entry for it has the value sg which clashes with the value pl.
I have described these unifications as occurring in a particular order, but it is very important to note that order is not
significant and that the same overall result would have been obtained if another order had been used. This means that
different parsing algorithms are guaranteed to give the same result. The one proviso is that with some FS grammars,
just like CFGs, some algorithms may terminate while others do not if there are rules which can apply to their own
output.

5.2 Feature structures in detail

So far, I have been using a rather informal description of FSs. The following section gives more formal definitions.
FSs can be modelled as graphs which have labelled arcs connecting nodes (except for the case of the simplest FSs,
which consist of a single node with no arcs) The labels on the arcs are the features. Arcs are regarded as having a
direction, conventionally regarded as pointing away from the single root node. The set of features and the set of atomic
values are both assumed to be finite.
Properties of FSs

Connectedness and unique root A FS must have a unique root node: apart from the root node, all nodes have one or
more parent nodes.

Unique features Any node may have zero or more arcs leading out of it, but the label on each (that is, the feature)
must be unique.

No cycles No node may have an arc that points back to the root node or to a node that intervenes between it and the
root node. (Although some variants of FS formalisms allow cycles.)

Values A node which does not have any arcs leading out of it may have an associated atomic value.

Finiteness An FS must have a finite number of nodes.

Sequences of features are known as paths.
Feature structures can be regarded as being ordered by information content — an FS is said to subsume another if the
latter carries extra information. This is important because we define unification in terms of subsumption.
Properties of subsumption FS1 subsumes FS2 if and only if the following conditions hold:

Path values For every path P in FS1 there is a path P in FS2. If P has an atomic value t in FS1, then P also has value
t in FS2.

Path equivalences Every pair of paths P and Q which are reentrant in FS1 (i.e., which lead to the same node in the
graph) are also reentrant in FS2.

Unification corresponds to conjunction of information, and thus can be defined in terms of subsumption, which is a
relation of information containment. The unification of two FSs is defined to be the most general FS which contains
all the information in both of the FSs. Unification will fail if the two FSs contain conflicting information. As we saw
with the simple grammar above, this prevented it like it getting an analysis, because the AGR values conflicted.
Properties of unification The unification of two FSs, FS1 and FS2, is the most general FS which is subsumed by both
FS1 and FS2, if it exists.

5.3 A grammar enforcing subcategorization

Although the grammar shown above improves on the simple CFG, it still doesn’t encode subcategorization (e.g., the
difference between transitive and intransitive). The grammar shown below does this. It moves further away from the

42

CFG. In particular, in the previous grammar the CAT feature encoded both the part-of-speech (i.e., noun or verb) and
the distinction between the lexical sign and the phrase (i.e., N vs NP and V vs VP). In the grammar below, the CAT
feature just encodes the major category (noun vs verb) and the phrasal distinction is encoded in terms of whether the
subcategorization requirements have been satisfied. The CAT and AGR features are now inside another feature head.
Signs have three features at the top-level: HEAD, OBJ and SUBJ.

Simple FS grammar fragment encoding subcategorization

Subject-verb rule
HEAD 1
OBJ filled
SUBJ filled

 → 2

HEAD

[
AGR 3

]
OBJ filled
SUBJ filled

,

HEAD 1

[
AGR 3

]
OBJ filled
SUBJ 2

Verb-object rule

HEAD 1
OBJ filled
SUBJ 3

 →

HEAD 1
OBJ 2
SUBJ 3

, 2
[

OBJ filled
]

Lexicon:
;;; noun phrases

they

HEAD

 CAT noun
AGR pl

OBJ filled
SUBJ filled

fish

HEAD

 CAT noun
AGR

[]

OBJ filled
SUBJ filled

it

HEAD

 CAT noun
AGR sg

OBJ filled
SUBJ filled

;;; verbs

fish

HEAD

 CAT verb
AGR pl

OBJ filled

SUBJ

 HEAD
[

CAT noun
]

can

HEAD

 CAT verb
AGR

[]

OBJ

 HEAD
[

CAT verb
]

SUBJ

 HEAD
[

CAT noun
]

;;; auxiliary verb

can

HEAD

 CAT verb
AGR pl

OBJ

 HEAD
[

CAT noun
]

OBJ filled

SUBJ

 HEAD
[

CAT noun
]

;;; transitive verb

Root structure:
HEAD

[
CAT verb

]
OBJ filled
SUBJ filled

Briefly, HEAD contains information which is shared between the lexical entries and phrases of the same category:
e.g., nouns share this information with the noun phrase which dominates them in the tree, while verbs share head
information with verb phrases and sentences. So HEAD is used for agreement information and for category information

43

(i.e., noun, verb etc). In contrast, OBJ and SUBJ are about subcategorization: they contain information about what can
combine with this sign. For instance, an intransitive verb will have a SUBJ corresponding to its subject ‘slot’ and a
value of filled for its OBJ. 27

Subcategorisation applies to other parts of speech as well as verbs: e.g., in Kim was happy to see her, happy sub-
categorises for the infinitival VP. There are much more elegant ways of implementing subcategorization in FSs than
that shown here: the example grammar is intended to hint at the power of the feature structure framework, but a real
introduction to grammar engineering is beyond the scope of this course.
The grammar has just two rules, one for combining a verb with its subject and another for combining a verb with its
object.

• The subject rule says that, when building the phrase, the SUBJ value of the second daughter is to be equated
(unified) with the whole structure of the first daughter (indicated by 2). The head of the mother is equated with
the head of the second daughter (1). The rule also stipulates that the AGR values of the two daughters have to
be unified and that the subject has to have a filled object slot.

• The verb-object rule says that, when building the phrase, the OBJ value of the first daughter is to be equated
(unified) with the whole structure of the second daughter (indicated by 2). The head of the mother is equated
with the head of the first daughter (1). The SUBJ of the mother is also equated with the SUBJ of the first
daughter (3): this ensures that any information about the subject that was specified on the lexical entry for the
verb is preserved. The OBJ value of the mother is stipulated as being filled: this means the mother can’t act as
the first daughter in another application of the rule, since filled won’t unify with a complex feature structure.
This is what we want in order to prevent an ordinary transitive verb taking two objects.

These rules are controlled by the lexical entries in the sense that it’s the lexical entries which determine the required
subject and object of a word.
As an example, consider analysing they fish. The verb entry for fish can be unified with the second daughter position
of the subject-verb rule, giving the following partially instantiated rule:

HEAD 1

 CAT verb
AGR 3 pl

OBJ filled
SUBJ filled

→ 2

HEAD

 CAT noun
AGR 3

OBJ filled
SUBJ filled

,

HEAD 1
OBJ filled
SUBJ 2

The first daughter of this result can be unified with the structure for they, which in this case returns the same structure,
since it adds no new information. The result can be unified with the root structure, so this is a valid parse.
On the other hand, the lexical entry for the noun fish does not unify with the second daughter position of the subject-
verb rule. The entry for they does not unify with the first daughter position of the verb-object rule. Hence there is no
other parse.
The rules in this grammar are binary: i.e., they have exactly two daughters. The formalism allows for unary rules (one
daughter) and also for ternary rules (three daughters) quaternary rules and so on. Grammars can be defined using only
unary and binary rules which are weakly equivalent to grammars which use rules of higher arity: some approaches
avoid the use of rules with arity of more than 2.

5.4 Parsing with feature structure grammars

Formally we can treat feature structure grammars in terms of subsumption. I won’t give details here, but the intuition
is that the rule FSs, the lexical entry FSs and the root FS all act as constraints on the parse, which have to be sat-
isfied simultaneously. This means the system has to build a parse structure which is subsumed by all the applicable
constraints. However, this description of what it means for something to be a valid parse doesn’t give any hint of a
sensible algorithm.
The standard approach to implementation is to use chart parsing, as described in the previous lecture, but the notion
of a grammar rule matching an edge in the chart is more complex. In a naive implementation, when application of a
grammar rule is checked, all the feature structures in the edges in the chart that correspond to the possible daughters

27It is not necessary to memorize the precise details of the feature structure architecture described here: any exam questions that assume knowl-
edge of details will give an example.

44

have to be copied, and the grammar rule feature structure itself is also copied. The copied daughter structures are
unified with the daughter positions in the copy of the rule, and if unification succeeds, the copied structure is associated
with a new edge on the chart.
The need for copying is often discussed in terms of the destructive nature of the standard algorithm for unification
(which I won’t describe here), but this is misleading. Unification, however implemented, involves sharing information
between structures. Assume, for instance, that the FS representing the lexical entry of the noun for fish is underspeci-
fied for number agreement. When we parse a sentence like:

the fish swims

the part of the FS in the result that corresponds to the original lexical entry will have its AGR value instantiated. This
means that the structure corresponding to a particular edge cannot be reused in another analysis, because it will contain
‘extra’ information. Consider, for instance, parsing:

the fish in the lake which is near the town swim

A possible analysis of:

fish in the lake which is near the town

is:

(fish (in the lake) (which is near the town))

i.e., the fish (sg) is near the town. If we instantiate the AGR value in the FS for fish as sg while constructing this
analysis, and then try to reuse that same FS for fish in the other analyses, analysis of the full sentence will fail because
of the clash in agreement values. Hence the need for copying, so we can use a fresh structure each time. Copying is
potentially extremely expensive, because realistic grammars involve FSs with many hundreds of nodes.
So, although unification is very near to linear in complexity, naive implementations of FS formalisms are very in-
efficient. Furthermore, packing is not straightforward, because two structures are rarely identical in real grammars
(especially ones that encode semantics).
Efficient implementations of FS formalisms can nevertheless be developed. Copying can be greatly reduced:

1. by doing an efficient pretest before unification, so that copies are only made when unification is likely to succeed

2. by sharing parts of FSs that aren’t changed

3. by taking advantage of locality principles in linguistic formalisms which limit the need to percolate information
through structures

Packing can also be implemented: the test to see if a new edge can be packed involves subsumption rather than equality.
As with CFGs, for real efficiency we need to control the search space so we only get the most likely analyses. There
are effective techniques for doing this, using maximum entropy models, for instance.

5.5 Templates

The lexicon outlined above has the potential to be very redundant. For instance, as well as the intransitive verb fish,
a full lexicon would have entries for sleep, snore and so on, which would be essentially identical. We avoid this
redundancy by associating names with particular feature structures and using those names in lexical entries. For
instance:
fish INTRANS VERB
sleep INTRANS VERB
snore INTRANS VERB

45

where the template is specified as:

INTRANS VERB

HEAD

 CAT verb
AGR pl

OBJ filled

SUBJ

 HEAD
[

CAT noun
]

The lexical entries might have some additional specific information associated with them which isn’t in the template
(e.g., semantic information, see next lecture). The additional information will also be expressed as a FS and combined
by unification with the template FS.

5.6 Interface to morphology

So far we have assumed a full-form lexicon (i.e., one that has entries for all the inflected forms), but we can now return
to the approach to morphology that we saw in lecture 2, and show how this relates to feature structures, using templates
for convenience. Recall that we have spelling rules which can be used to analyse a word form to return a stem and list
of affixes. Each affix is associated with an encoding of the information it contributes and this can be described in as
an FS. For instance, the affix s can be associated with the template PLURAL_NOUN which could be defined as follows
for the fragment grammar:

s PLURAL_NOUN

 HEAD

 CAT noun
AGR pl

We also need a template for singular nouns, associated with the empty affix for English:

ε SINGULAR_NOUN

 HEAD

 CAT noun
AGR sg

The stem for the noun is uninstantiated for number (i.e., neutral between sg and pl). So in our fragment:

BASE_NOUN

HEAD

 CAT noun
AGR

[]

OBJ filled
SUBJ filled

This template is used in the lexical entries for nouns, such as:

dog BASE_NOUN

The implementation of the syntactic effects of inflectional morphology (morphosyntax) is then to unify the FS template
for the stem with the FS template for the affix. For instance, if we analyse dogs, we obtain ‘dog ˆ s’ as the underlying
form from the FST, and this in turn gives us the templates BASE_NOUN and PLURAL_NOUN. The unification of these
is:

HEAD

 CAT noun
AGR pl

OBJ filled
SUBJ filled

This is the structure that is entered into the chart for syntactic parsing. Notice how this is an implementation of the
idea of a morphological paradigm, mentioned in §2.2.
In the case of an example such as feed incorrectly analysed as fee -ed, discussed in §2.5, the affix information for ed
would fail to unify with the stem, thus filtering the incorrect analysis.
Note that this simple approach is not, in general, adequate for derivational morphology. For instance, the affix -ize,
which combines with a noun to form a verb (e.g., lemmatization), cannot be represented simply by unification, because
it has to change a nominal form into a verbal one. This reflects the distinction between inflectional and derivational
morphology that we saw in §2.2: while inflectional morphology can be seen as simple addition of information, deriva-
tional morphology converts feature structures into new structures. This can be modelled using rules which can be
treated in the FS formalism in a way which is essentially the same as syntax rules.

46

5.7 Further reading and background

J&M describe feature structures as augmenting a CFG rather than replacing it, but most of their discussion applies
equally to the FS formalism I’ve outlined here.
There are now a huge number of approaches to parsing in the CL literature, though not so many systems in practical
use.28 Nearly all the parsers designed to work on arbitrary text use some form of statistical parse ranking component
in combination with a symbolic component. The symbolic grammar may be written by a linguist (though there will
be some automatic induction of lexical entries) or automatically learned from a manually-annotated Treebank. It is
also possible to use a Treebank constructed by manually selecting from alternative analyses provided by a symbolic
grammar in order to train a statistical ranking component. There is also work on unsupervised grammar induction,
but this is primarily aimed at understanding human language acquisition rather than practical performance. Grammars
vary in the depth of annotation they provide for an analysis (e.g., whether they support compositional semantics, see
next lecture) and the degree of overgeneration they assume: a few are bidirectional, which makes them usable for
generation from logical form, but such grammars will not have 100% coverage on arbitrary text and have to be used
with some form of additional robustness component if complete coverage is required for an application.
There has been a considerable degree of cooperation between linguists and computational linguists in the development
of constraint-based frameworks that are linguistically adequate for a wide range of languages and yet sufficiently
tractable that they could be used in automatic parsing. The formalisms in widespread use are generally more elaborate
than the simple FS approach described here, but use similar underlying ideas. Two such frameworks which have active
communities of both linguists and computational linguists are Lexical Functional Grammar (LFG), initially developed
by Bresnan and Kaplan in the 1970s and Head-driven Phrase Structure Grammar (HPSG), due to Pollard and Sag,
which started in the 1980s. Much of the recent academic work involves two international collaborations, PARGRAM
(https://pargram.b.uib.no/) for LFG and DELPH-IN (http://www.delph-in.net) for HPSG. Both
frameworks allow the specification of formal grammars (including morphology, syntax and compositional semantics)
which can be used for both parsing and generation. They have both been used to develop efficient computational
grammars with high coverage for English and a small number of other languages. The large grammars are more
than competitive with automatically-induced Treebank grammars for some applications. In both LFG and HPSG,
illustrative grammars have been developed for a very wide range of human languages and various cross-linguistic
generalizations can be captured in the grammars.
DELPH-IN distributes Open Source FS grammars for a variety of languages. The English Resource Grammar (ERG,
Flickinger 2000) is probably the largest freely available bidirectional grammar for English. It has been widely used
in research and commercial applications, including, for instance, a system for teaching written English used by over
30,000 schoolchildren in the US.

28Although the Computer Laboratory is associated with the development of three quite different approaches to parsing which are all widely used:
DELPH-in (more below), RASP (http://www.sussex.ac.uk/Users/johnca/rasp/) and the C&C parser (http://svn.ask.it.
usyd.edu.au/trac/candc/wiki/Publications).

47

6 Lecture 6: Compositional semantics

Compositional semantics is the study of how meaning is conveyed by the structure of a sentence (as opposed to lexical
semantics, which is primarily about word meaning, which we’ll discuss in lectures 7 and 8). In the previous two
lectures, we’ve looked at grammars primarily as a way to describe a language: i.e., to say which strings are part of the
language and which are not, or (equivalently) as devices that, in principle, could generate all the strings of a language.
However, what we usually want for language analysis is some idea of the meaning of a sentence. At its most basic,
this is ‘who did what to whom?’ but clearly there is much more information that is implied by the structure of most
sentences. The parse trees we saw in lecture 4 and the feature structures of lecture 5 have some of this information, but
it is implicit rather than explicit. In the simple examples covered by those grammars, syntax and semantics are very
closely related, but if we look at more complex examples, this is not the case.
Consider the following examples:

(2) a Kitty chased Rover.

b Rover was chased by Kitty.

The meaning these two sentences convey is essentially the same (what differs is the emphasis) but the parse trees
are quite different.29 A possible logical representation would be chase′(k, r), assuming that k and r are constants
corresponding to Kitty and Rover and chase′ is the two place predicate corresponding to the verb chase.30 Note the
convention that a predicate corresponding to a lexeme is written using the stem of the lexeme followed by ′: chase′. A
logical meaning representation constructed for a sentence is called the logical form of the sentence. Here and in what
follows I am ignoring tense for simplicity although this is an important aspect of sentence meaning.
Another relatively straightforward example that shows a syntax/semantics mismatch is pleonastic pronouns: i.e., pro-
nouns that do not refer to actual entities. See the examples below (with indicative logical forms).

(3) a It barked.

b ∃x[bark′(x) ∧ PRON(x)]

(4) a It rained.

b rain′

In it rains, the it does not refer to a real entity (it will not be resolved, see §9.8), so the semantics should not involve
any representation for the it.
More complex examples include verbs like seem: for instance Kim seems to sleep means much the same thing as it
seems that Kim sleeps (contrast this with the behaviour of believe). An indicative representation for both would be
seem′(sleep′(k)) — but note that there is no straightforward way of representing this in a first order logic.
There are many more examples of this sort that make the syntax/semantics interface much more complex than it first
appears and demonstrate that we cannot simply read the compositional semantics off a parse tree or other syntactic
representation.
Grammars that produce explicit representations for compositional semantics are often referred to as deep grammars.
Deep grammars that do not overgenerate (much) are said to be bidirectional. This means they can be used in the
realization step in a Natural Language Generation system to produce text from an input logical form (see lecture 10).
This generally requires somewhat different algorithms from parsing (although chart generation is a variant of parsing),
but this will not be discussed in this course.
In this lecture, I will start off by showing how simple logical representations can be produced from CFGs and also from
feature structure representations. I will outline how such structures can be used in inference and describe experiments
on robust textual entailment.

29Very broadly speaking, the second sentence is more appropriate if Rover is the topic of the discourse: we’ll very briefly return to this issue in
lectures 9 and 10.

30Although introductory logic books invariably assume proper names correspond to constants, this does not work well for a broad coverage
system. Another option is: ∃x, y[chase′(x, y) ∧ Kitty′(x) ∧ Rover′(y)].

48

6.1 Compositional semantics using lambda calculus

The assumption behind compositional semantics is that the meaning of each whole phrase must relate to the meaning
of its parts. For instance, to supply a meaning for the phrase chased Rover, we need to combine a meaning for chased
with a meaning for Rover in some way.
To enforce a notion of compositionality, we can require that each syntactic rule in a grammar has a corresponding
semantic rule which shows how the meaning of the daughters is combined. In linguistics, this is usually done using
lambda calculus, following the work of Montague. The notion of lambda expression should be familiar from previous
courses (e.g., Computation Theory, Discrete Maths). Informally, lambda calculus gives us a logical notation to express
the argument requirements of predicates. For instance, we can represent the fact that a predicate like bark′ is ‘looking
for’ a single argument by:

λx[bark′(x)]

Syntactically, the lambda behaves like a quantifier in FOPC: the lambda variable x is said to be within the scope of
the lambda operator in the same way that a variable is syntactically within the scope of a quantifier. But lambda
expressions correspond to functions, not propositions. The lambda variable indicates a variable that will be bound by
function application. Applying a lambda expression to a term will yield a new term, with the lambda variable replaced
by the term. For instance, to build the semantics for the phrase Kitty barks we can apply the semantics for barks to the
semantics for Kitty:

λx[bark′(x)](k) = bark′(k)

Replacement of the lambda variable is known as lambda-conversion. If the lambda variable is repeated, both instances
are instantiated: λx[bark′(x) ∧ sleep′(x)] denotes the set of things that bark and sleep

λx[bark′(x) ∧ sleep′(x)](r) = bark′(r) ∧ sleep′(r)

A partially instantiated transitive verb predicate has one uninstantiated variable, as does an intransitive verb: e.g.,
λx[chase′(x, r)] — the set of things that chase Rover.

λx[chase′(x, r)](k) = chase′(k, r)

Lambdas can be nested: this lets us represent transitive verbs so that they apply to only one argument at once. For
instance: λx[λy[chase′(y, x)]] (which is often written λxλy[chase′(y, x)] where there can be no confusion). For
instance:

λx[λy[chase′(y, x)]](r) = λy[chase′(y, r)]

That is, applying the semantics of chase to the semantics of Rover gives us a lambda expression equivalent to the set
of things that chase Rover.
The following example illustrates that bracketing shows the order of application in the conventional way:

(λx[λy[chase′(y, x)]](r))(k) = λy[chase′(y, r)](k) = chase′(k, r)

In other words, we work out the value of the bracketed expression first (the innermost bracketed expression if there is
more than one), and then apply the result, and so on until we’re finished.

A grammar fragment In this fragment, I’m using X ′ to indicate the semantics of the constituent X (e.g. NP′ means
the semantics of the NP), where the semantics may correspond to a function: e.g., VP′(NP′) means the application of
the semantics of the VP to the semantics of the NP. The numbers are not really part of the CFG — they are just there
to identify different constituents.

S -> NP VP
VP′(NP′)
VP -> Vditrans NP1 NP2
(Vditrans′(NP1′))(NP2′)
VP -> Vtrans NP
Vtrans′(NP′)

49

VP -> Vintrans
Vintrans′

Vditrans -> gives
λxλyλz[give′(z, y, x)]
Vtrans -> chases
λxλy[chase′(y, x)]
Vintrans -> barks
λz[bark′(z)]
Vintrans -> sleeps
λw[sleep′(w)]
NP -> Kitty
k
NP -> Lynx
l
NP -> Rover
r

The post-lecture exercises ask you to work through some examples using this fragment.

6.2 Logical representations in broad coverage grammars

It is possible to extend this style of compositional semantics (and various alternatives, such as the feature structure
account in the next section) so that some sort of representation is produced for all sentences of a language covered by
a broad coverage grammar. However, the extent to which it is possible to do this within first order predicate calculus
(FOPC) is a matter of debate, and even the most optimistic researcher would not claim that the representations currently
being produced are fully adequate to capture the meaning of the expressions.
In some cases, a FOPC representation is possible by careful choice of representation. For example, to represent an
adverbial modifier such as loudly, rather than make the adverbial take the verb as an argument (e.g., loud′(bark′(r))),
it is common to introduce an extra variable for all verbs to represent the event.

(5) a Rover barked.

b ∃e[bark′(e, r)]

(6) a Rover barked loudly.

b ∃e[bark′(e, r) ∧ loud′(e)]

This can be roughly glossed as: ‘there was a barking event, Rover did the barking, and the barking was loud’. The
events are said to be reified: literally ‘made into things’.
Another issue is that FOPC forces quantifiers to be in a particular scopal relationship, and this information is not
(generally) overt in NL sentences.

Every dog chased a cat.

is ambiguous between:
∀x[dog′(x) =⇒ ∃y[cat′(y) ∧ chase′(x, y)]]

and the less-likely, ‘one specific cat’ reading:

∃y[cat′(y) ∧ ∀x[dog′(x) =⇒ chase′(x, y)]]

Some current NLP systems construct an underspecified representation which is neutral between these readings, if they
represent quantifier scope at all. There are several different alternative formalisms for underspecification.
There are a range of natural language examples which FOPC cannot handle, however. FOPC only has two quantifiers
(roughly corresponding to English some and every), but it is possible to represent some other English quantifiers in

50

FOPC, though representing numbers, for instance, is cumbersome. However, the quantifier most cannot be represented
in a first order logic. The use of event variables does not help with the representation of adverbs such as perhaps or
maybe, and there are also problems with the representation of modal verbs, like can. In these cases, there are known
logics which can provide a suitable formalization, but the inference problem may not be tractable and the different
logics proposed are not necessarily compatible.
There are other cases where the correct formalization is quite unclear. Consider sentences involving bare plural
subjects, such as:

(7) Dogs are mammals.

(8) Birds fly.

(9) Ducks lay eggs.

(10) Voters rejected AV in 2011.

What quantifier could you use to capture the meaning of each of these examples? In some cases, researchers have ar-
gued that the correct interpretation must involve non-monotonicity or defaults: e.g., birds fly unless they are penguins,
ostriches, baby birds . . . But no fully satisfactory solution has been developed along these lines.
Another issue is that not all phrases have meanings which can be determined compositionally. For instance, puce
sphere is compositional: it refers to something which is both puce and a sphere. In contrast, red tape may be com-
positional (as in 11), but may also refer to bureaucracy (as in 12), in which case it is a non-compositional multiword
expression (MWE).

(11) She tied red tape round the parcel.

(12) The deputy head of department was dismayed at the endless red tape.

Clear cases of MWEs, like red tape, can be accounted for explicitly in the grammar (so red tape is treated as being
ambiguous between the compositional reading and the MWE), but the problem is that many phrases are somewhere in
between being an MWE and being fully compositional. Consider the phrase real pleasure (as in it was a real pleasure
to work with you): this isn’t non-compositional enough to be listed in most dictionaries, but is still a conventional
expression particularly appropriate in certain social contexts. It appears that something else is necessary besides
compositional semantics for such cases. A distributional approach (lecture 8) may help, but this is an active research
issue.
Finally, although there is an extensive linguistic literature on formal semantics which describes logical representations
for different constructions, the coverage is still very incomplete, even for well-studied languages such as English.
Furthermore, the analyses which are suggested are often incompatible with the goals of broad-coverage parsing, which
requires that ambiguity be avoided as much as possible. Overall, there are many unresolved puzzles in deciding on
logical representations, so even approaches which do use logical representations are actually using some form of
approximate meaning representation. Under many circumstances, it is better to see the logical representation as an
annotation that captures some of the meaning, rather than a complete representation.

6.3 Simple semantics in feature structures

Lambda calculus is only one way of doing compositional semantics. Another approach is to build up the semantics
along with the syntax in a feature structure framework. The grammar fragment below is based on the one in lecture 5.
It is intended as a rough indication of how it is possible to build up semantic representations using feature structures as
an alternative to the use of lambda calculus. The lexical entries have been augmented with pieces of feature structure
reflecting predicate-argument structure. With this grammar, the FS for they like fish will have a SEM value of:

51

PRED and

ARG1

 PRED pron
ARG1 1

ARG2

PRED and

ARG1

PRED like v
ARG1 1
ARG2 2

ARG2

 PRED fish n
ARG1 2

This can be taken to be equivalent to the logical expression PRON(x) ∧ (like v(x, y) ∧ fish n(y)) by translating the
reentrancy between argument positions into variable equivalence.
The most important thing to notice is how the syntactic argument positions in the lexical entries are linked to their
semantic argument positions. This means, for instance, that for the transitive verb like, the syntactic subject will always
correspond to the first argument position, while the syntactic object will correspond to the second position. In the CFG
plus lambda calculus approach, the linking effect is achieved by making the lambda expressions match up with each
of the syntactic rules, which was straightforward in the tiny grammar, but becomes more complex when we consider
passives, topicalisation and so on.

Simple FS grammar with crude semantic composition

Subject-verb rule

HEAD 1
OBJ filled
SUBJ filled

SEM

PRED and
ARG1 4
ARG2 5

→ 2

HEAD

[
AGR 3

]
OBJ filled
SUBJ filled
SEM 4

,

HEAD 1

[
AGR 3

]
OBJ filled
SUBJ 2
SEM 5

Verb-object rule

HEAD 1
OBJ filled
SUBJ 3

SEM

PRED and
ARG1 4
ARG2 5

→

HEAD 1
OBJ 2
SUBJ 3
SEM 4

, 2

 OBJ filled
SEM 5

Lexicon:

like

HEAD

 CAT verb
AGR pl

OBJ

HEAD

[
CAT noun

]
OBJ filled
SEM

[
INDEX 2

]

SUBJ

HEAD

[
CAT noun

]
SEM

[
INDEX 1

]

SEM

PRED like v
ARG1 1
ARG2 2

;;; transitive verb

fish

HEAD

 CAT noun
AGR

OBJ filled
SUBJ filled

SEM

INDEX 1
PRED fish n
ARG1 1

;;; noun phrase

they

HEAD

 CAT noun
AGR pl

OBJ filled
SUBJ filled

SEM

INDEX 1
PRED pron
ARG1 1

;;; noun phrase

52

Notice the use of the ‘and’ predicate to relate different parts of the logical form. With very very simple examples as
covered by this grammar, it might seem preferable to use an approach where the nouns are embedded in the semantics
for the verb e.g., like v(fish n, fish n) for fish like fish. But this sort of representation does not extend to more complex
sentences (e.g., sentences with quantifiers).
The semantics shown above can be taken to be equivalent to a form of predicate calculus without variables or quanti-
fiers: i.e. the ‘variables’ in the representation actually correspond to constants. As discussed in the previous section,
we need quantifiers in a full representation. These can be encoded in feature structures, either in a scoped or under-
specified representation, but the demonstration of this is beyond the scope of this course.
The feature structure representation of semantics is appropriate when syntax is expressed in feature structures, since
the combined representation can express some facts about the syntax-semantics interface more elegantly than lambda
calculus with CFGs. But the issues about the underlying logic and its expressive power remain, of course.

6.4 Dependency structures

An alternative approach to representation which is currently very popular is dependency structure. Dependencies
relate words in the sentence via a fixed set of relationships. The relationships are usually syntactic (e.g., SUBJ, OBJ,
MOD): in this case, the dependency structure can be seen as an alternative to parse trees, which has the advantage of
capturing meaningful relationships more directly. Dependency parsers produce such representations directly, but other
systems construct them by converting another representation such as a parse tree. There are a number of different
schemes for representing dependency structures: a simplified example is shown below.

some big angry dogs bark loudly
�

MOD
-

MOD
�

SUBJ-
MOD -

DET

It is also possible to produce semantic dependencies: Copestake (2009) describes an approach to semantic dependen-
cies which is interconvertible with an underspecified logical representation. A very simple example is shown below,
though note that some information encoded on the nodes is omitted. The leading underscores are notational equiva-
lents to the ′ used previously and the v etc notation is a broad indication of sense (so bark v cannot refer to tree bark,
for instance).

some q big a angry a dog n bark v loud a
-

ARG1/EQ
�
ARG1/EQ

�
ARG1/NEQ

-
ARG1/EQ

-
RSTR/H

This structure can be converted into the following logical form:

some q (x, big a(e1,x) ∧ angry a(e2,x) ∧ dog n(x), bark v(e3,x) ∧ loud a(e4,e3))

which in this case can be converted into FOPC:

∃x [big a(e1,x) ∧ angry a(e2,x) ∧ dog n(x) ∧ bark v(e3,x) ∧ loud a(e4,e3)]

6.5 Inference

There are two distinct ways of thinking about reasoning and inference in language processing. The first can be thought
of as inference on an explicit formally-represented knowledge base, while the second is essentially language-based. It
is potentially possible to use theorem provers with either approach, although relatively few researchers currently do
this: it is more common to use shallower, more robust, techniques.

53

Inference on a knowledge base This approach assumes that there is an explicit underlying knowledge base, which
might be represented in FOPC or some other formal language. For instance, we might have a set of axioms such as:

C(k, b)
C(r, b)
H(r)
U(k)
∀x[C(k, x) =⇒ H(x)]

There is also a link between the natural language terms appropriate for the domain covered and the constants and
predicates in the knowledge base: e.g. chase might correspond to C, happy to H , unhappy to U , Bernard to b and so
on. The approaches to compositional semantics discussed above are one way to do this. Under these assumptions, a
natural language question can be converted to an expression using the relevant predicates and answered either by direct
match to the knowledge base or via inference using the meaning representation in the knowledge base. For instance Is
Bernard happy? corresponds to querying the knowledge base with H(b). As mentioned in Lecture 1, the properties
of such a knowledge base can be exploited to reduce ambiguity. This is, of course, a trivial example: the complexity
of the system depends on the complexity of the domain (and the way in which out-of-domain queries are handled) but
in all cases the interpretation is controlled by the formal model of the domain.
Under these assumptions, the valid inferences are given by the knowledge base: language is just seen as a way of
accessing that knowledge. This approach relies on the mapping being adequate for any way that the user might choose
to phrase a question (e.g., Is Kitty sad? should be interpreted in the same way as Is Kitty unhappy?) and acquiring
such mappings is an issue, although machine learning methods can be used, given the right sort of training data. But
the most important difficulty is the limitations of the knowledge base representation itself. This sort of system works
very well for cases where there are clear boundaries to the domain and the reasoning is tractable, which is the case for
most types of spoken dialogue system. It may even turn out to be possible to approach mathematical knowledge in this
way, or at least some areas of mathematics. However, although some researchers in the 1970s and 80s thought that
it would be possible to extend this type of approach to common sense knowledge, few people would now seriously
advocate this. Many researchers would also question whether it is helpful to think of human reasoning as operating in
this way: i.e., as translating natural language into a symbolic mental representation.

Language-based inference The alternative way of thinking about inference is purely in terms of language: e.g.,
deciding whether one natural language statement follows from another. For instance,

Philadelphia is to the east of Pittsburgh.
Pittsburgh is to the west of Philadelphia.

The difference from the approach above is that the inference is entirely expressed in natural language and its validity
is determined by human intuition, rather than validity in any particular logic. We may use logic as a way of helping us
model these inferences correctly, but the basic notion of correctness is the human judgement, not logical correctness.
If an explicit meaning representation is used, it is best seen as an annotation of the natural language that captures some
of the meaning, not as a complete replacement for the text. Such language-based reasoning is not tied to a particular
knowledge base or domain. With such an approach we can proceed without having a perfect meaning representation
for a natural language statement, as long as we are prepared for the possibility that we will make some incorrect
decisions. Since humans are not always right, this is acceptable in principle.
The Recognising Textual Entailment task, discussed below, is a clear example of this methodology, but implicitly
or explicitly this is the most common approach in current NLP in general. It can be seen as underlying a number
of areas of research, including question answering and semantic search, and is relevant to many others, including
summarization. A major limitation, at least in the vast majority of the research so far, is that the inferences are made
out of context. There will eventually be a requirement to include some form of modelling of the entities referred
to, to represent anaphora for instance, although again this is probably best thought of as an annotation of the natural
language text, rather than an entirely distinct domain model.
The distinction between these two approaches can be seen as fundamental in terms of the philosophy of meaning.
However NLP research can and does combine the approaches. For example, a conversational agent will use an ex-

54

plicit domain model for some types of interaction and rely on language-based inference for others. While logic and
compositional semantics is traditionally associated with the first approach, it can also be useful in the second.

Lexical meaning and meaning postulates Computational approaches to lexical meaning will be discussed in the
following two lectures, but since interesting natural language inference requires some way of relating different lex-
emes, I will make some preliminary remarks here. Inference rules can be used to relate predicates that correspond to
open class words. This is the classic way of representing lexical meaning in formal semantics within linguistics.31 The
standard example is:

∀x[bachelor′(x) ↔ man′(x) ∧ unmarried′(x)]

For computational semantics, perhaps the best way of regarding meaning postulates is simply as one reasonable way
of linking compositionally constructed semantic representations to a specific domain (in the first approach outlined
above) or as relating lexemes to one another (as required by the second approach). In NLP, we’re normally concerned
with implication rather than definition:

∀x[bachelor′(x) =⇒ man′(x) ∧ unmarried′(x)]

Such relationships may be approximate, as long as they are sufficiently accurate to be useful. For instance we’ll see
an example below that requires that find and discover are related, which could be stated as follows:

[find′(x, y, z) =⇒ discover′(x, y, z)]

This implies that all uses of find could be substituted by discover, which is not the case in general, although it may be
completely adequate for some domains and work well enough in general to be useful.

6.6 Recognising Textual Entailment

A series of shared tasks concerning Recognising Textual Entailment, the RTE challenge, were carried out starting in
2004 (Dagan et al, 2005). The data consists of a series of texts, generally single sentences presented without context
(labelled T below), and some hypothesis (H) which may or may not follow from that text.

(13) T: The girl was found in Drummondville earlier this month.

H: The girl was discovered in Drummondville.

The task is to label the pairs as TRUE (when the entailment follows) or FALSE (when it doesn’t follow, rather than
when it’s known to be an untrue statement) in a way which matches human judgements. The example above was
labelled TRUE by the human annotator.
Examples of this sort can be dealt with using a logical form generated from a grammar with compositional semantics
combined with inference. To show this in detail would require a lot more discussion of semantics than we had space for
above, but I’ll give a sketch of the approach here. Assume that the T sentence has logical form T′ and the H sentence
has logical form H′. Then if T′ =⇒ H′ we conclude TRUE, and otherwise we conclude FALSE. For example, the
logical form for the T sentence above is approximately as shown below:

(14) T The girl was found in Drummondville earlier this month.

T′ ∃x, u, e[girl′(x) ∧ find′(e, u, x) ∧ in′(e,Drummondville) ∧ earlier-this-month′(e)]

The verb has the additional argument, e, corresponding to the event as discussed in §6.2 above. So the semantics can
be glossed as: ‘there was a finding event, the entity found was a girl, the finding event was in Drummondville, and the
finding event happened earlier this month’. (The real representation would use a combination of predicates instead of
earlier-this-month′, but that’s not important for the current discussion.)
The hypothesis text is then:

31Generally, linguists don’t actually write meaning postulates for open-class words, but this is the standard assumption about how meaning would
be represented if anyone could be bothered to do it!

55

(15) H The girl was discovered in Drummondville.

H′ ∃x, u, e[girl′(x) ∧ discover′(e, u, x) ∧ in′(e,Drummondville)]

A ∧B =⇒ A, which licences dropping earlier this month, so assuming a meaning postulate:

[find′(x, y, z) =⇒ discover′(x, y, z)]

the inference T′ =⇒ H′ would go through.
An alternative technique is based on matching dependency structures. Instead of an explicit meaning postulate, a
similarity metric can be used to relate find and discover. The similarity could be extracted from a lexical resource
(next lecture), or from a corpus using distributional methods (lecture 8).
More robust methods can be used which do not require parsing of any type. The crudest technique is to use a bag-
of-words method, analogous to that discussed for sentiment detection in lecture 1: if there is a large enough overlap
between the words in T and H, the entailment goes though. Note that whether such a method works well or not
crucially depends on the H texts: it would trivially be fooled by hypotheses like:

(16) H: The girl was discovered by Drummondville.

The RTE test set was actually deliberately constructed in such a way that word overlap works quite well.
Further examples (all discussed by Bos and Markert, 2005):

(17) T: Clinton’s book is not a big seller here.

H: Clinton’s book is a big seller.

a FALSE

(18) T: After the war the city was briefly occupied by the Allies and then was returned to the Dutch.

H: After the war, the city was returned to the Dutch.

a TRUE

(19) T: Four Venezuelan firefighters who were traveling to a training course in Texas were killed when their
sport utility vehicle drifted onto the shoulder of a highway and struck a parked truck.

H: Four firefighters were killed in a car accident.

a TRUE

(20) T: Lyon is actually the gastronomic capital of France.

H: Lyon is the capital of France.

FALSE

(21) T: US presence puts Qatar in a delicate spot.

H: Qatar is located in a delicate spot.

a FALSE

(22) T: The first settlements on the site of Jakarta were established at the mouth of the Ciliwung, perhaps as
early as the 5th century AD.

H: The first settlements on the site of Jakarta were established as early as the 5th century AD.

a TRUE (sic)

The post-lecture exercises suggest that you try and work out how a logical approach might handle (or fail to handle)
these examples.

56

6.7 Further reading

J&M go into quite a lot of detail about compositional semantics including underspecification. A version of Wikipedia
automatically annotated with underspecified semantic representations using the DELPH-IN ERG is available from
http://moin.delph-in.net/WikiWoods: the distributional semantics experiments mentioned in lecture 8
make use of this.
Bos and Markert (2005)’s paper is available from: http://www.let.rug.nl/bos/pubs/BosMarkert2006MLCW.
pdf

Bos and colleagues are developing the Groningen Meaning Bank (http://gmb.let.rug.nl/) a moderately
large corpus annotated with logical representations: the initial annotation for this is based on automatic analysis with
the C&C parser mentioned in lecture 5.

57

7 Lecture 7: Lexical semantics

Lexical semantics concerns word meaning. In the previous lecture, I briefly discussed the use of meaning postulates to
represent the meaning of words. Linguistically and philosophically, any such approach has clear problems. Take the
bachelor example: is the current Pope a bachelor? Technically presumably yes, but bachelor seems to imply someone
who could be married: it’s a strange word to apply to the Pope under current assumptions about celibacy. Meaning
postulates are also too unconstrained: I could construct a predicate ‘bachelor-weds-thurs’ to correspond to someone
who was unmarried on Wednesday and married on Thursday, but this isn’t going to correspond to a word in any natural
language. In any case, very few words are as simple to define as bachelor: consider how you might start to define
table, tomato or thought, for instance.32

Rather than try and build complete and precise representations of word meaning therefore, computational linguists
work with partial or approximate representations. The find/discover implication in the last lecture is an approximate
representation, because expanding the rule to stipulate the exact conditions under which discover can be used instead
of find is impossible (at least in any practical system) and individual speakers may well have different intuitions. In
this lecture, I will discuss the classical lexical semantic relations and then discuss polysemy and word sense disam-
biguation. In the following lecture, we will look at an alternative approach to representing meaning.

7.1 Hyponymy: IS-A

Hyponymy is the classical IS-A relation: e.g. dog is a hyponym of animal and animal is the hypernym of dog. To
be more precise, the relevant sense of dog is the hyponym of the relevant sense of animal (dog can also be a verb or
used in a metaphorical and derogatory way to refer to a human). As nearly everything said in this lecture is about
word senses rather than words, I will avoid explicitly qualifying all statements in this way, but this should be globally
understood. In turn, dog is the hypernym of spaniel, terrier and so on. Hyponyms can be arranged into taxonomies:
classically these are tree-structured: i.e., each term has only one hypernym.
Hyponymy relates to ideas which have been formalised in description logics and used in ontologies and the semantic
web. However, formalising the linguistic notion of hyponymy is difficult. Despite the fact that hyponymy is by far the
most important meaning relationship assumed in NLP, many questions arise which don’t have very good answers:

1. What classes of words can be categorised by hyponymy? Some nouns, classically biological taxonomies, but
also human artefacts, professions etc work reasonably well. Abstract nouns, such as truth, don’t really work
very well (they are either not in hyponymic relationships at all, or very shallow ones). Some verbs can be treated
as being hyponyms of one another — e.g. murder is a hyponym of kill, but this is not nearly as clear as it is
for concrete nouns. Event-denoting nouns are similar to verbs in this respect. Hyponymy is almost useless for
adjectives.

2. Do differences in quantisation and individuation matter? For instance, is chair a hyponym of furniture? is beer
a hyponym of drink? is coin a hyponym of money?

3. Is multiple inheritance allowed? Intuitively, multiple parents might be possible: e.g. coin might be metal (or
object?) and also money. Artefacts in general can often be described either in terms of their form or their
function.

4. What should the top of the hierarchy look like? The best answer seems to be to say that there is no single top
but that there are a series of hierarchies.

Despite this lack of clarity, hyponymy relationships are a good source of inference rules, at least in the language-based
conception of inference described in the previous lecture.

7.2 Other lexical semantic relations

Meronymy i.e., PART-OF
The standard examples of meronymy apply to physical relationships: e.g., arm is part of a body (arm is a

32There has been a court case that hinged on the precise meaning of table and also one that depended on whether tomatoes were fruits or
vegetables.

58

meronym of body); steering wheel is a meronym of car. Note the distinction between ‘part’ and ‘piece’: if I
attack a car with a chainsaw, I get pieces rather than parts!

Synonymy i.e., two words with the same meaning (or nearly the same meaning)

True synonyms are relatively uncommon: most cases of true synonymy are correlated with dialect differences
(e.g., eggplant / aubergine, boot / trunk). Often synonymy involves register distinctions, slang or jargons: e.g.,
policeman, cop, rozzer . . . Near-synonyms convey nuances of meaning: thin, slim, slender, skinny.

Antonymy i.e., opposite meaning

Antonymy is mostly discussed with respect to adjectives: e.g., big/little, though it’s only relevant for some
classes of adjectives.

7.3 WordNet

WordNet is the main resource for lexical semantics for English that is used in NLP — primarily because of its very
large coverage and the fact that it’s freely available. WordNets are under development for many other languages,
though so far none are as extensive as the original.
The primary organisation of WordNet is into synsets: synonym sets (near-synonyms). To illustrate this, the following
is part of what WordNet returns as an ‘overview’ of red:

wn red -over

Overview of adj red

The adj red has 6 senses (first 5 from tagged texts)

1. (43) red, reddish, ruddy, blood-red, carmine,
cerise, cherry, cherry-red, crimson, ruby, ruby-red,
scarlet -- (having any of numerous bright or strong
colors reminiscent of the color of blood or cherries
or tomatoes or rubies)
2. (8) red, reddish -- ((used of hair or fur) of a
reddish brown color; "red deer"; reddish hair")

Nouns in WordNet are organised by hyponymy, as illustrated by the fragment below:

Sense 6
big cat, cat

=> leopard, Panthera pardus
=> leopardess
=> panther

=> snow leopard, ounce, Panthera uncia
=> jaguar, panther, Panthera onca, Felis onca
=> lion, king of beasts, Panthera leo

=> lioness
=> lionet

=> tiger, Panthera tigris
=> Bengal tiger
=> tigress

=> liger
=> tiglon, tigon
=> cheetah, chetah, Acinonyx jubatus
=> saber-toothed tiger, sabertooth

=> Smiledon californicus
=> false saber-toothed tiger

59

Taxonomies have also been extracted from machine-readable dictionaries: Microsoft’s MindNet is the best known
example. There has been considerable work on extracting taxonomic relationships from corpora, including some
aimed at automatically extending WordNet.

7.4 Using lexical semantics

The most commonly used lexical relations are hyponymy and (near-)synonymy. Hyponymy relations can be used in
many ways, for instance:

• Semantic classification: e.g., for selectional restrictions (e.g., the object of eat has to be something edible) and
for named entity recognition.

• Shallow inference: ‘X murdered Y’ implies ‘X killed Y’ etc (as discussed in the previous lecture).

• Back-off to semantic classes in some statistical approaches (for instance, WordNet classes can be used in docu-
ment classification).

• Word-sense disambiguation.

• Query expansion for information retrieval: if a search doesn’t return enough results, one option is to replace an
over-specific term with a hypernym.

Synonymy or near-synonymy is relevant for some of these reasons and also for generation. (However dialect and reg-
ister haven’t been investigated much in NLP, so the possible relevance of different classes of synonym for customising
text hasn’t really been looked at.)

7.5 Polysemy

Polysemy refers to the state of a word having more than one sense: the standard example is bank (river bank) vs bank
(financial institution).
This is homonymy — the two senses are unrelated (not entirely true for bank, in fact, but historical relatedness isn’t
important — it’s whether ordinary speakers of the language feel there’s a relationship). Homonymy is the most obvious
case of polysemy, but is relatively infrequent compared to uses which have different but related meanings, such as bank
(financial institution) vs bank (in a casino).
If polysemy were always homonymy, word senses would be discrete: two senses would be no more likely to share
characteristics than would morphologically unrelated words. But most senses are actually related. Regular or sys-
tematic polysemy (zero derivation, as mentioned in §2.2) concerns related but distinct usages of words, often with
associated syntactic effects. For instance, strawberry, cherry (fruit / plant), rabbit, turkey, halibut (meat / animal),
tango, waltz (dance (noun) / dance (verb)).
There are a lot of complicated issues in deciding whether a word is polysemous or simply general/vague. For instance,
teacher is intuitively general between male and female teachers rather than ambiguous, but giving good criteria as a
basis of this distinction is difficult. Dictionaries are not much help, since their decisions as to whether to split a sense
or to provide a general definition are very often contingent on external factors such as the size of the dictionary or the
intended audience, and even when these factors are relatively constant, lexicographers often make different decisions
about whether and how to split up senses.

7.6 Word sense disambiguation

Word sense disambiguation (WSD) is needed for most NL applications that involve semantics (explicitly or implicitly).
In limited domains, WSD is not too big a problem, but for large coverage text processing it’s a serious bottleneck.
WSD needs depend on the application, but in order to experiment with WSD as a standalone module, there has to be
a standard: most commonly WordNet, because for decades it was the only extensive modern resource for English that
was freely available. This is controversial, because WordNet has a very fine granularity of senses and the senses often
overlap, but there’s no clear alternative. Various WSD ‘competitions’ have been organised (SENSEVAL).

60

WSD up to the early 1990s was mostly done by hand-constructed rules (still used in some MT systems). Dahlgren
investigated WSD in a fairly broad domain in the 1980s. Reasonably broad-coverage WSD generally depends on:

• frequency

• collocations

• selectional restrictions/preferences

What’s changed since the 1980s is that various statistical or machine-learning techniques have been used to avoid
hand-crafting rules.

• supervised learning. Requires a sense-tagged corpus, which is extremely time-consuming to construct system-
atically (examples are the Semcor and SENSEVAL corpora, but both are really too small). Often experiments
have been done with a small set of words which can be sense-tagged by the experimenter. Supervised learning
techniques do not carry over well from one corpus to another.

• unsupervised learning (see below)

• Machine readable dictionaries (MRDs) and, more recently, online dictionaries. Disambiguating dictionary def-
initions according to the internal data in dictionaries is necessary to build taxonomies from MRDs. MRDs
have also been used as a source of selectional preference and collocation information for general WSD (quite
successfully).

• Wikipedia disambiguation pages.

Until recently, most of the statistical or machine-learning techniques have been evaluated on homonyms: these are
relatively easy to disambiguate. So 95% disambiguation in e.g., Yarowsky’s experiments sounds good (see below),
but doesn’t translate into high precision on all words when target is WordNet senses (in SENSEVAL 2 the best system
was around 70%).
There have also been some attempts at automatic sense induction, where an attempt is made to determine the clusters
of usages in texts that correspond to senses. In principle, this is a very good idea, since the whole notion of a word
sense is fuzzy: word senses can be argued to be artefacts of dictionary publishing. However, so far sense induction
has not been much explored in monolingual contexts, though it could be considered as an inherent part of statistical
approaches to MT.

7.7 Collocations

Informally, a collocation is a group of two or more words that occur together more often than would be expected by
chance (there are other definitions — this is not really a precise notion). Collocations have always been the most useful
source of information for WSD, even in Dahlgren’s early experiments. For instance:

(23) Striped bass are common.

(24) Bass guitars are common.

striped is a good indication that we’re talking about the fish (because it’s a particular sort of bass), similarly with
guitar and music. In both bass guitar and striped bass, we’ve arguably got a multiword expression (i.e., a conventional
phrase that might be listed in a dictionary), but the principle holds for any sort of collocation. The best collocates for
WSD tend to be syntactically related in the sentence to the word to be disambiguated, but many techniques simply use
a window of words.
The term collocation is sometimes restricted to the situation where there is a syntactic relationship between the words.
J&M (second edition) define collocation as a position-specific relationship (in contrast to bag-of-words, where position
is ignored) but this is not a standard definition.

61

7.8 Yarowsky’s unsupervised learning approach to WSD

Yarowsky (1995) describes a technique for unsupervised learning using collocates. A few seed collocates (possibly
position-specific) are chosen for each sense (manually or via an MRD), then these are used to accurately identify
distinct senses. The sentences in which the disambiguated senses occur can then be used to learn other discriminating
collocates automatically, producing a decision list. The process can then be iterated. The algorithm allows bad
collocates to be overridden. This works because of the general principle of ‘one sense per collocation’ (experimentally
demonstrated by Yarowsky — it’s not absolute, but there are very strong preferences).
In a bit more detail, using Yarowsky’s example of disambiguating plant (which is homonymous between factory vs
vegetation senses):

1. Identify all examples of the word to be disambiguated in the training corpus and store their contexts.
sense training example

? company said that the plant is still operating
? although thousands of plant and animal species
? zonal distribution of plant life
? company manufacturing plant is in Orlando

etc

2. Identify some seeds which reliably disambiguate a few of these uses. Tag the disambiguated senses automati-
cally and count the rest as residual. For instance, choosing ‘plant life’ as a seed for the vegetation sense of plant
(sense A) and ‘manufacturing plant’ as the seed for the factory sense (sense B):

sense training example

? company said that the plant is still operating
? although thousands of plant and animal species
A zonal distribution of plant life
B company manufacturing plant is in Orlando

etc
This disambiguated 2% of uses in Yarowsky’s corpus, leaving 98% residual.

3. Train a decision list classifier on the Sense A/Sense B examples. A decision list approach gives a list of criteria
which are tried in order until an applicable test is found: this is then applied. The decision list classifier takes a
set of already classified examples and returns criteria which distinguish them (e.g., word before / after / within
window). The tests are each associated with a reliability metric. The original seeds are likely to be at the top of
the decision list that is returned, followed by other discriminating terms. e.g. the decision list might include:

reliability criterion sense

8.10 plant life A
7.58 manufacturing plant B
6.27 animal within 10 words of plant A

etc
Here ‘animal within 10 words of plant’ is a new criterion, learned by the classifier.

4. Apply the decision list classifier to the training set and add all examples which are tagged with greater than a
threshold reliability to the Sense A and Sense B sets.

sense training example

? company said that the plant is still operating
A although thousands of plant and animal species
A zonal distribution of plant life
B company manufacturing plant is in Orlando

etc

5. Iterate the previous steps 3 and 4 until convergence

62

6. Apply the classifier to the unseen test data

The following schematic diagrams may help:
Initial state:

? ? ?
?

?

? ?
?

? ?
?

?

? ?
?

?

? ?

?

? ?

?

?

?

?

?
??

? ?

?

Seeds

A A ?
?

?

? ?
?

? ?

life
A

?

? B
B

manufacturing

?

? A

?

? A

?

?

?

?

?
??

? ?

?

Iterating:

A A ?
?

A

? B
?

? ?

animal

life
A

A

? B
B

manufacturing

company

?

? A

?

? A

?

B

?

?

?
??

? ?

?

Final:

A A B
B

A

A B
B

A A
A

A

A B
B

A

A A

B

A A

B

B

A

A

A
BB

B B

B

63

Yarowsky also demonstrated the principle of ‘one sense per discourse’. For instance, if plant is used in the botanical
sense in a particular text, then subsequent instances of plant in the same tense will also tend to be used in the botanical
sense. Again, this is a very strong, but not absolute effect. This can be used as an additional refinement for the
algorithm above, assuming we have a way of detecting the boundaries between distinct texts in the corpus.
Decision list classifiers can be thought of as automatically trained case statements. The experimenter decides on the
classes of test (e.g., word next to word to be disambiguated; word within window 10). The system automatically
generates and orders the specific tests based on the training data.
Yarowsky argues that decision lists work better than many other statistical frameworks because no attempt is made to
combine probabilities. This would be complex, because the criteria are not independent of each other. More details of
this approach are in J&M (section 20.5).
Yarowsky’s experiments were nearly all on homonyms: these principles probably don’t hold as well for sense exten-
sion.

7.9 Evaluation of WSD

The baseline for WSD is generally ‘pick the most frequent’ sense: this is hard to beat! However, in many applications,
we don’t know the frequency of senses.
SENSEVAL and SENSEVAL-2 evaluated WSD in multiple languages, with various criteria, but generally using Word-
Net senses for English. The human ceiling for this task varies considerably between words: probably partly because of
inherent differences in semantic distance between groups of uses and partly because of WordNet itself, which some-
times makes very fine-grained distinctions. An interesting variant in SENSEVAL-2 was to do one experiment on WSD
where the disambiguation was with respect to uses requiring different translations into Japanese. This has the advan-
tage that it is useful and relatively objective, but sometimes this task requires splitting terms which aren’t polysemous
in English (e.g., water — hot vs cold). Performance of WSD on this task seems a bit better than the general WSD
task.

7.10 Further reading and background

WordNet is freely downloadable: the website has pointers to several papers which provide a good introduction. Re-
cent initiatives have made many WordNets for other languages freely available: many are cross-linked to each other
(generally via the English WordNet).
WSD is out of fashion as a standalone NLP subtask: these are several reasons for this, but the most important is that
it seems unhelpful to consider it in isolation from applications. WSD is important in speech synthesis, for example,
but only for a relatively small number of words where the sense distinction indicates a difference in pronunciation
(e.g., bass but not bank or plant). In SMT, the necessary disambiguation happens as part of the general model rather
than being a separate step, even conceptually. Nevertheless, it is useful to look at WSD because the important features
in WSD models are important in these other contexts, and because it is a relatively straightforward illustration of an
idea which applies to a class of NLP problems. Yarowsky’s approach is a good illustration of a family of seed-based,
semi-supervised methods used in other contexts and the paper is well-written and should be understandable:
Yarowsky, David (1995)
Unsupervised word sense disambiguation rivalling supervised methods,
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics (ACL-95) MIT, 189–196
Like many other NLP papers, this can be downloaded via the ACL Anthology
http://aclweb.org/anthology-new/.

64

8 Lecture 8: Distributional semantics

Copyright c⃝ Aurélie Herbelot and Ann Copestake, 2012–2014. The notes from this lecture are partly based on slides
written by Aurélie Herbelot.
Distributional semantics refers to a family of techniques for representing word (and phrase) meaning based on (lin-
guistic) contexts of use. Consider the following examples (from the BNC):

it was authentic scrumpy, rather sharp and very strong
we could taste a famous local product — scrumpy
spending hours in the pub drinking scrumpy

Even if you don’t know the word scrumpy, you can get a good idea of its meaning from contexts like this. Humans
typically learn word meanings from context rather than explicit definition: sometimes these meanings are perceptually
grounded (e.g., someone gives you a glass of scrumpy), sometimes not.
It is to a large extent an open question how word meanings are represented in the brain.33 Distributional semantics uses
linguistic context to represent meaning and this is likely to have some relationship to mental meaning representation.
It can only be a partial representation of lexical meaning (perceptual grounding is clearly important too, and more-or-
less explicit definition may also play a role) but, as we’ll see, distributions based on language alone are good enough
for some tasks. In these models, meaning is seen as a space, with dimensions corresponding to elements in the context
(features). Computational techniques generally use vectors to represent the space and the terms semantic space models
and vector space models are sometimes used instead of distributional semantics. 34 Schematically:

feature1 feature2 ... featuren
word1 f1,1 f2,1 fn,1
word2 f1,2 f2,2 fn,2
...
wordm f1,m f2,m fn,m

There are many different possible notions of features: co-occur with wordn in some window, co-occur with wordn as
a syntactic dependent, occur in paragraphn, occur in documentn . . .
The main use of distributional models has been in measuring similarity between pairs of words: such measurements
can be exploited in a variety of ways to model language: similarity measurements allow clustering of words so can be
used as a way of getting at unlabelled semantic classes. In the rest of this lecture, we will first discuss some possible
models illustrating the choices that must be made when designing a distributional semantics system and go through a
step-by-step example. We’ll then look at some real distributions and then describe how distributions can be used in
measuring similarity between words. We’ll briefly describe how polysemy affects distributions and conclude with a
discussion of the relationship between distributional models and the classic lexical semantic relations of synonymy,
antonymy and hyponymy.

8.1 Models

Distributions are vectors in a multidimensional semantic space, that is, objects with a magnitude (length) and a direc-
tion. The semantic space has dimensions which correspond to possible contexts. For our purposes, a distribution can
be seen as a point in that space (the vector being defined with respect to the origin of that space). e.g., cat [...dog 0.8,
eat 0.7, joke 0.01, mansion 0.2, zebra 0.1...], where ‘dog’, ‘joke’ and so on are the dimensions.
Context:
Different models adopt different notions of context:

• Word windows (unfiltered): n words on either side of the item under consideration (unparsed text).
Example: n=2 (5 words window):

33In fact, it’s common to talk about concepts rather than word meanings when discussing mental representation, but while some researchers treat
some (or all) concepts as equivalent to word senses (or phrases), others think they are somehow distinct. We will return to this in lecture 11.

34Vector space models in IR are directly related to distributional models. Some more complex techniques use tensors of different orders rather
than simply using vectors, but we won’t discuss them in this lecture.

65

... the prime minister acknowledged that ...

• Word windows (filtered): n words on either side of the item under consideration (unparsed text). Some words
will be in a stoplist and not considered part of the context. It is common to put function words and some very
frequent content words in the stoplist. The stoplist may be constructed manually, but often the corpus is POS-
tagged and only certain POS tags are considered part of the context.
Example: n=2 (5 words window), underlined words are in the stop list.

... the prime minister acknowledged that ...

• Lexeme windows: as above, but a morphological processor is applied first that converts the words to their stems.

• Dependencies: syntactic or semantic. The corpus is converted into a list of directed links between heads and
dependants (see §6.4). The context for a lexeme is constructed based on the dependencies it belongs to. The
length of the dependency path varies according to the implementation.

Example of distributions for word comparing unparsed and parsed data:

unparsed data
meaning n
derive v
dictionary n
pronounce v
phrase n
latin j

ipa n
verb n
mean v
hebrew n
usage n
literally r

parsed data
or c+phrase n
and c+phrase n
syllable n+of p
play n+on p
etymology n+of p
portmanteau n+of p

and c+deed n
meaning n+of p
from p+language n
pron rel +utter v
for p+word n
in p+sentence n

Context weighting:
Different models use different methods of weighting the context elements:

• Binary model: if context c co-occurs with word w, value of vector w⃗ for dimension c is 1, 0 otherwise.

... [a long long long example for a distributional semantics] model... (n=4)

... {a 1} {dog 0} {long 1} {sell 0} {semantics 1}...

• Basic frequency model: the value of vector w⃗ for dimension c is the number of times that context c co-occurs
with w.

... [a long long long example for a distributional semantics] model... (n=4)

... {a 2} {dog 0} {long 3} {sell 0} {semantics 1}...

• Characteristic model: the weights given to the vector components express how characteristic a given context is
for w. Functions used include:

– Pointwise Mutual Information (PMI), with or without discounting factor.

pmiwc = log(
fwc ∗ ftotal
fw ∗ fc

) (25)

where fwc is the frequency with which word w occurs in context c, ftotal is the total frequency of all the
possible contexts, fw is the frequency of the word w and fc is the overall frequency of the context item.
i.e., if we use words as dimensions, fwc is the frequency with which word w and word c cooccur, fc is the
overall frequency of word c and ftotal is the total frequency of all the context words.

– Positive PMI (PPMI): as PMI but 0 if PMI < 0.

– Derivatives such as Mitchell and Lapata’s (2010) weighting function (PMI without the log).

66

Most work uses some form of characteristic model in order to give most weight to frequently cooccuring features, but
allowing for the overall frequency of the terms in the context. Note that PMI is one of the measures used for finding
collocations (see previous lecture): the distributional models can be seen as combining the collocations for words.
Semantic space:
Once the contexts and weights have been decided on, models also vary in which elements are included in the final
vectors: i.e., what the total semantic space consists of. The main options are as follows (with positive and negative
aspects indicated):

• Entire vocabulary. All the information is included – even rare contexts may be important. However using
many dimensions (many hundreds of thousands) makes it slow. The dimensions will include a lot of noise: e.g.
002.png—thumb—right—200px—graph n

• Top n words with highest frequencies. This is more efficient (5000-10000 dimensions are usual) and only ‘real’
words will be included. However, the model may miss infrequent but relevant contexts.

• Singular Value Decomposition and other dimensionality reduction techniques. SVD was used in LSA – Lan-
dauer and Dumais (1997). The number of dimensions is reduced by exploiting redundancies in the data. A new
dimension might correspond to a generalisation over several of the original dimensions (e.g. the dimensions for
car and vehicle are collapsed into one). This can be very efficient (200-500 dimensions are often used) and it
should capture generalisations in the data. The problem is that SVD matrices are not interpretable. Arguably,
this is a theoretical problem, but it is more obviously a practical problem: using SVD makes it impossible to
debug the feature space by manual inspection. It is therefore unsuitable for initial experiments.

But there are several other variants.

8.2 Getting distributions from text

In this section, we illustrate a word-window model using PMI weightings with a stop list consisting of all closed-class
words. We use the following example text (from Douglas Adams, Mostly harmless):

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is
that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at
or repair.

Naturally, real distributions are calculated from much larger corpora!
Dimensions (all the open class words in the text, without lemmatization):

difference
get
go
goes
impossible

major
possibly
repair
thing
turns

usually
wrong

Overall frequency counts (needed for the PMI calculations):

difference 1
get 1
go 3
goes 1
impossible 1

major 1
possibly 2
repair 1
thing 3
turns 1

usually 1
wrong 4

Conversion into 5-word windows:

• ∅ ∅ the major difference

67

• ∅ the major difference between

• the major difference between a

• major difference between a thing

• ...

Context windows for wrong:
The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when
a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.
Distribution for wrong (raw frequencies)

difference 0
get 0
go 3
goes 2
impossible 0

major 0
possibly 2
repair 0
thing 0
turns 0

usually 1
wrong 2

Note that the single token of goes is counted twice, because it occurs with two different tokens of wrong.
Distribution for wrong (PPMI):

difference 0
get 0
go 0.70
goes 1
impossible 0

major 0
possibly 0.70
repair 0
thing 0
turns 0

usually 0.70
wrong 0.40

For instance, for the context possibly, fwc is 2 (as in the raw frequency distribution table), fc is the total count of
possibly which is also 2 (as in the overall frequency count table), fw is 4 (again, as in the overall frequency count
table) and ftotal is 20 (i.e., the sum of the frequencies in the overall frequency count table), so PMI is log(5).

8.3 Real distributions

In this section we give some more realistic examples of distributions, which have been derived using a methodol-
ogy that we have adopted for our own research. The corpus (WikiWoods: Flickinger et al 2010: http://moin.
delph-in.net/WikiWoods) is based on a dump of the entire English Wikipedia parsed with the English Re-
source Grammar (Flickinger, 2000, see lecture 5) and converted into semantic dependencies (see Lecture 6), though
the results would be expected to be similar with syntactic dependencies. The dependencies considered include:

• For nouns: head verbs (+ any other argument of the verb), modifying adjectives, head prepositions (+ any other
argument of the preposition).
e.g. cat: chase v+mouse n, black a, of p+neighbour n

• For verbs: arguments (NPs and PPs), adverbial modifiers.
e.g. eat: cat n+mouse n, in p+kitchen n, fast a

• For adjectives: modified nouns; rest as for nouns (assuming intersective composition).
e.g. black: cat n, chase v+mouse n

The model uses a semantic space of the top 100,000 contexts (because we wanted to include the rare terms) with a
variant of PMI (Bouma 2007) for weighting:

pmiwc =
log(fwc∗ftotal

fw∗fc)

−log(fwc

ftotal
)

(26)

An example noun, language:

68

0.54::other+than p()+English n
0.53::English n+as p()
0.52::English n+be v
0.49::english a
0.48::and c+literature n
0.48::people n+speak v
0.47::French n+be v
0.46::Spanish n+be v
0.46::and c+dialects n
0.45::grammar n+of p()

0.45::foreign a
0.45::germanic a
0.44::German n+be v
0.44::of p()+instruction n
0.44::speaker n+of p()
0.42::generic entity rel +speak v
0.42::pron rel +speak v
0.42::colon v+English n
0.42::be v+English n
0.42::language n+be v

0.42::and c+culture n
0.41::arabic a
0.41::dialects n+of p()
0.40::part of rel +speak v
0.40::percent n+speak v
0.39::spanish a
0.39::welsh a
0.39::tonal a

An example adjective, academic:

0.52::Decathlon n
0.51::excellence n
0.45::dishonesty n
0.45::rigor n
0.43::achievement n
0.42::discipline n
0.40::vice president n+for p()
0.39::institution n
0.39::credentials n
0.38::journal n

0.37::journal n+be v
0.37::vocational a
0.37::student n+achieve v
0.36::athletic a
0.36::reputation n+for p()
0.35::regalia n
0.35::program n
0.35::freedom n
0.35::student n+with p()
0.35::curriculum n

0.34::standard n
0.34::at p()+institution n
0.34::career n
0.34::Career n
0.33::dress n
0.33::scholarship n
0.33::prepare v+student n
0.33::qualification n

Corpus choice is another parameter that has to be considered in building models. Some research suggests that one
should use as much data as possible. Some commonly used corpora:

• British National Corpus (BNC): 100 m words

• Wikipedia dump used in Wikiwoods: 897 m words

• UKWac (obtained from web-crawling): 2 bn words

In general, more data does give better models but the domain has to be considered: for instance, huge corpora of
financial news won’t give models that work well with other text types. Furthermore, more data is not realistic from a
psycholinguistic point of view. We encounter perhaps 50,000 words a day (although nobody actually has good esti-
mates of this!) so the BNC, which is very small by the standards of current experiments, corresponds to approximately
5 years’ exposure.
It is clear that sparse data is a problem for relatively rare words. For instance, consider the following distribution for
unicycle, as obtained from Wikiwoods:

0.45::motorized a
0.40::pron rel +ride v
0.24::for p()+entertainment n
0.24::half n+be v
0.24::unwieldy a
0.23::earn v+point n
0.22::pron rel +crash v

0.19::man n+on p()
0.19::on p()+stage n
0.19::position n+on p()
0.17::slip v
0.16::and c+1 n
0.16::autonomous a
0.16::balance v

0.13::tall a
0.12::fast a
0.11::red a
0.07::come v
0.06::high a

Note that humans exploit a lot more information from context and can get a good idea of word meanings from a small
number of examples.
Distributions are generally constructed without any form of sense disambiguation. The semantic space can be thought
of as consisting of subspaces for different senses, with homonyms (presumably) relatively distinct. For instance,
consider the following distribution for pot:

69

0.57::melt v
0.44::pron rel +smoke v
0.43::of p()+gold n
0.41::porous a
0.40::of p()+tea n
0.39::player n+win v
0.39::money n+in p()
0.38::of p()+coffee n

0.33::amount n+in p()
0.33::ceramic a
0.33::hot a
0.32::boil v
0.31::bowl n+and c
0.31::ingredient n+in p()
0.30::plant n+in p()
0.30::simmer v

0.29::pot n+and c
0.28::bottom n+of p()
0.28::of p()+flower n
0.28::of p()+water n
0.28::food n+in p()

Finally, note that distributions contain many contexts which arise from multiword expressions of various types, and
these often have high weights. The distribution of pot contains several examples, as does the following distribution for
time:

0.46::of p()+death n
0.45::same a
0.45::1 n+at p(temp)
0.45::Nick n+of p()
0.42::spare a
0.42::playoffs n+for p()
0.42::of p()+retirement n
0.41::of p()+release n

0.40::pron rel +spend v
0.39::sand n+of p()
0.39::pron rel +waste v
0.38::place n+around p()
0.38::of p()+arrival n
0.38::of p()+completion n
0.37::after p()+time n
0.37::of p()+arrest n

0.37::country n+at p()
0.37::age n+at p()
0.37::space n+and c
0.37::in p()+career n
0.37::world n+at p()

To sum up, there is a wide range of choice in constructing distributional models. Manually examining the characteristic
contexts gives us a good idea of how sensible different weighting measures are, for instance, but we need to look at
how distributions are actually used to evaluate how well they model meaning.

8.4 Similarity

Calculating similarity in a distributional space is done by calculating the distance between the vectors.

The most common method is cosine similarity.

• Law of cosines: c2 = a2 + b2 − 2ab cos γ

70

Cosine similarity: ∑
v1k ∗ v2k√∑

v12k ∗
√∑

v22k
(27)

This measure calculates the angle between two vectors and is therefore length-independent. This is important, as
frequent words have longer vectors than less frequent ones.
The following examples should give some idea of the scales of similarity found:

house – building 0.43
gem – jewel 0.31
capitalism – communism 0.29
motorcycle – bike 0.29
test – exam 0.27
school – student 0.25
singer – academic 0.17
horse – farm 0.13
man –accident 0.09
tree – auction 0.02
cat –county 0.007

Note that perfect similarity gives a cosine of 1, but that even near-synonyms like gem and jewel have much lower
cosine similarity.
Words most similar to cat, as chosen from the 5000 most frequent nouns in Wikipedia.

1 cat
0.45 dog
0.36 animal
0.34 rat
0.33 rabbit
0.33 pig
0.31 monkey
0.31 bird
0.30 horse
0.29 mouse
0.29 wolf
0.29 creature
0.29 human

0.29 goat
0.28 snake
0.28 bear
0.28 man
0.28 cow
0.26 fox
0.26 girl
0.26 sheep
0.26 boy
0.26 elephant
0.25 deer
0.25 woman
0.25 fish

0.24 squirrel
0.24 dragon
0.24 frog
0.23 baby
0.23 child
0.23 lion
0.23 person
0.23 pet
0.23 lizard
0.23 chicken
0.22 monster
0.22 people
0.22 tiger

0.22 mammal
0.21 bat
0.21 duck
0.21 cattle
0.21 dinosaur
0.21 character
0.21 kid
0.21 turtle
0.20 robot

This notion of similarity is very broad. It includes synonyms, near-synonyms, hyponyms, taxonomical siblings,
antonyms and so on. But it does correlate with a psychological reality. One of the favourite tests of the distri-
butional semantics community is the calculation of rank correlation between a distributional similarity system and
human judgements on the Miller & Charles (1991) test set shown below:

3.92 automobile-car
3.84 journey-voyage
3.84 gem-jewel
3.76 boy-lad
3.7 coast-shore
3.61 asylum-madhouse
3.5 magician-wizard
3.42 midday-noon
3.11 furnace-stove
3.08 food-fruit

3.05 bird-cock
2.97 bird-crane
2.95 implement-tool
2.82 brother-monk
1.68 crane-implement
1.66 brother-lad
1.16 car-journey
1.1 monk-oracle
0.89 food-rooster
0.87 coast-hill

0.84 forest-graveyard
0.55 monk-slave
0.42 lad-wizard
0.42 coast-forest
0.13 cord-smile
0.11 glass-magician
0.08 rooster-voyage
0.08 noon-string

71

The human similarity results can be replicated: the Miller & Charles experiment is a re-run of Rubenstein & Good-
enough (1965): the correlation coefficient between them is 0.97. A good distributional similarity system can have a
correlation of 0.8 or better with the human data (although there is a danger the reported results are unreasonably high,
because this data has been used in so many experiments).
Another frequently used dataset is the TOEFL (Test of English as a Foreign Language) synonym test. For example:

Stem: levied
Choices: (a) imposed

(b) believed
(c) requested
(d) correlated

Solution: (a) imposed

Non-native English speakers are reported to average around 65% on this test (US college applicants): the best corpus-
based results are 100% (Bullinaria and Levy, 2012) . But note that the authors who got this result suggest the test is
not very reliable — one reason is probably that the data includes some extremely rare words.
Similarity measures can be applied as a type of backoff technique in a range of tasks. For instance, in sentiment
analysis (discussed in lecture 1), an initial bag of words acquired from the training data can be expanded by including
distributionally similar words.

8.5 Distributions and classic lexical semantic relationships

Distributions are a usage representation: they are corpus-dependent, culture-dependent and register-dependent. Syn-
onyms with different registers often don’t have a very high similarity. For example, the similarity between policeman
and cop is 0.23 and the reason for this relatively low number becomes clear if one examines the highest weighted
features:

policeman
0.59::ball n+poss rel
0.48::and c+civilian n
0.42::soldier n+and c
0.41::and c+soldier n
0.38::secret a
0.37::people n+include v
0.37::corrupt a

0.36::uniformed a
0.35::uniform n+poss rel
0.35::civilian n+and c
0.31::iraqi a
0.31::lot n+poss rel
0.31::chechen a
0.30::laugh v
0.29::and c+criminal n

0.28::incompetent a
0.28::pron rel +shoot v
0.28::hat n+poss rel
0.28::terrorist n+and c
0.27::and c+crowd n
0.27::military a
0.27::helmet n+poss rel
0.27::father n+be v

0.26::on p()+duty n
0.25::salary n+poss rel
0.25::on p()+horseback n
0.25::armed a
0.24::and c+nurse n
0.24::job n+as p()
0.24::open v+fire n

cop
0.45::crooked a
0.45::corrupt a
0.44::maniac a
0.38::dirty a
0.37::honest a
0.36::uniformed a
0.35::tough a

0.33::pron rel +call v
0.32::funky a
0.32::bad a
0.29::veteran a
0.29::and c+robot n
0.28::and c+criminal n
0.28::bogus a
0.28::talk v+to p()+pron rel

0.27::investigate v+murder n
0.26::on p()+force n
0.25::parody n+of p()
0.25::Mason n+and c
0.25::pron rel +kill v
0.25::racist a
0.24::addicted a
0.23::gritty a

0.23::and c+interference n
0.23::arrive v
0.23::and c+detective n
0.22::look v+way n
0.22::dead a
0.22::pron rel +stab v
0.21::pron rel +evade v

Synonyms and similarity: some further examples:

• Similarity between eggplant/aubergine: 0.11
These are true synonyms but have relatively low cosine similarity. This is partly due to frequency (222 for
eggplant, 56 for aubergine).

• Similarity between policeman/cop: 0.23 (as discussed)

• Similarity between city/town: 0.73

72

In general, true synonymy does not correspond to higher similarity scores than near-synonymy.
Antonyms have high similarity, as indicated by the examples below:

• cold/hot 0.29

• dead/alive 0.24

• large/small 0.68

• colonel/general 0.33

It is possible to automatically distinguish antonyms from (near-)synonyms using corpus-based techniques, but this
requires additional heuristics. For instance, it has been observed that antonyms are frequently coordinated while
synonyms are not:

• a selection of cold and hot drinks

• wanted dead or alive

• lectures, readers and professors are invited to attend

Similarly, it is possible to acquire hyponymy relationships from distributions, but this is much less effective than
looking for explicit taxonomic relationships in Wikipedia text.

8.6 Historical background

Distributional semantics has been discussed since at least the 1950s: the first computational work published was
probably Karen Spärck Jones (1964) Cambridge PhD thesis ‘Synonymy and Semantic Classification’ which used
dictionaries for context. The first experiments on sentential contexts I am aware of were by Harper (1965) (inspired
by the work of the linguist Zellig Harris) which were refined to use a more motivated notion of similarity by Spärck
Jones (1967). Salton’s early work on vector space models in IR was also ongoing from the early 1960s. The early
distributional work not followed up within computational linguistics, and in fact was almost entirely forgotten. This
was partly because of the limitations of computers and available corpora, but also because the 1966 ALPAC report
led to greatly diminished funding for CL and because the dominant Chomskyan approach in linguistics was highly
hostile to any quantitative methodology. Spärck Jones switched to working on Information Retrieval, but the early
classification experiments influenced her approach to IR, in particular the development of tf*idf. By the late 1980s
and early 1990s there were sufficiently large corpora, computer memory and disk space to make simple distributional
semantic techniques practical: much of the research at that point was heavily influenced by the IR techniques. By the
early 2000s, large scale, robust parsing made more complex notions of distributional context practical and there has
been a huge proliferation of CL research in recent years.

73

9 Lecture 9: Discourse

The techniques we have seen in lectures 2–8 relate to the interpretation of words and individual sentences, but utter-
ances are always understood in a particular context. Context-dependent situations include:

1. Referring expressions: pronouns, definite expressions etc.

2. Universe of discourse: every dog barked, doesn’t mean every dog in the world but only every dog in some
explicit or implicit contextual set.

3. Responses to questions, etc: only make sense in a context: Who came to the party? Not Sandy.

4. Implicit relationships between events: Max fell. John pushed him — the second sentence is (usually) understood
as providing a causal explanation.

In the first part of this lecture, I give a brief overview of rhetorical relations which can be seen as structuring text
at a level above the sentence. I’ll then go on to talk about one particular case of context-dependent interpretation —
anaphor resolution.

9.1 Rhetorical relations and coherence

Consider the following discourse:

(28) Max fell. John pushed him.

This discourse can be interpreted in at least two ways:

(29) Max fell because John pushed him.

(30) Max fell and then John pushed him.

This is yet another form of ambiguity: there are two different interpretations for (28) but there is no syntactic or
semantic ambiguity in the interpretation of the two individual sentences in it. There seems to be an implicit relationship
between the two sentences in (28): a discourse relation or rhetorical relation. (I will use the terms interchangeably
here, though different theories use different terminology, and rhetorical relation tends to refer to a more surfacy concept
than discourse relation.) In (29) the link between the second and first part of the sentence is explicitly an explanation,
while (30) is an explicit narration: because and and then are said to be cue phrases. Theories of discourse/rhetorical
relations try to reify this intuition using link types such as Explanation and Narration.

9.2 Coherence

Discourses have to have connectivity to be coherent:

(31) Kim got into her car. Sandy likes apples.

Both of these sentences make perfect sense in isolation, but taken together they are incoherent. Adding context can
restore coherence:

(32) Kim got into her car. Sandy likes apples, so Kim thought she’d go to the farm shop and see if she could get
some.

The second sentence can be interpreted as an explanation of the first. In many cases, this will also work if the context
is known, even if it isn’t expressed.
Language generation requires a way of implementing coherence. For example, consider a system that reports share
prices. This might generate:

74

In trading yesterday: Dell was up 4.2%, Safeway was down 3.2%, HP was up 3.1%.

This is much less acceptable than a connected discourse:

Computer manufacturers gained in trading yesterday: Dell was up 4.2% and HP was up 3.1%. But retail
stocks suffered: Safeway was down 3.2%.

Here but indicates a Contrast. Not much actual information has been added (assuming we know what sort of company
Dell, HP and Safeway are), but the discourse is easier to follow.
Discourse coherence assumptions can affect interpretation:

John likes Bill. He gave him an expensive Christmas present.

If we interpret this as Explanation, then ‘he’ is most likely Bill. But if it is Justification (i.e., the speaker is providing
evidence to justify the first sentence), then ‘he’ is John.

9.3 Factors influencing discourse interpretation

1. Cue phrases. These are sometimes unambiguous, but not usually. e.g. and is a cue phrase when used in sentential
or VP conjunction.

2. Punctuation (or the way the sentence is said — intonation etc) and text structure. For instance, parenthetical
information cannot be related to a main clause by Narration (it is generally Explanation), but a list is often
interpreted as Narration:

Max fell (John pushed him) and Kim laughed.
Max fell, John pushed him and Kim laughed.

Similarly, enumerated lists can indicate a form of narration.

3. Real world content:

Max fell. John pushed him as he lay on the ground.

4. Tense and aspect.

Max fell. John had pushed him.
Max was falling. John pushed him.

It should be clear that it is potentially very hard to identify rhetorical relations. In fact, recent research that simply uses
cue phrases and punctuation is quite promising. This can be done by hand-coding a series of finite-state patterns, or
by supervised learning.

9.4 Discourse structure and summarization

If we consider a discourse relation as a relationship between two phrases, we get a binary branching tree structure for
the discourse. In many relationships, such as Explanation, one phrase depends on the other: e.g., the phrase being
explained is the main one and the other is subsidiary. In fact we can get rid of the subsidiary phrases and still have
a reasonably coherent discourse. (The main phrase is sometimes called the nucleus and the subsidiary one is the
satellite.) This can be exploited in summarization.
For instance, suppose we remove the satellites in the first three sentences of this subsection:

We get a binary branching tree structure for the discourse. In many relationships one phrase depends on
the other. In fact we can get rid of the subsidiary phrases and still have a reasonably coherent discourse.

Other relationships, such as Narration, give equal weight to both elements, so don’t give any clues for summarization.
Rather than trying to find rhetorical relations for arbitrary text, genre-specific cues can be exploited, for instance for
scientific texts. This allows more detailed summaries to be constructed.

75

9.5 Referring expressions

I’ll now move on to talking about another form of discourse structure, specifically the link between referring expres-
sions. The following example will be used to illustrate referring expressions and anaphora resolution:

Niall Ferguson is prolific, well-paid and a snappy dresser. Stephen Moss hated him — at least until he
spent an hour being charmed in the historian’s Oxford study. (quote taken from the Guardian)

Some terminology:

referent a real world entity that some piece of text (or speech) refers to. e.g., the two people who are mentioned in
this quote.

referring expressions bits of language used to perform reference by a speaker. In, the paragraph above, Niall Fergu-
son, him and the historian are all being used to refer to the same person (they corefer).

antecedent the text initially evoking a referent. Niall Ferguson is the antecedent of him and the historian

anaphora the phenomenon of referring to an antecedent: him and the historian are anaphoric because they refer to a
previously introduced entity.

What about a snappy dresser? Traditionally, this would be described as predicative: that is, it is a property of some
entity (similar to adjectival behaviour) rather than being a referring expression itself.
Generally, entities are introduced in a discourse (technically, evoked) by indefinite noun phrases or proper names.
Demonstratives (e.g., this) and pronouns are generally anaphoric. Definite noun phrases are often anaphoric (as above),
but often used to bring a mutually known and uniquely identifiable entity into the current discourse. e.g., the president
of the US.
Sometimes, pronouns appear before their referents are introduced by a proper name or definite description: this is
cataphora. E.g., at the start of a discourse:

Although she couldn’t see any dogs, Kim was sure she’d heard barking.

both cases of she refer to Kim - the first is a cataphor.

9.6 Pronoun agreement

Pronouns generally have to agree in number and gender with their antecedents. In cases where there’s a choice of
pronoun, such as he/she or it for an animal (or a baby, in some dialects), then the choice has to be consistent.

(33) A little girl is at the door — see what she wants, please?

(34) My dog has hurt his foot — he is in a lot of pain.

(35) * My dog has hurt his foot — it is in a lot of pain.

Complications include the gender neutral they (some dialects), use of they with everybody, group nouns, conjunctions
and discontinuous sets:

(36) Somebody’s at the door — see what they want, will you?

(37) I don’t know who the new teacher will be, but I’m sure they’ll make changes to the course.

(38) Everybody’s coming to the party, aren’t they?

(39) The team played really well, but now they are all very tired.

(40) Kim and Sandy are asleep: they are very tired.

(41) Kim is snoring and Sandy can’t keep her eyes open: they are both exhausted.

76

9.7 Reflexives

(42) Johni cut himselfi shaving. (himself = John, subscript notation used to indicate this)

(43) # Johni cut himj shaving. (i ̸= j — a very odd sentence)

The informal and not fully adequate generalisation is that reflexive pronouns must be co-referential with a preced-
ing argument of the same verb (i.e., something it subcategorises for), while non-reflexive pronouns cannot be. In
linguistics, the study of inter-sentential anaphora is known as binding theory:

9.8 Pleonastic pronouns

Pleonastic pronouns are semantically empty, and don’t refer:

(44) It is snowing

(45) It is not easy to think of good examples.

(46) It is obvious that Kim snores.

(47) It bothers Sandy that Kim snores.

Note also:

(48) They are digging up the street again

This is an (informal) use of they which, though probably not technically pleonastic, doesn’t apparently refer in the
standard way (they = ‘the authorities’??).

9.9 Salience

There are a number of effects related to the structure of the discourse which cause particular pronoun antecedents to
be preferred, after all the hard constraints discussed above are taken into consideration.

Recency More recent antecedents are preferred. Only relatively recently referred to entities are accessible.

(49) Kim has a big car. Sandy has a small one. Lee likes to drive it.

it preferentially refers to Sandy’s car, rather than Kim’s.

Grammatical role Subjects > objects > everything else:

(50) Fred went to the Grafton Centre with Bill. He bought a CD.

he is more likely to be interpreted as Fred than as Bill.

Repeated mention Entities that have been mentioned more frequently are preferred:

(51) Fred was getting bored. He decided to go shopping. Bill went to the Grafton Centre with Fred. He
bought a CD.

He=Fred (maybe) despite the general preference for subjects.

Parallelism Entities which share the same role as the pronoun in the same sort of sentence are preferred:

(52) Bill went with Fred to the Grafton Centre. Kim went with him to Lion Yard.

Him=Fred, because the parallel interpretation is preferred.

Coherence effects The pronoun resolution may depend on the rhetorical/discourse relation that is inferred.

(53) Bill likes Fred. He has a great sense of humour.

He = Fred preferentially, possibly because the second sentence is interpreted as an explanation of the first, and
having a sense of humour is seen as a reason to like someone.

77

9.10 Lexical semantics and world knowledge effects

The made-up examples above were chosen so that the meaning of the utterance did not determine the way the pronoun
was resolved. In real examples, world knowledge may override salience effects. For instance (from Radio 5):

(54) Andrew Strauss again blamed the batting after England lost to Australia last night. They now lead the series
three-nil.

Here they has to refer to Australia, despite the general preference for subjects as antecedents. The analysis required
to work this out is actually non-trivial: you might like to try writing down some plausible meaning postulates which
would block the inference that they refers to England. (Note also the plural pronoun with singular antecedent, which
is normal for sports teams, in British English at least.)
Note, however, that violation of salience effects can easily lead to an odd discourse:

(55) The England football team won last night. Scotland lost. ? They have qualified for the World Cup with a
100% record.

Systems which output natural language discourses, such as summarization systems, have to keep track of anaphora to
avoid such problems.

9.11 Algorithms for resolving anaphora

NLP researchers are interested in all types of coreference, but most work has gone into the problem of finding an-
tecedents for pronouns. As well as discourse understanding, this is often important in MT. For instance, English it
usually has to be resolved to produce a high-quality translation into German because German has grammatical gender
(although if all the candidate antecedents have the same gender, we don’t need to do any further resolution). I will
outline an approach to anaphora resolution using a statistical classifier, but there are many other approaches.
We can formulate pronoun resolution as a classification problem, which can be implemented using one of the standard
machine learning approaches to supervised classification (examples of approaches include Naive Bayes, perceptron,
k-nearest neighbour), assuming that we have a suitable set of training data. For each pairing of a (non-pleonastic)
pronoun and a candidate antecedent, the classifier has to make a binary decision as to whether the candidate is an
actual antecedent, based on some features associated with the pairing. For simplicity, we can assume that the candidate
antecedents for a pronoun are all the noun phrases within a window of the surrounding text consisting of the current
sentence and the preceding 5 sentences (excluding pleonastic pronouns). For example:

Niall Ferguson is prolific, well-paid and a snappy dresser. Stephen Moss hated him — at least until he
spent an hour being charmed in the historian’s Oxford study.

Pronoun he, candidate antecedents: Niall Ferguson, a snappy dresser, Stephen Moss, him, an hour, the
historian, the historian’s Oxford study.

Notice that this simple approach leads to a snappy dresser being included as a candidate antecedent and that a choice
had to be made as to how to treat the possessive. I’ve included the possibility of cataphors, although these are suffi-
ciently rare that they are often excluded.
For each such pairing, we build a feature vector35 using features corresponding to some of the factors discussed in the
previous sections. For instance (using t/f rather than 1/0 for binary features for readability):

Cataphoric Binary: t if the pronoun occurs before the candidate antecedent.

Number agreement Binary: t if the pronoun agrees in number with the candidate antecedent.

Gender agreement Binary: t if the pronoun agrees in gender with the candidate antecedent.

Same verb Binary: t if the pronoun and the candidate antecedent are arguments of the same verb (for binding theory).
35The term ‘instance’ is sometimes used in AI, but I prefer ‘feature vector’, because we’re mainly interested in the nature of the features.

78

Sentence distance Discrete: { 0, 1, 2 . . . } The number of sentences between pronoun and candidate.

Grammatical role Discrete: { subject, object, other } The role of the potential antecedent.

Parallel Binary: t if the potential antecedent and the pronoun share the same grammatical role.

Linguistic form Discrete: { proper, definite, indefinite, pronoun } This indicates something about the syntax of the
potential antecedent noun phrase.

Taking some pairings from the example above:

pronoun antecedent cataphoric num gen same distance role parallel form
him Niall Ferguson f t t f 1 subj f prop
him Stephen Moss f t t t 0 subj f prop
him he t t t f 0 subj f pron
he Niall Ferguson f t t f 1 subj t prop
he Stephen Moss f t t f 0 subj t prop
he him f t t f 0 obj f pron

Notice that with this set of features, we cannot model the “repeated mention” effect mentioned in §9.9. It would be
possible to model it with a classifier-based system, but it requires that we keep track of the coreferences that have
been assigned and thus that we maintain a model of the discourse as individual pronouns are resolved. I will return to
the issue of discourse models below. Coherence effects are very complex to model and world knowledge effects are
indefinitely difficult (AI-complete in the limit), so both of these are excluded from this simple feature set. Realistic
systems use many more features and values than shown here and can approximate some partial world knowledge via
classification of named entities, for instance.
To implement the classifier, we require some knowledge of syntactic structure, but not necessarily full parsing. We
could approximately determine noun phrases and grammatical role by means of a series of regular expressions over
POS-tagged data instead of using a full parser. Even if a full syntactic parser is available, it may be necessary to
augment it with special purpose rules to detect pleonastic pronouns.
The training data for this task is produced from a corpus which is marked up by humans with pairings between
pronouns and antecedent phrases. The classifier uses the marked-up pairings as positive examples (class TRUE), and
all other possible pairings between the pronoun and candidate antecendant as negative examples (class FALSE). For
instance, if the pairings above were used as training data, we would have:

class cataphoric num gen same distance role parallel form
TRUE f t t f 1 subj f prop
FALSE f t t t 0 subj f prop
FALSE t t t f 0 subj f pron
FALSE f t t f 1 subj t prop
TRUE f t t f 0 subj t prop
FALSE f t t f 0 obj f pron

Note the pre-lecture exercise which suggests that you participate in an online experiment to collect training data. If
you do this, you will discover a number of complexities that I have ignored in this account.
In very general terms, a supervised classifier uses the training data to determine an appropriate mapping (i.e., hypoth-
esis in the terminology used in the Part 1B AI course) from feature vectors to classes. This mapping is then used when
classifying the test data. To make this more concrete, if we are using a probabilistic approach, we want to choose the
class c out of the set of classes C ({ TRUE, FALSE } here) which is most probable given a feature vector f⃗ :

ĉ = argmax
c∈C

P (c|f⃗)

(See §3.5 for the explanation of argmax and ĉ.) As with the POS tagging problem, for a realistic feature space, we will
be unable to model this directly. The Naive Bayes classifier is based on the assumption that we rewrite this formula

79

using Bayes Theorem and then treat the features as conditionally independent (the independence assumption is the
“naive” part). That is:

P (c|f⃗) = P (f⃗ |c)P (c)

P (f⃗)

As with the models discussed in Lecture 3, we can ignore the denominator because it is constant, hence:

ĉ = argmax
c∈C

P (f⃗ |c)P (c)

Treating the features as independent means taking the product of the probabilities of the individual features in f⃗ for
the class:

ĉ = argmax
c∈C

P (c)

n∏
i=1

P (fi|c)

In practice, the Naive Bayes model is often found to perform well even with a set of features that are clearly not
independent.
There are fundamental limitations on performance caused by treating the problem as classification of individual
pronoun-antecedent pairs rather than as building a discourse model including all the coreferences. Inability to im-
plement ‘repeated mention’ is one such limitation, another is the inability to use information gained from one linkage
in resolving further pronouns. Consider yet another ‘team’ example:

(56) Sturt think they can perform better in Twenty20 cricket. It requires additional skills compared with older
forms of the limited over game.

A classifier which treats each pronoun entirely separately might well end up resolving the it at the start of the second
sentence to Sturt rather than the correct Twenty20 cricket. However, if we already know that they corefers with Sturt,
coreference with it will be dispreferred because number agreement does not match (recall from §9.6 that pronoun
agreement has to be consistent). This type of effect is especially relevant when general coreference resolution is
considered. One approach is to run a simple classifier initially to acquire probabilities of links and to use those results
as the input to a second system which clusters the entities to find an optimal solution. I will not discuss this further
here, however.

9.12 Evaluation of pronoun resolution

At first sight it seems that we could require that every (non-pleonastic) pronoun is linked to an antecedent, and just
measure the accuracy of the links found compared to the test data. One issue which complicates this concerns the
identification of the pronouns (some may be pleonastic, others may refer to concepts which aren’t expressed in the
text as noun phrases) and also identification of the target noun phrases, with embedded noun phrases being a particular
issue. We could treat this as a separate problem and assume we’re given data with the non-pleonastic pronouns and
the candidate antecedents identified, but this isn’t fully realistic.
A further range of problems arise essentially because we are using the identification of some piece of text as an
antecedent for the pronoun as a surrogate for the real problem, which is identification of references to real world
entities. For instance, suppose that, in the example below, our algorithm links him to Andrew and also links he to
Andrew, but the training data has linked him to Andrew and he to him.

Sally met Andrew in town and took him to the new restaurant. He was impressed.

Our algorithm has successfully linked the coreferring expressions, but if we consider the evaluation approach of
comparing the individual links to the test material, it will be penalised. Of course it is trivial to take the transitive
closure of the links, but it is not easy to develop an evaluation metric that correctly allows for this and does not, for
example, unfairly reward algorithms that link all the pronouns together into one cluster. As a consequence of this sort
of issue, it has been difficult to develop agreed metrics for evaluation.

80

9.13 Statistical classification in language processing

Many problems in natural language can be treated as classification problems: besides pronoun resolution, we have seen
sentiment classification and word sense disambiguation, which are straightforward examples of classification. POS-
tagging is also a form of classification, but there we take the tag sequence of highest probability rather than considering
each tag separately. As we have seen above, we actually need to consider relationships between coreferences to model
some discourse effects.
Pronoun resolution has a more complex feature set than the previous examples of classification that we’ve seen and
determination of some of the features requires considerable processing, which is itself error prone. A statistical clas-
sifier is somewhat robust to this, assuming that the training data features have been assigned by the same mechanism
as used in the test system. For example, if the grammatical role assignment is unreliable, the weight assigned to that
feature might be less than if it were perfect.
One serious disadvantage of supervised classification is reliance on training data, which is often expensive and difficult
to obtain and may not generalise across domains. Research on unsupervised methods is therefore popular.
There are no hard and fast rules for choosing which statistical approach to classification to use on a given task. Many
NLP researchers are only interested in classifiers as tools for investigating problems: they may either simply use the
same classifier that previous researchers have tried or experiment with a range of classifiers using a toolkit such as
WEKA.36

Performance considerations may involve speed as well as accuracy: if a lot of training data is available, then a classifier
with faster performance in the training phase may enable one to use more of the available data. The research issues
in developing a classifier-based algorithm for an NLP problem generally center around specification of the problem,
development of the labelling scheme and determination of the feature set to be used.

9.14 Further reading

J&M discuss the most popular approach to rhetorical relations, rhetorical structure theory or RST (section 21.2.1). I
haven’t discussed it in detail here, partly because I find the theory very unclear: attempts to annotate text using RST
approaches tend not to yield good interannotator agreement (see comments on evaluation in lecture 3), although to be
fair, this is a problem with all approaches to rhetorical relations. The discussion of the factors influencing anaphora
resolution and the description of the classifier approach that I’ve given here are partly based on J&M’s account in
Chapter 21: they discuss a log-linear classifier there, but Naive Bayes is described in 20.2.2 and I have followed that
description.

36http://www.cs.waikato.ac.nz/ml/weka/ Ian H. Witten and Eibe Frank (2005) “Data Mining: Practical machine learning tools
and techniques”, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

81

10 Lecture 10: Generation

“Generation from what?!” (attributed to Yorick Wilks)

In the lectures so far, we have concentrated on analysis, but there is also work on generating text. Although Natural
Language Generation (NLG) is a recognised subfield of NLP, there are far fewer researchers working in this area than
on analysis. There are some recognised subproblems within NLG, some of which will be discussed below, but it is not
always easy to break it down into subareas and in some cases, systems which create text are not considered to be NLG
system (e.g., when they are a component of an MT system). The main problem, as the quotation above indicates, is
there is no commonly agreed starting point for NLG. The possible starting points include:

• Logical form or other sentence meaning representation.
This is the inverse of (deep) parsing. Sometimes called realization when part of a bigger system (but realization
is often from a syntax tree).

One special case of this is as a component of an MT system using syntactic transfer or semantic transfer.

• Formally-defined data: databases, knowledge bases, semantic web ontologies, etc.

• Semi-structured data: tables, graphs etc.

• Numerical data: e.g., weather reports.

• User input (plus other data sources) in assistive communication.

Such systems can be contrasted with regeneration systems, which start from text and produce reformulated text. Here
the options include:

• Constructing coherent sentences from partially ordered sets of words: e.g., in statistical MT (although this might
better be considered as a form of realization).

• Paraphrase.

• Summarization (single- or multi- document).

• Article construction from text fragments (e.g., automatic construction of Wikipedia articles),

• Text simplification.

There are also mixed generation and regeneration systems.

10.1 Tasks in generation

This categorization is broadly taken from Dale and Mellish (1998):

Content determination deciding what information to convey. This often involves selecting information from a body
of possible pieces of information. e.g., weather reports. There is often a mass of information, not all of which is
relevant. The content may vary according to the type of user (e.g., expert/non-expert). This step often involves
domain experts: i.e., people who know how to interpret the raw data.

Discourse structuring the broad structure of the text or dialogue (Dale and Mellish refer to document structuring).
For instance, scientific articles may have an abstract, introduction, methods, results, comparison, conclusion:
rearranging the text makes it incoherent. In a dialogue system, there may be multiple messages to convey to the
user, and the order may be determined by factors such as urgency.

Aggregation deciding how information may be split into sentence-sized chunks: i.e., finer-grained than document
structuring.

Referring expression generation deciding when to use pronouns, how many modifiers to include and so on.

82

Lexical choice deciding which lexical items to use to convey a given concept. This may be straightforward for many
applications — in a limited-domain system, there will be a preferred knowledge base to lexical item mapping,
for instance, but it may be useful to vary this.

Surface realization mapping from a meaning representation for an individual sentence (or a detailed syntactic repre-
sentation) to a string (or speech output). This is generally taken to include morphological generation.

Fluency ranking this is not included by Dale and Mellish but is very important in modern approaches. A large gram-
mar will generate many strings for a given meaning representation. In fact, in most approaches, the grammar
will overgenerate and produce a mixture of grammatical and ungrammatical strings. A fluency ranking compo-
nent, which at its simplest is based on n-grams (compare the discussion of prediction in lecture 2), is used to
rank such outputs. In the extreme case, no grammar is used, and the fluency ranking is performed on a partially
ordered set of words (for instance in SMT).

When Dale and Mellish produced this classification, there was very little statistical work within NLG (work on SMT
had started but wasn’t very successful at that point) and NLG was essentially about limited domains. In recent years,
there have been statistical approaches to all these subtasks. Most NLG systems are still limited domain however,
although regeneration systems are usually not so restricted.
Many of the approaches we have described in the previous lectures can be adapted to be useful in generation. Deep
grammars may be bidirectional, and therefore usable for surface realization as well as for parsing. Distributions are
relevant for lexical choice: e.g., in deciding whether one word is substitutable for another. However, many practical
NLG systems are based on extensive use of templates (i.e., fixed text with slots which can be filled in) and this is
satisfactory for many tasks, although it tends to lead to rather stilted output.

10.2 An extended example: cricket reports

To illustrate some of these concepts further, I will use an example of constructing a textual report of a cricket match.
This is partially based on Kelly’s (2008) Computer Laboratory MPhil dissertation.37

The input Cricket produces quite rich summaries of the progress of a game, in the form of scorecards. The example
below is part of a scorecard from a one day international match.

Result India won by 63 runs
India innings (50 overs maximum) R M B 4s 6s SR

SC Ganguly run out (Silva/Sangakarra) 9 37 19 2 0 47.36
V Sehwag run out (Fernando) 39 61 40 6 0 97.50
D Mongia b Samaraweera 48 91 63 6 0 76.19
SR Tendulkar c Chandana b Vaas 113 141 102 12 1 110.78
. . .
Extras (lb 6, w 12, nb 7) 25
Total (all out; 50 overs; 223 mins) 304

The output Here is part of actual human-written report (from Wisden) roughly corresponding to some of the data
shown:

The highlight of a meaningless match was a sublime innings from Tendulkar, . . . he drove with elan to
make 113 off just 102 balls with 12 fours and a six.

This requires additional knowledge compared to the scorecard: the previous results of the series which made the
result here meaningless and (perhaps) knowledge of Tendulkar’s play. Without such information, a possible automatic
summary would be:

37Colin Kelly, Ann Copestake and Nikiforos Karamanis. Investigating Content Selection for Language Generation using Machine Learning. In:
Proceedings of the 12th European Workshop on Natural Language Generation (ENLG 2009), pages 130-137. Athens, Greece, 2009.

83

India beat Sri Lanka by 63 runs. Tendulkar made 113 off 102 balls with 12 fours and a six. . . .

We will go through the stages required to achieve this.

Representing the data There are various aspects of this to consider:

• Granularity: we need to be able to consider individual (minimal?) information chunks (sometimes called ‘fac-
toids’).

• Abstraction: generalize over instances.

• Faithfulness to source versus closeness to natural language?

• Inferences over data (e.g., amalgamation of scores)?

• Formalism: this might depend on the chosen methodology for realization.

A simple approach is to use a combination of predicates and constants to express the factoids, though note we need to
be careful with abstraction levels:

name(team1/player4, Tendulkar)
balls-faced(team1/player4, 102) ...

Content selection There are thousands of factoids in each scorecard: we need to select the most important. For
instance, the overall match result, good scores by a batsman. In this case, it is clear that Tendulkar’s performance was
the highlight:

name(team1, India)
total(team1, 304)
name(team2, Sri Lanka)
result(win, team1, 63)
name(team1/player4, Tendulkar)
runs(team1/player4, 113)
balls-faced(team1/player4, 102)
fours(team1/player4, 12)
sixes(team1/player4, 1)

We will discuss machine learning approaches to this step below.

Discourse structure and (first stage) aggregation This requires that we distribute data into sections and decide on
overall ordering:

Title: name(team1, India), name(team2, Sri Lanka), result(win,team1,63)
First sentence: name(team1/player4, Tendulkar), runs(team1/player4, 113), fours(team1/player4, 12),
sixes(team1/player4, 1), balls-faced(team1/player4, 102)

Sports reports often state the highlights and then describe key events in chronological order.

Predicate choice (lexical selection) If we were using a deep grammar for realization, we would need to construct
an input representation that corresponded to that used by the grammar.
Mapping rules from the initial scorecard predicates:

result(win,t1,n) 7→ beat v(e,t1,t2), by p(e,r), run n(r), card(r,n)

name(t,C) 7→ named(t,C)

84

This gives:

name(team1, India), name(team2, Sri Lanka), result(win,team1,63) 7→
named(t1,‘India’), named(t2, ‘Sri Lanka’), beat v(e,t1,t2), by p(e,r), run n(r), card(r,‘63’)

Realistic systems would have multiple mapping rules. This process may require refinement of aggregation.

Generating referring expressions

named(t1p4, ‘Tendulkar’), made v(e,t1p4,r), card(r,‘113’), run(r), off p(e,b), ball(b), card(b,‘102’), with (e,f),
card(f,‘12’), four n(f), with (e,s), card(s,‘1’), six n(s)

corresponds to:

Tendulkar made 113 runs off 102 balls with 12 fours with 1 six.

which is not grammatical. So convert:

with (e,f), card(f,‘12’), four n(f), with (e,s), card(s,‘1’), six n(s)

into:

with (e,c), and(c,f,s), card(f,‘12’), four n(f), card(s,‘1’), six n(s)

Also: ‘113 runs’ to ‘113’ because, in this context, it is obvious that 113 would refer to runs.

Realization and fluency ranking Produce grammatical strings in ranked order:

Tendulkar made 113 off 102 balls with 12 fours and one six.
Tendulkar made 113 with 12 fours and one six off 102 balls.
. . .
113 off 102 balls was made by Tendulkar with 12 fours and one six.

10.3 Learning from existing text

To a certain extent, it is possible to learn to generate such reports from existing pairings of data and text: here from
pairings of scorecards and cricket reports, which can conveniently be downloaded. In order to do this, the initial step
is to annotate the text of the reports with appropriate scorecard entities:

The highlight of a meaningless match was a sublime innings from Tendulkar (team1 player4), . . . and
this time he drove with elan to make 113 (team1 player4 R) off just 102 (team1 player4 B) balls with 12
(team1 player4 4s) fours and a (team1 player4 6s) six.

• Either: annotate training set by hand (boring!)

• Or: write rules to create training set automatically, using numbers and proper names as links.

Content selection can now be treated as a classification problem: all possible factoids are derived from the data source
and each is classified as in or out, based on training data. The factoids can be categorized into classes and grouped. One
problem that Kelly found was that the straightforward technique returns ‘meaningless’ factoids, e.g. player names with
no additional information about their performance. This can be avoided, but there’s a danger of the approach becoming
task-specific.
Discourse structuring then involves generalising over reports to see where particular information types are presented.
Fluency ranking and predicate choice could straightforwardly use the collected texts. Kelly didn’t do these steps but
they have been done in other contexts (e.g., Wikipedia article generation).

85

10.4 Referring expressions

One subtopic in NLG which has been extensively investigated is generation of referring expressions: given some
information about an entity, how do we choose to refer to it? This has several aspects: we have to decide whether to
use ellipsis or coordination (as in the cricket example above) and which grammatical category of expression to use:
pronouns, proper names or definite expressions for instance. If a pronoun is used it must be correctly resolved by the
hearer: there are some bidirectional approaches to anaphora but an alternative is to generate multiple options and test
them using a standard anaphora resolution algorithm as discussed in the previous lecture. Finally, if we choose to use
a full noun phrase we need to consider attribute selection: that is we need to include enough modifiers to distinguish
the expression from possible distractors in the discourse context: e.g., the dog, the big dog, the big dog in the basket.
This last aspect has received the most attention and will be described in more detail here.
Emiel Krahmer, Sebastiaan van Erg and André Verleg (2003) ‘Graph-based generation of referring expressions’ de-
scribe a meta-algorithm for generating referring expressions: a way of thinking about and/or implementing a variety
of algorithms for generating referring expressions which had been discussed in the literature. In their approach, a
situation is described by predicates in a knowledge base (KB): these can be thought of as arcs on a graph, with nodes
corresponding to entities. An example from their paper is given below.

86

A description (e.g., the dog, the small brown dog) is then a graph with unlabelled nodes: it matches the KB graph if it
can be ‘placed over’ it (formally, this is subgraph isomorphism). A distinguishing graph is one that refers to only one
entity (i.e., it can only be placed over the KB graph in one way). If we have a description that can refer to entities other
than the one we want, the other entities are referred to as distractors. In general, there will be multiple distinguishing
graphs: we’re looking for the one with the lowest cost — what distinguishes algorithms is essentially their definition
of cost.
The algorithm starts from the node which we wish to describe and expands the graph by adding adjacent edges (so
we always have a connected subgraph). The cost function is given by a positive number associated with an edge. We
want the cheapest graph which has no distractors: we explore the search space so we never consider graphs which are
more expensive than the best one we have already. If we put an upper bound K on the number of edges in a distractor,
the complexity is nK (i.e., technically it’s polynomial, since K is a constant, and probably it’s going to be less than
5). Various algorithms then correspond to the use of different weights.
The full brevity algorithm is described in Dale (1992): in terms of the meta-algorithm, it’s equivalent to giving each
arc a weight of 1. It is guaranteed to produce the shortest possible expression (in terms of logical form rather than the
string). Dale (1992) also describes a greedy heuristic, which can be emulated by assuming that the edges are ordered
by discriminating power. This gives a smaller search space.
However, subsequent experiments suggest that these algorithms may not give similar results to humans. One issue is
that verbosity isn’t always a bad thing: we don’t want the user to have to make complex inferences to determine a
referent, and sometimes slightly longer phrases might be useful to reinforce a salient point. Occasionally, they even
just sound better. In dialogue contexts it may be advisable to be verbose because it sounds more polite or just because
it improves the user’s chance of understanding a speech synthesizer. So later work on referring expressions has relaxed
the requirement to minimize noun phrase modifiers.
There are also difficulties associated with the idea that the algorithm is run using KB predicates without knowledge
of syntax of the natural language expressions. For example, consider the alternative terms, earlier and before. In a
domain about diaries and meetings, these lexemes might be considered to map to the same KB predicate. However,
they differ in their syntax:

The meeting earlier than my lunchtime appointment is cancelled.
The meeting before my lunchtime appointment is cancelled.
The earlier meeting is cancelled.
* The before meeting is cancelled.

This matters, because when generating expressions where two entities are required, we need to be able to generate
good referring expressions for both entities. Hence the abstraction of considering referring expressions in terms of
KB predicates is not entirely satisfactory. Furthermore, referring expression generation is also needed in regeneration
contexts without a limited domain and hence where there is no KB. For instance, after simplifying a text by replacing
relative clauses by new sentences, it is often necessary to reformulate the referring expressions in the original text.
Taken together, these issues imply that corpus-based approaches to referring expression generation may be preferable.

10.5 Further reading

Unfortunately the second edition of J&M has almost nothing about NLG. There is a chapter in the first edition, but it is
now rather dated. Reiter and Dale (2000) Building Natural Language Generation Systems is a textbook that discusses
the general concepts, but is also now somewhat dated.
Blogging Birds (http://redkite.abdn.ac.uk/) is a great example of a system that generates text based on
data: see http://aclweb.org/anthology/P/P13/P13-4029.pdf for a short description.

87

11 Lecture 11: Computational psycholinguistics

No notes: copies of slides will be made available after the lecture.

12 Lecture 12: Applications

No notes: copies of slides will be made available after the lecture.

A glossary/index of some of the terms used in the lectures

This is primarily intended to cover concepts which are mentioned in more than one lecture. The lecture where the
term is explained in most detail is generally indicated. In some cases, I have just given a pointer to the section in the
lectures where the term is defined. Note that IGE stands for The Internet Grammar of English
(http://www.ucl.ac.uk/internet-grammar/home.htm). There are a few cases where this uses a term
in a slightly different way from these course notes: I have tried to indicate these.

active chart See §4.9.

adjective See IGE or notes for pre-lecture exercises in lecture 3.

adjunct See argument and also IGE.

adverb See IGE or notes for pre-lecture exercises in lecture 3.

affix A morpheme which can only occur in conjunction with other morphemes (lecture 2).

AI-complete A half-joking term, applied to problems that would require a solution to the problem of representing the
world and acquiring world knowledge (lecture 1).

agreement The requirement for two phrases to have compatible values for grammatical features such as number and
gender. For instance, in English, dogs bark is grammatical but dog bark and dogs barks are not. See IGE.
(lecture 5)

ambiguity The same string (or sequence of sounds) meaning different things. Contrasted with vagueness.

anaphora The phenomenon of referring to something that was mentioned previously in a text. An anaphor is an
expression which does this, such as a pronoun (see §9.5).

antonymy Opposite meaning: such as clean and dirty (§7.2).

argument In syntax, the phrases which are lexically required to be present by a particular word (prototypically a
verb). This is as opposed to adjuncts, which modify a word or phrase but are not required. For instance, in:

Kim saw Sandy on Tuesday

Sandy is an argument but on Tuesday is an adjunct. Arguments are specified by the subcategorization of a verb
etc. Also see the IGE. (lecture 5)

aspect A term used to cover distinctions such as whether a verb suggests an event has been completed or not (as
opposed to tense, which refers to the time of an event). For instance, she was writing a book vs she wrote a
book.

attribute-value matrix A way of drawing feature structures: see §5.1.

AVM Attribute-value matrix.

88

backoff Usually used to refer to techniques for dealing with data sparseness in probabilistic systems: using a more
general classification rather than a more specific one. For instance, using unigram probabilities instead of
bigrams; using word classes instead of individual words (lecture 3).

bag of words Unordered collection of words in some text.

baseline In evaluation, the performance produced by a simple system against which the experimental technique is
compared (§3.6).

bidirectional Usable for both analysis and generation (lecture 2).

case Distinctions between nominals indicating their syntactic role in a sentence. In English, some pronouns show a
distinction: e.g., she is used for subjects, while her is used for objects. e.g., she likes her vs *her likes she.
Languages such as German and Latin mark case much more extensively.

ceiling In evaluation, the performance produced by a ‘perfect’ system (such as human annotation) against which the
experimental technique is compared (§3.6).

CFG context-free grammar.

chart parsing See §4.5.

Chomsky Noam Chomsky, professor at MIT. His work underlies most modern approaches to syntax in linguistics.
Not so hot on probability theory.

classifier A system which assigns classes to items, usually using a machine learning approach.

closed class Refers to parts of speech, such as conjunction, for which all the members could potentially be enumerated
(lecture 3).

coherence See §9.2

collocation See §7.7

complement For the purposes of this course, an argument other than the subject.

compositionality The idea that the meaning of a phrase is a function of the meaning of its parts. compositional
semantics is the study of how meaning can be built up by semantic rules which mirror syntactic structure
(lecture 6).

constituent A sequence of words which is considered as a unit in a particular grammar (lecture 4).

constraint-based grammar A formalism which describes a language using a set of independently stated constraints,
without imposing any conditions on processing or processing order (lecture 5).

context The situation in which an utterance occurs: includes prior utterances, the physical environment, background
knowledge of the speaker and hearer(s), etc etc. Nothing to do with context-free grammar.

corpus A body of text used in experiments (plural corpora). See §3.1.

cue phrases Phrases which indicates particular rhetorical relations.

denominal Something derived from a noun: e.g., the verb tango is a denominal verb.

dependency structure A syntactic or semantic representation that links words via relations See §6.4

derivational morphology See §2.2

determiner See IGE or notes for pre-lecture exercises in lecture 3.

deverbal Something derived from a verb: e.g., the adjective surprised.

direct object See IGE. Contrast indirect object.

89

distributional semantics Representing word meaning by context of use (lecture 8).

discourse In NLP, a piece of connected text.

discourse relations See rhetorical relations.

domain Not a precise term, but I use it to mean some restricted set of knowledge appropriate for an application.

error analysis In evaluation, working out what sort of errors are found for a given approach (§3.6).

expletive pronoun Another term for pleonastic pronoun: see §9.8.

feature Either: a labelled arc in a feature structure
Or: a characteristic property used in machine learning.

feature structure See Lecture 5.

FS Feature structure.

FSA Finite state automaton

FST Finite state transducer

full-form lexicon A lexicon where all morphological variants are explicitly listed (lecture 2).

generation The process of constructing text (or speech) from some input representation (lecture 10).

generative grammar The family of approaches to linguistics where a natural language is treated as governed by rules
which can produce all and only the well-formed utterances. Lecture 4.

genre Type of text: e.g., newspaper, novel, textbook, lecture notes, scientific paper. Note the difference to domain
(which is about the type of knowledge): it’s possible to have texts in different genre discussing the same domain
(e.g., discussion of human genome in newspaper vs textbook vs paper).

gloss An explanation/translation of an obscure/foreign word or phrase.

grammar Formally, in the generative tradition, the set of rules and the lexicon. Lecture 4.

head In syntax, the most important element of a phrase.

hearer Anyone on the receiving end of an utterance (spoken, written or signed). §1.3.

Hidden Markov Model See §3.5

HMM Hidden Markov Model

homonymy Instances of polysemy where the two senses are unrelated (§7.5).

hyponymy An ‘IS-A’ relationship (§7.1) More general terms are hypernyms, more specific hyponyms.

indirect object The beneficiary in verb phrases like give a present to Sandy or give Sandy a present. In this case the
indirect object is Sandy and the direct object is a present.

interannotator agreement The degree of agreement between the decisions of two or more humans with respect to
some categorisation (§3.6).

language model A term generally used in speech recognition, for a statistical model of a natural language (lecture 3).

lemmatization Finding the stem and affixes for words (lecture 2).

lexical ambiguity Ambiguity caused because of multiple senses for a word.

lexicon The part of an NLP system that contains information about individual words (lecture 1).

90

linking Relating syntax and semantics in lexical entries (§6.3).

local ambiguity Ambiguity that arises during analysis etc, but which will be resolved when the utterance is com-
pletely processed.

logical form The semantic representation constructed for an utterance (lecture 6).

long-distance dependency See §4.12

meaning postulates Inference rules that capture some aspects of the meaning of a word.

meronymy The ‘part-of’ lexical semantic relation (§7.2).

modifier Something that further specifies a particular entity or event: e.g., big house, shout loudly.

morpheme Minimal information carrying units within a word (§2.1).

morphology See §1.2

multiword expression A fixed phrase with a non-compositional meaning (lecture 6).

MT Machine translation.

multiword expression A conventional phrase that has something idiosyncratic about it and therefore might be listed
in a dictionary.

mumble input Any unrecognised input in a spoken dialogue system (lecture 2).

n-gram A sequence of n words (§3.2).

named entity recognition Recognition and categorisation of person names, names of places, dates etc (lecture 4).

NL Natural language.

NLG Natural language generation (lecture 10).

NLID Natural language interface to a database.

nominal In grammar terminology, noun-like (can be used to describe a word or a phrase).

noun See IGE or notes for pre-lecture exercises in lecture 3.

noun phrase (NP) A phrase which has a noun as syntactic head. See IGE.

ontology In NLP and AI, a specification of the entities in a particular domain and (sometimes) the relationships
between them. Often hierarchically structured.

open class Opposite of closed class.

orthographic rules Same as spelling rules (§2.4)

overgenerate Of a grammar, to produce strings which are invalid, e.g., because they are not grammatical according
to human judgements.

packing See §4.8

passive chart parsing See §4.6

parse tree See §4.4

part of speech The main syntactic categories: noun, verb, adjective, adverb, preposition, conjunction etc.

part of speech tagging Automatic assignment of syntactic categories to the words in a text. The set of categories
used is actually generally more fine-grained than traditional parts of speech.

91

pleonastic Non-referring (esp. of pronouns): see §9.8

polysemy The phenomenon of words having different senses (§7.5).

POS Part of speech (in the context of POS tagging).

pragmatics See §1.2

predicate In logic, something that takes zero or more arguments and returns a truth value. (Used in IGE for the verb
phrase following the subject in a sentence, but I don’t use that terminology.)

prefix An affix that precedes the stem.

probabilistic context free grammars (PCFGs) CFGs with probabilities associated with rules (lecture 4).

realization Construction of a string from a meaning representation for a sentence or a syntax tree (lecture 10).

referring expression See §9.5

relative clause See IGE.
A restrictive relative clause is one which limits the interpretation of a noun to a subset: e.g. the students who
sleep in lectures are obviously overworking refers to a subset of students. Contrast non-restrictive, which is a
form of parenthetical comment: e.g. the students, who sleep in lectures, are obviously overworking means all
(or nearly all) are sleeping.

selectional restrictions Constraints on the semantic classes of arguments to verbs etc (e.g., the subject of think is
restricted to being sentient). The term selectional preference is used for non-absolute restrictions.

semantics See §1.2

sign As used in lecture 5, the bundle of properties representing a word or phrase.

smoothing Redistributing observed probabilities to allow for sparse data, especially to give a non-zero probability
to unseen events (lecture 2).

SMT Statistical machine translation.

sparse data Especially in statistical techniques, data concerning rare events which isn’t adequate to give good proba-
bility estimates (lecture 2).

speaker Someone who makes an utterance (§1.3).

spelling rules §2.4

stem A morpheme which is a central component of a word (contrast affix). §2.1.

stemming Stripping affixes (see §2.3).

strong equivalence Of grammars, accepting/rejecting exactly the same strings and assigning the same bracketings
(contrast weak equivalence). Lecture 4.

structural ambiguity The situation where the same string corresponds to multiple bracketings.

subcategorization The lexical property that tells us how many arguments a verb etc can have.

suffix An affix that follows the stem.

summarization Producing a shorter piece of text (or speech) that captures the essential information in the original.

synonymy Having the same meaning (§7.2).

syntax See §1.2

92

taxonomy Traditionally, the scheme of classification of biological organisms. Extended in NLP to mean a hierarchical
classification of word senses. The term ontology is sometimes used in a rather similar way, but ontologies tend
to be classifications of domain-knowledge, without necessarily having a direct link to words, and may have a
richer structure than a taxonomy.

template In feature structure grammars, see 5.5

tense Past, present, future etc.

training data Data used to train any sort of machine-learning system. Must be separated from test data which is kept
unseen. Manually-constructed systems should also use strictly unseen data for evaluation.

treebank a corpus annotated with trees (lecture 4).

unification See Lecture 5, especially §5.2.

weak equivalence Of grammars, accepting/rejecting exactly the same strings (contrast strong equivalence). Lecture
4.

Wizard of Oz experiment An experiment where data is collected, generally for a dialogue system, by asking users
to interact with a mock-up of a real system, where some or all of the ‘processing’ is actually being done by a
human rather than automatically.

WordNet See §7.3

word-sense disambiguation See §7.6

WSD Word-sense disambiguation

utterance A piece of speech or text (sentence or fragment) generated by a speaker in a particular context.

vagueness Of word meanings, contrasted with ambiguity : see §7.5.

verb See IGE or notes for pre-lecture exercises in lecture 3.

verb phrase (VP) A phrase headed by a verb.

93

Exercises for NLP course, 2014

Notes on exercises

These exercises are organised by lecture. They are divided into two classes: pre-lecture and post-lecture. The pre-
lecture exercises are intended to review the basic concepts that you’ll need to fully understand the lecture. Depending
on your background, you may find these trivial or you may need to read the notes, but in either case they shouldn’t
take more than a few minutes. The first one or two examples generally come with answers, other answers are at the
end (where appropriate).
Answers to the post-lecture exercises are available to supervisors (where appropriate). These are mostly intended as
quick exercises to check understanding of the lecture, though some are more open-ended.

A Lecture 1

A.1 Post-lecture exercises

Without looking at any film reviews beforehand, write down 10 words which you think would be good indications of a
positive review (when taken in isolation) and 10 words which you think would be negative. Then go through a review
of a film and see whether you find there are more of your positive words than the negative ones. Are there words in
the review which you think you should have added to your initial lists?
Have a look at http://www.cl.cam.ac.uk/˜aac10/stuff.html for pointers to sentiment analysis data
used in experiments.

B Lecture 2

B.1 Pre-lecture exercises

1. Split the following words into morphological units, labelling each as stem, suffix or prefix. If there is any
ambiguity, give all possible splits.

(a) dries
answer: dry (stem), -s (suffix)

(b) cartwheel
answer: cart (stem), wheel (stem)

(c) carries

(d) running

(e) uncaring

(f) intruders

(g) bookshelves

(h) reattaches

(i) anticipated

2. List the simple past and past/passive participle forms of the following verbs:

(a) sing
Answer: simple past sang, participle sung

(b) carry

(c) sleep

94

(d) see

Note that the simple past is used by itself (e.g., Kim sang well) while the participle form is used with an auxiliary (e.g.,
Kim had sung well). The passive participle is always the same as the past participle in English: (e.g., Kim began the
lecture early, Kim had begun the lecture early, The lecture was begun early).

B.2 Post-lecture exercises

1. For each of the following surface forms, give a list of the states that the FST given in the lecture notes for
e-insertion passes through, and the corresponding underlying forms:

(a) c a t s

(b) c o r p u s

(c) a s s e s

(d) a s s e s s

(e) a x e s

2. Modify the FSA for dates so that it only accepts valid months. Turn your revised FSA into a FST which maps
between the numerical representation of months and their abbreviations (Jan . . . Dec).

3. Earlier dialects of English used expressions like “four and twenty” instead of “twenty four” (the same pattern
occurs in modern German, French has something similar but mostly omits the ‘and’). This pattern applies for
numbers from 21 to 99, with the exception of 30, 40 etc. Assume a numerical version of this, where ‘4&20’
corresponds to ‘24’, ‘3&30’ to ‘33’ etc. Write a FST that represents this mapping for numbers from 1 to 99
(‘14’, ‘4’ etc should correspond to themselves). What does this illustrate about the FST formalism?

4. The lecture talks about morphological paradigms: suggest appropriate slots for English verbs (you may ignore
be) and give an example of a regular and irregular verb using this paradigm.

5. Look up the rules for the original Porter stemmer and give 5 examples of words where these could give signifi-
cantly different results on a task like sentiment analysis compared to finding the linguistic stem.

6. Outline how you might write a FSA corresponding to dialogue states for booking a table in a known restaurant
(the full FSA is not required).

C Lecture 3

C.1 Pre-lecture

Label each of the words in the following sentences with their part of speech, distinguishing between nouns, proper
nouns, verbs, adjectives, adverbs, determiners, prepositions, pronouns and others. (Traditional classifications often
distinguish between a large number of additional parts of speech, but the finer distinctions won’t be important here.)
There are notes on part of speech distinctions below, if you have problems.

1. The brown fox could jump quickly over the dog, Rover. Answer: The/Det brown/Adj fox/Noun could/Verb(modal)
jump/Verb quickly/Adverb over/Preposition the/Det dog/Noun, Rover/Proper noun.

2. The big cat chased the small dog into the barn.

3. Those barns have red roofs.

4. Dogs often bark loudly.

5. Further discussion seems useless.

95

6. Kim did not like him.

7. Time flies.

Notes on parts of speech. These notes are English-specific and are just intended to help with the lectures and the exer-
cises: see a linguistics textbook for definitions! Some categories have fuzzy boundaries, but none of the complicated
cases will be important for this course.

Noun prototypically, nouns refer to physical objects or substances: e.g., aardvark, chainsaw, rice. But they can also
be abstract (e.g. truth, beauty) or refer to events, states or processes (e.g., decision). If you can say the X and
have a sensible phrase, that’s a good indication that X is a noun.

Pronoun something that can stand in for a noun: e.g., him, his

Proper noun / Proper name a name of a person, place etc: e.g., Elizabeth, Paris

Verb Verbs refer to events, processes or states but since nouns and adjectives can do this as well, the distinction
between the categories is based on distribution, not semantics. For instance, nouns can occur with determiners
like the (e.g., the decision) whereas verbs can’t (e.g., * the decide). In English, verbs are often found with
auxiliaries (be, have or do) indicating tense and aspect, and sometime occur with modals, like can, could etc.
Auxiliaries and modals are themselves generally treated as subclasses of verbs.

Adjective a word that modifies a noun: e.g., big, loud. Most adjectives can also occur after the verb be and a few
other verbs: e.g., the students are unhappy. Numbers are sometimes treated as a type of adjective by linguists
but generally given their own category in traditional grammars. Past participle forms of verbs can also often be
used as adjectives (e.g., worried in the very worried man). Sometimes it’s impossible to tell whether something
is a participle or an adjective (e.g., the man was worried).

Adverb a word that modifies a verb: e.g. quickly, probably.

Determiner these precede nouns e.g., the, every, this. It is not always clear whether a word is a determiner or some
type of adjective.

Preposition e.g., in, at, with

Nouns, proper nouns, verbs, adjectives and adverbs are the open classes: new words can occur in any of these cate-
gories. Determiners, prepositions and pronouns are closed classes (as are auxiliary and modal verbs).

C.2 Post-lecture

1. Try out one or more of the following POS tagging sites:
http://alias-i.com/lingpipe/web/demos.html
http://www.lingsoft.fi/demos.html
http://ucrel.lancs.ac.uk/claws/trial.html
http://l2r.cs.uiuc.edu/˜cogcomp/pos_demo.php
The Lingpipe tagger uses an HMM approach as described in the lecture, the others use different techniques.
Lingsoft give considerably more information than the POS tag: their system uses hand-written rules.

Find two short pieces of naturally occurring English text, one of which you think should be relatively easy to
tag correctly and one which you predict to be difficult. Look at the tagged output and estimate the percentage of
correct tags in each case, concentrating on the open-class words. You might like to get another student to look
at the same output and see if you agree on which tags are correct.

2. (OPEN-ENDED) The notes briefly discuss word prediction for use in an AAC system. Describe how such an
approach might be enhanced by the use of POS tags. What type of issues might you expect to arise in developing
such a system?

3. The notes mention that verbal uses of words that are mainly nouns (e.g., tango) are quite likely to be mistagged.
Investigate this with an online part-of-speech tagger and try and explain your results on the basis of the HMM
model discussed in the lectures.

96

D Lecture 4

D.1 Pre-lecture

Put brackets round the noun phrases and the verb phrases in the following sentences (if there is ambiguity, give two
bracketings):

1. The cat with white fur chased the small dog into the barn.
Answer: ((The cat)np with (white fur)np)np chased (the small dog)np into (the barn)np
The cat with white fur (chased the small dog into the barn)vp

2. The big cat with black fur chased the dog which barked.

3. Three dogs barked at him.

4. Kim saw the birdwatcher with the binoculars.

Note that noun phrases consist of the noun, the determiner (if present) and any modifiers of the noun (adjective,
prepositional phrase, relative clause). This means that noun phrases may be nested. Verb phrases include the verb
and any auxiliaries, plus the object and indirect object etc (in general, the complements of the verb) and any adverbial
modifiers.38 The verb phrase does not include the subject.

D.2 Post-lecture

1. Using the CFG given in the lecture notes (section 4.3):

(a) show the edges generated when parsing they fish in rivers in December with the simple chart parser in 4.7
(b) show the edges generated for this sentence if packing is used (as described in 4.9)
(c) show the edges generated for they fish in rivers if an active chart parser is used (as in 4.10)

2. Modify the CFG given in section 4.3 so that intransitive, transitive and ditransitive verbs are distinguished (add
suitable lexical entries to illustrate this).

3. Modify the CFG to allow for adverbs.

4. Suppose the following rules are added to the grammar:

VP -> VP Adv
S -> S Adv

What would this imply for the analysis of a sentence like: Kim barked loudly? If only the first rule were present,
would the resulting grammar be weakly- or strongly- equivalent to the original? Could there be reasons to want
both rules?

E Lecture 5

E.1 Pre-lecture

The distinction between intransitive, transitive and ditransitive verbs can be illustrated by examples such as:
sleep — intransitive. No object is (generally) possible: * Kim slept the evening.
adore — transitive. An object is obligatory: *Kim adored.
give —- ditransitive. These verbs have an object and an indirect object. Kim gave Sandy an apple (or Kim gave an
apple to Sandy).
List three verbs that are intransitive only, three which are simple transitive only, three which can be intransitive or
transitive and three which are ditransitives.

38A modifier is something that further specifies a particular entity or event: e.g., big house, shout loudly.

97

E.2 Post-lecture

1. Give the unification of the following feature structures:

(a)
 CAT

[]
AGR pl

 unified with
 CAT VP

AGR
[]

(b)

MOTHER

 CAT VP
AGR 1

DTR1

 CAT V
AGR 1

DTR2

 CAT NP
AGR

[]

unified with
 DTR1

 CAT V
AGR sg

(c)
 F 1

G 1

 unified with

F
[

J a
]

G

 J
[]

K b

(d)
 F 1 a

G 1

 unified with
[

G b
]

(e)
 F 1

G 1

 unified with

F

[
J a

]

G

 J b
K b

(f)
 F

[
G 1

]
H 1

 unified with
 F 1

H 1

(g)

F 1
G 1
H 2
J 2

 unified with
 F 1

J 1

(h)
 F

[
G 1

]
H 1

 unified with
 F 2

H
[

J 2
]

2. Add case to the initial FS grammar in order to prevent sentences such as they can they from parsing.

3. Work though parses of the following strings for the second FS grammar, deciding whether they parse or not:

(a) fish fish

(b) they can fish

(c) it fish

(d) they can

(e) they fish it

4. Modify the second FS grammar to allow for verbs which take an indirect object as well as an object. Also add a
lexical entry for give (just do the variant which takes two noun phrases).

F Lecture 6

F.1 Pre-lecture

A very simple form of semantic representation corresponds to making verbs one-, two- or three- place logical pred-
icates. Proper names are assumed to correspond to constants. The first argument should always correspond to the
subject of the active sentence, the second to the object (if there is one) and the third to the indirect object (i.e., the
beneficiary, if there is one). Give representations for the following examples:

98

1. Kim likes Sandy
Answer: like(Kim, Sandy)

2. Kim sleeps

3. Sandy adores Kim

4. Kim is adored by Sandy (note, this is passive: the by should not be represented)

5. Kim gave Rover to Sandy (the to is not represented)

6. Kim gave Sandy Rover

F.2 Post-lecture

1. Using the sample grammar provided, produce a derivation for the semantics of:

• Kitty sleeps.

• Kitty gives Lynx Rover.

2. Extend the grammar so that Kitty gives Rover to Lynx gets exactly the same semantics as Kitty gives Lynx Rover.
You can assume that to is semantically empty in this use.

3. If you did the exercise associated with the previous lecture to add ditransitive verbs to the grammar, amend your
modified grammar so that it produces semantic representations.

4. Go through the RTE examples given in the lecture notes, and decide what would be required to handle these
inferences correctly.

G Lecture 7

G.1 Pre-lecture

Without looking at a dictionary, write down brief definitions for as many senses as you can think of for the following
words:

1. plant

2. shower

3. bass

If possible, compare your answers with another student’s and with a dictionary.
Using the BNC Simple search (or another suitable corpus search tool: i.e., one that doesn’t weight the results returned
in any way), go through at least 10 sentences that include the verb find and consider whether it could have been
replaced by discover. You might like to distinguish between cases where the example ‘sounds strange’ but where
meaning is preserved from cases where the meaning changes significantly.

G.2 Post-lecture

1. Give hypernyms and (if possible) hyponyms for the nominal senses of the following words:

(a) horse

(b) rice

(c) curtain

99

2. List some possible seeds for Yarowsky’s algorithm that would distinguish between the senses of shower and
bass that you gave in the pre-lecture exercise.

3. Choose three nouns from WordNet with between two and five senses. For each noun, find 10 or more sentences
in the BNC which use that noun and assign a sense to each occurrence. Swap the unannotated data with one
or two other people and ask them to repeat the exercise independently. Calculate the percentage agreement
between you. Discuss each case where you disagreed (if you’ve got a lot of disagreements, just look at a subset
of the cases) and see if you can work out where your assumptions differed. Can you come to an agreement you
all feel happy with on any of these cases? If you’ve done this exercise with three people, how many of these
agreed decisions correspond to the original majority decision?

4. Why is it easier to disambiguate homonyms with Yarowsky’s algorithm than related word senses?

H Lecture 8

H.1 Pre-lecture

Without looking at a dictionary, write down brief definitions for as many senses as you can think of for the following
words:

1. give

2. run

If possible, compare your answers with another student’s and with a dictionary. How does this exercise compare with
the pre-lecture exercise for lecture 7?

H.2 Post-lecture

1. Using the BNC Simple search (or another suitable corpus search tool: i.e., one that doesn’t weight the results
returned in any way), find 10 or more sentential contexts for shower. For each of the different notions of
context described in the lecture, find the features which a distributional model might associate with shower.
You may want to use an online dependency parser: the Stanford dependency format is one of the most popular
approaches (see nlp.stanford.edu/software/stanford-dependencies.shtml, online demo
at http://nlp.stanford.edu:8080/corenlp/). If you use an online parser, note that the output is
unlikely to be perfectly accurate.

2. There are a number of online demonstrations of distributional similarity:

• http://swoogle.umbc.edu/SimService/

• http://www.linguatools.de/disco/wortsurfer.html
This is described in http://www.linguatools.de/disco/disco_en.html. The interface to
the demo seems to be German only, but should be obvious (you can choose ‘Englisch’ searches).

Search for the words that you wrote down definitions for in the pre-lecture exercises for this lecture and lecture
7. Do the similarities make sense? Do they suggest any senses (usages) that you missed? Were any of these also
missing from the dictionaries you looked at?

3. List some possible advantages and disadvantages of using Wikipedia as a corpus for experiments on distribu-
tional semantics compared with:

(a) The BNC
(b) A 2 billion word corpus of American newspaper text
(c) The UKWac corpus (see http://www.sketchengine.co.uk/documentation/wiki/Corpora/

UKWaC)
(d) The Google 5-gram corpus http://googleresearch.blogspot.co.uk/2006/08/all-our-n-gram-are-belong-to-you.

html

100

I Lecture 9

I.1 Pre-lecture

There is an online experiment to collect training data for anaphor resolution at http://anawiki.essex.ac.uk/
phrasedetectives/. Spending a few minutes on this will give you an idea of the issues that arise in anaphora
resolution: there are a series of tasks which are intended to train new participants which take you through progressively
more complex cases. Note that you have to register but that you don’t have to give an email address unless you want
to be eligible for a prize.

I.2 Post-lecture

1. Take a few sentences of real text and work out the values you would obtain for the features discussed in the
lecture. See if you can identify some other easy-to-implement features that might help resolution.

2. Try out the Lingpipe coreference system at http://alias-i.com/lingpipe/web/demos.html

3. The following text is taken from the Degree Confluence Project (note, it was written by a German speaker and
is not fully grammatically correct).

28-Jul-2013 – A trip into the beautiful region Spreewald in the state of Brandenburg gave opportunity
to visit the Confluence 52◦ north – 14◦ east.
By taking the interstate road B87 from southwest you reach the village Biebersdorf about 6 km
after leaving Lübben. In Biebersdorf the in the beginning paved “Groß-Luethener Weg” leads quite
directly northeast to the Confluence. On unpaved paths you can reach about 180m from the CP.
From now on it was walk by foot on a tighter path. The last 78 m must be done by walking through
a tight planted pine forest. At luck the distance between the rows is wide enough to walk nearly
unobstructed to the point. Only a grass snake and many little white butterfly moths were crossing the
way.
After all that I reached the Confluence Point at 12.10pm in a dry heat of about 33◦C. Despite the
blue sky the GPS showed a precision of 5m by use of GPS- and GLONASS-signal. Surely the tight
vegetation was the reason for the dilution of precision.
On the way back a pleasant visit of the city Lübben with its beautiful island “Schlossinsel” was taken
in, instead of a Bratwurst you can have a perfect gherkin (kind of spicy cucumber) there.

Give rhetorical relations between each sentence pair using the set: NARRATION, BACKGROUND, ELABORA-
TION, CONTINUATION, RESULT, EXPLANATION. Examples of each relation are given below:

NARRATION: Klose got up. He entered the game.
ELABORATION: Klose pushed the Serbian midfielder. He knew him from school.
BACKGROUND: Klose entered the game.The pitch was very wet.
EXPLANATION: Klose received a red card. He pushed the Serbian midfielder.
RESULT: Klose pushed the Serbian midfielder. He received a red card.
CONTINUATION: Klose received a red card. Ronaldo received a yellow card.

Compare your annotations with the annotations done by one or more other people. What is the percentage
agreement? Can you find a way to resolve disagreements?

101

J Lecture 10

J.1 Pre-lecture

J.2 Post-lecture exercises

1. Suppose a town is equipped with a sensor system on its major commuter routes which monitors vehicles passing.
A NLG system is to be designed to provide brief reports to motorists on current traffic conditions. Describe the
tasks involved in such a system, using the categories in the lecture notes, giving appropriate examples.

2. Using the graph representation in the lecture notes, draw appropriate graphs for each of the following expressions
and list the entities they match:

(a) the brown dog
(b) the white dog
(c) the dog in the doghouse
(d) the white doghouse containing the small chihuahua
(e) the white doghouse next to the large doghouse
(f) the white doghouse left of the large doghouse

Assuming each edge costs 1 and that it is obligatory to have a noun edge for each entity, give the cheapest
distinguishing graph(s) for d1 and for d3 and corresponding natural language expressions. (NB: the arrows on
the arcs are not very visible in the figure in the notes: the ‘in’ arc goes from d1 to d3 and the ‘contains’ arc goes
from d3 to d1)

K General questions

K.1 Ambiguity

Many jokes depend on ambiguity: for each of the following examples, specify the type of ambiguity involved and give
as detailed an analysis as you can of the different readings.

1. A: Your dog’s chasing a man on a bicycle.
B: Don’t be silly, my dog can’t ride a bicycle.

2. Drunk man: I’m going to buy a drink for everyone in the bar.
Other man: That’s good of you, but don’t you think they’ll argue over it?

3. Haughty lady in a post office: Must I stick the stamp on myself?
Post-office employee: I think you’ll accomplish more, madam, if you stick it on the package.

4. Customer: Will my burger be long?
Waiter: No sir, it will be round and flat.

5. What did the barman say to the ghost?
Sorry sir, we don’t serve spirits here.

L Answers to some of the exercises

L.1 Lecture 1 (post-lecture)

Something like this experiment was tried by Pang et al (2002) to provide a baseline for their machine learning system.
The table below shows the accuracy they obtained on movie reviews by counting the positive and negative terms in the
document. The third set was obtained with the help of preliminary frequency data: note the inclusion of ‘?’ and ‘!’.

102

Terms Accuracy
Human 1 positive: dazzling, brilliant, phenomenal, excellent, fantastic 58%

negative: suck, terrible, awful, unwatchable, hideous
Human 2 positive: gripping, mesmerizing, riveting, spectacular, cool, 64%

awesome, thrilling, badass, excellent, moving, exciting
negative: bad, cliched, sucks, boring, stupid, slow

Human 3 (with stats) positive: love, wonderful, best, great, superb, still, beautiful 69%
negative: bad, worst, stupid, waste, boring, ?, !

L.2 Lecture 2 (pre-lecture)

1. (a) carries
carry (stem) s (suffix)

(b) running
run (stem) ing (suffix)

(c) uncaring
un (prefix) care (stem) ing (suffix)

(d) intruders
intrude (stem) er (suffix) s (suffix)
Note that in- is not a real prefix here

(e) bookshelves
book (stem) shelf (stem) s (suffix)

(f) reattaches
re (prefix) attach (stem) s (suffix)

(g) anticipated
anticipate (stem) ed (suffix)

2. (a) carry
Answer: simple past carried, past participle carried

(b) sleep
Answer: simple past slept, past participle slept

(c) see
Answer: simple past saw, past participle seen

L.3 Lecture 3 (pre-lecture)

1. The/Det big/Adj cat/Noun chased/Verb the/Det small/Adj dog/Noun into/Prep the/Det barn/Noun.

2. Those/Det barns/Noun have/Verb red/Adj roofs/Noun.

3. Dogs/Noun often/Adverb bark/Verb loudly/Adverb.

4. Further/Adj discussion/Noun seems/Verb useless/Adj.

5. Kim/Proper noun did/Verb(aux) not/Adverb(or Other) like/Verb him/Pronoun.

6. Time/Noun flies/Verb.
Time/Verb flies/Noun. (the imperative!)

103

L.4 Lecture 4 (pre-lecture)

1. The big cat with black fur chased the dog which barked.
((The big cat)np with (black fur)np)np chased (the dog which barked)np
The big cat with black fur (chased the dog which barked)vp

2. Three dogs barked at him. (Three dogs)np barked at (him)np Three dogs (barked at him)vp

3. Kim saw the birdwatcher with the binoculars.
Analysis 1 (the birdwatcher has the binoculars) (Kim)np saw ((the birdwatcher)np with (the binoculars)np)np
Kim (saw the birdwatcher with the binoculars)vp
Analysis 2 (the seeing was with the binoculars) (Kim)np saw (the birdwatcher)np with (the binoculars)np
Kim (saw the birdwatcher with the binoculars)vp

L.5 Lecture 5 (pre-lecture)

Some examples of different classes of verb (obviously you have almost certainly come up with different ones!)
sleep, snore, sneeze, cough — intransitive only
adore, comb, rub — simple transitive only
eat, wash, shave, dust — transitive or intransitive
give, hand, lend — ditransitive

L.6 Lecture 6 (pre-lecture)

1. Kim sleeps
sleep(Kim)

2. Sandy adores Kim
adore(Sandy, Kim)

3. Kim is adored by Sandy
adore(Sandy, Kim)

4. Kim gave Rover to Sandy
give(Kim, Rover, Sandy)

5. Kim gave Sandy Rover
give(Kim, Rover, Sandy)

104

