
Theories of Syntax, Semantics and Discourse

Interpretation for Natural Language

Ted Briscoe
Computer Laboratory

University of Cambridge
c©Ted Briscoe 2014 (ejb@cl.cam.ac.uk) GS18

October 28, 2014

Abstract

This handout builds on the Intro to Linguistics material by presenting
formal theories of aspects of language. We mostly focus on the formaliza-
tions of aspects of the subtasks syntactic, semantic and discourse interpre-
tation, rather than computational approximations to solve them, because
it is useful to thoroughly understand the problem you are trying to solve
before you start to solve it. This handout is not meant to replace text-
books – see Intro to Linguistics for readings and references herein. Please
read each section in advance of the session, attempt the exercises, and be
prepared to ask and answer questions on the material covered.

Contents

1 (Context-free) Phrase Structure Grammar 1

1.1 Derivations . 3
1.2 Ambiguity . 4
1.3 Inadequacies of CF PSG . 5
1.4 Unification and Features . 7

2 Compositional Semantics 10

2.1 Predicates & Arguments . 10
2.2 NP Semantics . 12
2.3 Scope Ambiguities . 15
2.4 Intensionality . 16
2.5 Word Meaning . 18
2.6 Theorem Proving . 19

3 Discourse Processing 21

3.1 Abductive Inference . 22

1

3.2 Scripts and Plans . 23
3.3 Shallow, Knowledge-Poor Anaphora Resolution 23

1 (Context-free) Phrase Structure Grammar

A generative grammar is a finite set of rules which define the (infinite) set of
grammatical sentences of some language.
Here are some example rules for English:

a) S → NP VP
b) NP → Det N
c) NP → Nname
d) VP → Vt NP

These rules assign the sentence The people love Sandy the same analysis and
phrase structure tree that was proposed in the Intro. to Linguistics handout,
repeated below and followed by the corresponding labelled bracketing.

S
PPPP

����
NP

Q
Q

�
�

Det

the

N

people

VP
b

b
"

"
Vt

love

NP

Nname

Sandy

S(NP((Det The) (N people)) VP((Vt love) NP(N Sandy)))

Exercises

Write down the rules needed to generate this sentence from ‘top to bottom’.
What’s missing? (easy)
The aim of a specific generative grammar is to provide a set of rules which
generate (or more abstractly license, predict. etc.) all the phrase structure trees
which correspond to grammatical sentences of, say, English. That is, generate
all and only the word sequences which a linguist would consider correct and
complete sentences considered in isolation, along with a description of their
syntactic structure (phrase structure). The rules also incorporate claims about
English constituent structure.
One way to formalise the grammar we have introduced above is to treat it as a
context-free phrase structure grammar (CF PSG) in which each rule conforms
to the following format:

2

Mother → Daughter1 Daughter2 . . . Daughtern

and the syntactic categories in rules are treated as atomic symbols – non-
terminal symbols being clausal and phrasal categories, terminal symbols lexical
categories.
CF rules encode (immediate) dominance and (immediate) precedence relations
between (non-) terminal categories of the grammar. All grammars have a des-
ignated root or start symbol (see e.g. Jurafsky and Martin, ch12) for more
details on CF PSGs). To make the grammar complete, we also need a lexicon
in which we pair words (preterminals) with their lexical categories.
If we do formalise such rules this way, we are claiming that CF PSGs provide
an appropriate (meta)theory of grammars for human languages, and thus that
(all) syntactic rules for any human language can be expressed as CF PSGs.
Grammar 1 (G1) illustrates a simple CF PSG for a small fragment of English.

Grammar 1

Rules Lexicon

a. S --> NP VP. Sam : Nname. plays : V.
b. VP --> V. Kim : Nname. chases : V.
c. VP --> V NP. Felix : Nname. sings : V.
d. VP --> V PP. Tweety : Nname. the : Det.
e. VP --> V NP NP. cat : N. miaows : V.
f. NP --> Nname. bird : N. a : Det.
g. NP --> Det N. park : N. in : P.
h. PP --> P NP. ball : N. with : P.

Exercises

Find 10 sentences this grammar generates. Is the set of grammatical sentences
generated by G1 finite? Are they all grammatical? Can you make any changes
to G1 which would stop some of the ungrammatical sentences being generated?
(easy)
Give a formal definition of a CF grammar (as a quintuple) and the same for
a regular (right/left linear) grammar. State the additional restrictions on the
right hand side of regular grammar rules over CF rules. (Hard, unless you have
done formal language theory, or read some of Jurafsky and Martin (ch12) by
now.)

1.1 Derivations

Given a CF PSG and lexicon, we can determine whether a sentence is or is not
generated by attempting to construct a derivation (tree) for it. To construct a
leftmost derivation, we start with the root symbol of the grammar and always
rewrite (expand) the leftmost non-terminal category in the current sentential

3

form (sequence of terminal and non-terminal categories resulting from each
expansion) according to the rules in the grammar. A leftmost derivation for
Sam chases a bird using the grammar and lexicon above is given below, where
the words (preterminal categories) are given in brackets in the sentential forms:

S => NP VP => Nname (Sam) VP => Nname (Sam) V (chases) NP
=> Nname (Sam) V (chases) Det (a) N (bird)

In a rightmost derivation, we start with the root symbol but always rewrite
the rightmost symbol of the sentential form. The corresponding rightmost
derivation for Sam chases a bird is given below:

S => NP VP => NP V (chases) NP => NP V (chases) Det (a) N (bird)
=> Nname (Sam) V (chases) Det (a) N (bird)

Although the sequence of rule applications is different, the same set of rules ap-
pears in both derivations. Furthermore, the derivations are unique in that there
are no alternative rewrites at any point in either which yield a derivation for the
example. Constructing the derivation tree from a left/right-most derivation is
straightforward – we simply represent successive rewrites by drawing lines from
the mother (rewritten) symbol to the daughter (expanded) symbol(s). Both the
derivations above correspond to the derivation / phrase structure tree below:

S
PPPP

����
NP

Nname

Sam

VP
HHH

���
V

chases

NP
cc##

Det

a

N

bird

CF PSG is a so-called declarative formalism because it does not matter which
order we apply rules in, we will always assign the same phrase structure tree(s)
to any given sentence. Thus the rules encode the facts about grammar inde-
pendently of their method of application in parsing, generation, etc.

1.2 Ambiguity

A sentence is said to be ‘ambiguous’ when it can be assigned two (or more)
distinct semantic interpretations. A distinction is often made between two

4

types of ambiguity, ‘structural’ and ‘lexical’. Broadly speaking, a sentence will
be said to be structurally ambiguous if a syntactic analysis of it results in the
assignment of two (or more) distinct constituent structures to it, where each
distinct structure corresponds to one of the possible interpretations. A sentence
will be said to be lexically ambiguous, on the other hand, if it contains some
ambiguous lexical item but all the distinct interpretations receive the same
constituent structure. (1a) is an example of structural ambiguity and (1b) an
example of lexical ambiguity.

(1) a Sam thinks that milk is horrible
b All linguists draw trees

In (1a) the word that is ambiguous between a determiner reading and a comple-
mentiser reading. (A complementiser is a word that introduces a subordinate
clause, traditionally called a subordinating conjunction.) The most common
complementiser is that, but other examples include whether and if, as in (2).

(2) a Sam wonders whether Felix is in the garden
b They want to know if Felix is in the garden

As a determiner it forms an NP constituent with the noun milk but as a comple-
mentiser it forms a constituent with the clause milk is horrible. The tree below
shows the complementiser analysis where it is all milk that Sam considers to
be horrible.

S
PPPPP

�����
NP

Nname

Sam

VP
PPPP

����
V

thinks

S
aaaa

!!!!
Comp

that

S
aaa

!!!
NP

N

milk

VP
b

bb
"

""
Vaux

is

AP

horrible

Another way of saying a sentence is structurally ambiguous (given a grammar)
is to say that it has two or more left/right-most derivations.
Exercises

Can you construct the phrase structure tree for the other reading? With (1b)
we will end up with the same phrase structure tree but different senses of
the noun trees. Can you construct it and add the rules and words to G1
needed to generate these examples, ensuring that (1a) is assigned two analyses
corresponding to the structural ambiguity? (easy)

5

1.3 Inadequacies of CF PSG

CF PSGs have some strengths as a theory of grammar; for instance, they seem
to account for hierarchical constituency quite well and by using recursion we
can capture the syntactic productivity of human language. There are infinitely
many grammatical sentences of English; consider, for example, the sentence in
(3).

(3) Sam saw the man in the park with the telescope on
the monument.

We can introduce the recursive CF rule below

VP → VP PP

which will assign a phrase structure tree to this example which corresponds to
the reading in which Sam saw the man whilst Sam was in the park using the
telescope standing on the monument.
Exercises

Draw the tree by adding this rule to G1 along with some appropriate lexical
entries. What rule(s) would we need to add if we wanted to capture the reading
in which the telescope is mounted on a monument to be found in the park where
the man is? (medium)
If you have explored G1, you will have realised that it is difficult in some cases to
generate all and only the grammatical sentences. For instance, there is nothing
to stop us generating the examples in (4).

(4) a *Sam chases in the park.
b *Sam sings the cat.
c *Sam chases the cat the bird.

We could introduce different types of verb category (eg. Vintrans, Vtrans,
Vppwith, etc.) and specify each VP rule more carefully, as we did with names
and common nouns, but this would lead to many more rules if we are not careful.
For example, imagine what will happen if we attempt to capture person-number
agreement between subject and verb in our grammar to block examples like (5)

(5) a *The cat chase the bird.
b *The cats chases the bird.
c *I is clever.
d *You am clever.

If we add number and person to the categories in G1, we will end up with the
much larger CF PSG, Grammar 2 (G2).

6

Grammar 2

1. S --> NPsg1 VPsg1
2. S --> NPsg2 VPsg2
3. S --> NPsg3 VPsg3
4. S --> NPpl1 VPpl1
5. S --> NPpl2 VPpl2
6. S --> NPpl3 VPpl3
7. VPsg1 --> Vsg1
...
13. VPsg1 --> Vsg1 NP
...
19. VPsg1 --> Vsg1 PP
...
25. VPsg1 --> Vsg1 NP NP
...
31. NPsg3 --> Nname
32. NPsg3 --> Detsg Nsg
33. NPpl3 --> Detpl Npl
34. PP --> P NPsg1
...
39. PP --> P NPpl3

We appear to be failing to directly capture a simple rule – ‘the N(P) and V(P)
in an S agree in num(ber) and per(son)’.
Exercises

What would happen if we also tried to subcategorise verbs into intransitive,
transitive and ditransitive to avoid generating examples like *I smiled the ball
to him and combined this with the approach to agreement outlined above? How
big would the new grammar be if you did this systematically? (medium)

Thinking back to the Intro. to Linguistics handout and the exercise on English
auxiliary verbs, can you see how to formalise your analysis in CF PSG? How
successful would this be? (hard)

1.4 Unification and Features

CFGs utilise atomic symbols which match if they are identical, unification-based
phrase structure grammars (UB PSGs) utilise complex categories which match
by unification. They provide us with a means to express the person-number
agreement rule of English and many others more elegantly and concisely. As-
sume that syntactic categories are annotated with sets of feature attribute-value
pairs, then we can factor out information about number and person from infor-
mation about which type of category we are dealing with:

7

NP:[num=sg, per=3]
V:[num=pl, per=3]

where the possible values for the attribute num are sg/pl and for per 1/2/3. As
well as being able to specify values for features we will also allow features to
take variable values (represented as capital letters) which can be bound within
a unification-based PS rule. The rules below express per-num agreement:

S → NP:[num=N, per=P] VP:[num=N, per=P]
VP:[num=N, per=P] → V:[num=N, per=P] NP:[]

Mostly, words in the lexicon will have fully specified categories but categories
in rules often contain variable values, so they generalise across subcategories.
Unification can be used as the operation to match categories during the con-
struction of a phrase structure tree; that is, two categories will match if for
any given attribute they do not have distinct values. The resultant category, if
unification succeeds, is the one obtained by taking the union of the attributes,
substituting values for variables and rebinding variables. Some examples are
given below; the first two columns contain the categories to be unified and the
third column contains the result of the unification.

a. | NP:[per=3, num=N] | NP:[per=P, num=pl] | NP:[per=3, num=pl]
b. | NP:[per=2, num=sg] | NP:[per=2, num=N] | NP:[per=2, num=sg]
c. | NP:[per=P, num=N] | NP:[per=3, num=N] | NP:[per=3, num=N]
d. | NP:[per=1, num=sg] | NP:[per=2, num=sg] | FAIL

| | |
e. | N:[] | N:[] | N:[]

| | |
f. | V:[val=intrans, | V:[val=intrans, | V:[val=intrans,

| per=3, num=sg] | per=P, num=N] | per=3, num=sg]
g. | VP:[in=F, out=F] | VP:[in=G, out=H] | VP:[in=I, out=I]
h. | NP:[per=1] | NP:[num=pl] | NP:[per=1, num=pl]

A category consists of a category name (the functor, eg. X:) and a set of
features enclosed in square brackets after the functor. Features are made up
of attributes (eg. per) and values/variables (eg. 1 or P) separated by = and
delimited from each other by commas.
Unification can be defined in terms of subsumption.
If two categories, A and B, unify, this yields a new category, C, defined as the
smallest (most general) category subsumed by A and B, otherwise fail.
Category A subsumes category B (i.e. B is more specific than A) iff (if and
only if):
1) every attribute in A is in B;
2) every attribute=value pair in A is in B;

8

3) every attribute=variable pair in A is either in B or B has a legal value for
this attribute;
4) every attribute sharing a variable value in A, shares a (variable) value in B.
The notation I have used for categories is similar to that used for Prolog terms.
However, Prolog uses fixed-arity term unification in which unifiable categories
must explicitly have the same set of attributes – given this ‘stronger’ definition
of unification case h. above would lead to FAIL because the two argument cat-
egories don’t explicitly contain the attributes num or per with variable values.
The advantage of ‘relaxing’ the definition of unification in this way is that it
is notationally less verbose when categories have lots of attributes. (Jurafsky
and Martin, ch15 give a more detailed introduction to unification of ‘feature
structures’, using a slightly extended notation.)
Grammar 3 (G3) is a small UB PSG generative grammar; see if you can work
out what structural descriptions it assigns to some examples and why it fails
to assign any to sentences which violate per-num agreement or verb val(ence)
constraints (verb subcategorisation).

Grammar 3

S:[] --> NP:[per=P, num=N] VP:[per=P, num=N]
VP:[per=P, num=N] --> V:[per=P, num=N, val=intrans]
VP:[per=P, num=N] --> V:[per=P, num=N, val=trans] NP:[]
VP:[per=P, num=N] --> V:[per=P, num=N, val=ditrans] NP:[] NP:[]
NP:[per=P, num=N, pronom=yes] --> N:[per=P, num=N, pronom=yes]
NP:[per=P, num=N, pronom=no] --> Det:[num=N] N:[per=P, num=N, pronom=no]

Sam N:[per=3, num=sg, pronom=yes]
I N:[per=1, num=sg, pronom=yes]
you N:[per=2, pronom=yes]
she N:[per=3, num=sg, pronom=yes]
we N:[per=1, num=pl, pronom=yes]
they N:[per=3, num=pl, pronom=yes]
cat N:[per=3, num=sg, pronom=no]
cats N:[per=3, num=pl, pronom=no]
sheep N:[per=3, pronom=no]
laughs V:[per=3, num=sg, val=intrans]
laugh V:[per=1, num=sg, val=intrans]
laugh V:[per=2, num=sg, val=intrans]
laugh V:[num=pl, val=intrans]
chases V:[per=3, num=sg, val=trans]
chase V:[per=1, num=sg, val=trans]
chase V:[per=2, num=sg, val=trans]
chase V:[num=pl, val=trans]
gives V:[per=3, num=sg, val=ditrans]
give V:[per=1, num=sg, val=ditrans]
give V:[per=2, num=sg, val=ditrans]

9

give V:[num=pl, val=ditrans]
the Det:[]
a Det:[num=sg]
those Det:[num=pl]

Exercises

Can you define precisely how to do a left/right-most derivation in UB PSG? Is
UB PSG a declarative formalism? (i.e. does it make any difference whether we
choose to do a left- or right- most derivation to the results) (easy)

Try adding the analogues of some of the other rules and/or lexical entries devel-
oped for the CF PSGs, G1 and G2 and the exercises above (e.g. names, PPs)
to the UB PSG, G3. (medium)

How could we add the case=nom/acc distinction to G3 in order to block exam-
ples like *Sam chases we? (easy)

Think again about the analysis of auxiliary verbs – how does UB PSG help
make it simpler and more effective? Can you think of any remaining prob-
lems which can’t be handled elegantly in the UB PSG formalism introduced?
How could we make rules even simpler if we labelled head daughters or had a
convention about how to select the head daughter in a rule? (hard)

2 Compositional Semantics

Pairing syntactic and semantic rules and guiding the application of semantic
rules on the basis of the syntactic analysis of the sentence leads naturally to
an explanation of semantic productivity, because if the syntactic rule system
is recursive and finite, so will the semantic rule system be too. This organi-
sation of grammar incorporates the principle that the meaning of a sentence
(a proposition) will be a productive, rule-governed combination of the meaning
of its constituents. So to get the meaning of a sentence we combine words,
syntactically and semantically to form phrases, phrases to form clauses, and so
on. This is known as the principle of Compositionality. If language is not (at
least mostly) compositional in this way, then we cannot capture its semantic
productivity.

2.1 Predicates & Arguments

In most sentences, some constituents function semantically to pick out partic-
ular individuals or (more abstract) entities and other constituents say things
about these individuals or entities. For example, Kim runs asserts that there
is an individual named Kim who runs; the sentence refers to an individual and
predicates a property of that individual. In Kim kissed Sandy there are two
referring expressions – Kim and Sandy – which pick out two individuals and

10

the sentence predicates a relationship between them (that of kissing at some
time in the past).
Semantically predicates require different numbers of arguments. For example,
predicates which ascribe properties to individuals or entities are usually one-
place predicates requiring one argument. Some examples are given in (6).

(6) a Kim is asleep (asleep1 Kim1)
b Felix is boring (boring1 felix1)
c Fido smells (smell1 fido1)
d Sandy fell over (fall-over1 Sandy1)

Notice that there is no straightforward connection between types of syntactic
constituents and one-place predicates. In (6) we have analysed an adjective, a
verb in progressive form and a verb in present form, and a verb and preposition
as one-place predicates. This decision is based solely on the semantic intuition
that all these words and phrases are attributing properties to individuals or
entities. Intransitive verbs and adjectives nearly always ‘translate’ as one-place
predicates.
There are also two-place predicates of which transitive verbs, such as kiss, are
the most common exemplars, but as with one-place predicates a variety of differ-
ent types of constituent can function as two-place predicates, as (7) illustrates:

(7) a Kim likes Sandy (like1 Kim1 Sandy1)
b Sandy is in front of Kim (in-front-of1 Sandy1

Kim1)
c Sandy is fed up with Kim (fed-up-with1 Sandy1

Kim1)

Exercises

Can you think of three three-place predicates in English?
Write down their correspnoding FOL expressions. (easy)
We can treat predicates and referring expressions as predicates and individual
constants of FOL. So in model-theoretic terms Kim runs will be true just in case
the individual denoted by Kim, say Kim1, is in the set of individuals denoted
by run(s). The simple grammar below incorporates this semantics for sentences
consisting of names and intransitive verbs.

a) S → NP VP : VP′(NP′).
b) NP → Name : Name′.
c) VP → V : (λ x (V′ x)).
Kim : Name : Kim1.
runs : V : run1.

(where colon separates the syntactic and semantic components of a rule and
the orthography, syntax, and semantics of a lexical entry.) Since the semantics

11

of intransitive verbs (and VPs) will always be a function from an entity to a
truth-value (or characteristic function), this will reduce to function-argument
application, or a test for membership of Kim1 in the set of entities that run. We
represent functions in the (implicitly) typed lambda calculus (see Jurafsky and
Martin, ch15), but try to ensure that the semantics of sentences (as opposed
to their subparts) are equivalent to FOL expressions. This is because, we want
to use (run1 Kim1) as a FOL formula to be passed to a theorem prover (but
the model-theoretic interpretation is what provides the justification for this).
A sentence like Sandy kissed Kim requires the addition of two-place predicates
for transitive verbs:

d) VP → V NP : (λ y(λ x (V′ x y)) NP′).
kissed : V : kiss1.
Sandy : Name : Sandy1.

Exercises

Write down the rule for a ditransitive verb (eg. give) (easy)

2.2 NP Semantics

Not all NPs are names; (8) gives some examples of NPs with determiners and
common nouns. Most determiners seem to function semantically like quantifiers
in FOL.

(8) a Every man smiles
b Every man likes some woman
c No man smiles

We will treat the English quantifiers every and some as analogous to the uni-
versal and existential quantifiers of FOL, respectively. The meaning of other
English ‘quantifiers’, such as no, a, the, and so forth, will mostly be reducible to
the meaning of these two ‘basic’ quantifiers. Our fragment now includes nouns,
such as man, woman, and so forth. Unlike proper names, nouns do not denote
individuals but rather properties of individuals. Therefore, their meaning is the
same as that of an intransitive verb, such as snore.
If we consider the meaning of the two sentences in (9a) and (8c), it should be
clear that we can’t capture their meaning by translating them into the FOL
expressions in b) and d) respectively.

(9) a Every man snores
b ∀ x snore1(x)
c Some woman smiles
d ∃ x smile1(x)

The problem is that the FOL expressions will be true of any individual in the
model who snores or smiles. They aren’t restricted in the way the English
sentences are to apply to just men or just women, respectively. Obviously, we

12

have failed to include the meaning of the nouns in our translation. The question
is how to combine the noun denotations and verb denotations correctly to arrive
at the correct truth-conditions for sentences of this type. (9a) has the logical
form of a conditional statement. It says that for any individual if that individual
is a man then that individual snores. On the other hand, (9c) says that there
exists at least one individual who is both a woman and smiles, so it has the
logical form of a conjunction of propositions. Therefore, the correct logical
translations of these two sentences are given in (10a,b), respectively.

(10) a ∀ x man1(x) → snore1(x)
b ∃ x woman1(x) ∧ smile1(x)

To achieve this translation in a compositional fashion we will need to associate
a ‘template’ lambda expression for the entire sentence with each of the different
quantifiers – otherwise we won’t be able to capture the different ways in which
the NP and VP are combined semantically, depending on which quantifier is
chosen. Here is the semantic translation of every:

every : Det : λ P (λ Q (∀ x P(x) → Q(x)))

P and Q are one-place predicate variables, so the denotation of every is a func-
tion from one-place predicates to a function from one-place predicates to a
truth-value. Here are the formulas associated with the NP every man and the
S every man snores, respectively:

λ Q (∀ x man1(x) → Q(x))
∀ x man1(x) → snore1(x)

To maintain compositionality, we need to change the semantics of NPs con-
sisting just of names so that they have the same type of denotation as NPs
with quantifiers. Otherwise we will not be able to give a uniform semantics
for the S → NP VP rule, for example, because this is supposed to combine
the meaning of any NP and VP to form the meaning of an S. We can achieve
this by type-raising names to functions which lambda abstract over the set of
properties (one-place predicates) predicated of the name, as shown below:

NP λ P P(Kim1)
| |
Name Kim1
|
Kim

So all NPs have the same denotation. The only difference between proper name
NPs and quantified NPs will be whether the lambda abstracted set of properties
is predicated of an individual constant or (bound) individual variable. The
semantics of snore and other verbs remains the same. Combining the denotation
of the NP and VP now requires applying the semantics of the NP to that of
the VP, NP′(VP′), and produces the semantic analysis shown below:

13

Kim snores
NP VP
λ P P(Kim1) λ x snore1(x)
(λ x snore1(x) Kim1)
snore1(Kim1)

The formulas above are logically equivalent, the third is the result of apply-
ing lambda-reduction (twice) to the first. In fact, what we have done here is
combine two functions – one abstracting over predicates, the other over indi-
viduals – to produce the earlier function-argument application which we used
to capture the semantics of Kim snores
The analysis of Every man snores will come out like this:

(λ P (λ Q ∀ x P(x) → Q(x)) (λ x man1(x)))
(λ Q ∀ x (λ x1 man1(x1) x) → Q(x))
λ Q ∀ x man1(x) → Q(x)

By two applications of lambda-reduction, we obtain the third formula. Now
when we analyse snores we get:

(λ Q ∀ x man1(x) → Q(x) (λ x snore1(x)))
∀ x man1(x) → snore1(x)

(see J&M p593f for Cann or more on the lambda calculus, lambda-reduction
and the need for variable renaming (e.g. x to x1) to avoid variable ‘collisions’.)
We can now give a more precise account of the relationship between syntactic
and semantic rules and categories in the grammar. We can associate with
each syntactic category of the grammar, a semantic type which specifies the
type of object denoted by expressions of that category and also specifies how
it combines with other types. For example, we have said that proper names
denote individuals or entities (ie. any discrete object – car1, table1, Kim1
etc.). We can write this < e >. Sentences denote propositions (ie truth-values)
written < t >, intransitive verbs denote functions from entities to truth-values
< e t >, NPs denote functions from functions from entities to truth-values to
truth-values << e t > t >. Given this new notation we could represent the
semantic analysis of Every man snores given above slightly more abstractly as
below:

a) S b) t
/ \ / \

NP VP <<e t> t> <e t>
/ \ | / \ |

Det N V <<e t> <<e t> t>> <e t> <e t>
| | | | | |
Every man snores all man1 snore1

14

The type notation illustrates how the generic functions combine or cancel with
each other to yield new functions and ultimately a truth-value. Once we know
the semantic type of every syntactic category, we know how to combine them
to form the semantic types of larger categories. Of course, when interpreting
an actual sentence, we replace the semantic types with the functions derived
from the denotations of the words in the sentence. In general, the semantics
of sub-sentential constituents will be a formula of the (typed) lambda calculus,
whilst the semantics of sentences will be a formula of FOL. (See Cann for more
explanation. The type notation is like Categorial Grammar, which we will look
at in more detail in the Advanced Syntax and Semantics module.)
Exercises

To test whether you have understood these ideas see if you can work out the
semantic type of a lecturer in Sam is a lecturer, given the assumption that be is
a purely syntactic marker here and does not contribute to the meaning of this
sentence. (easy)

2.3 Scope Ambiguities

We saw that formulas of FOL containing more than one quantifier have differ-
ent truth-conditional interpretations depending on the order or relative scope
of these quantifiers. However, our grammar only produces one of these order-
ings for these and analogous sentences. For example, (11a) only receives the
interpretation (10b).

(11) a Every man loves some woman
b ∀ x ∃ y man1(x) → (woman1(y) ∧ love1(x y))
c ∃ y ∀ x man1(x) → (woman1(y) ∧ love1(x y))

This is the interpretation which is true provided for each man there is at least
one woman (who may be different in each case) who he loves. However, to get
the ‘every man loves Marilyn Monroe’ type of reading we would need to reverse
the order of the quantifiers so that the existential has (so-called) wide scope
as in (11c). If you find this reading a little forced for (11a), there are other
examples where it seems more natural, as (12) illustrates.

(12) a Every man loves a woman
b Every man loves one woman
c One language is spoken by everyone (here)
d A student guide showed every prospective candi-

date around Johns and Trinity
e There was a name tag near every door
f A flag was hanging from every window

In a) and b) it is easier to get the wide scope existential reading where there
is just one woman, but most people still feel that this is not the preferred
interpretation. In c), where the existential one occurs before everyone, the

15

existential wide scope reading seems more readily available. We adopt the
narrow scope reading of the existential in d) quite readily because of our general
knowledge about the organisation of the university – it’s unlikely to be one
student covering both colleges. In the last three examples, the existential a
precedes the universal every in the surface realisation of these examples, yet the
universal is given wide scope – we naturally assume there is more than one flag
or name tag. We reach these conclusions on the basis of our knowledge about
the relative size of flags and windows, name tags and doors, their function, and
so forth.
Scope ambiguities of this type are not restricted to quantifiers. There are
scope ambiguities concerning the relative scope of the negation, conjunction
and disjunction operators. These also interact with quantifiers to create further
ambiguities. For example, (13a) is ambiguous between b) and c), depending on
the relative scope of not and every.

(13) a a) Everyone doesn’t snore
b ∀ x ¬ snore1(x)
c ¬ ∀ x snore1(x)

c) is compatible with some people snoring, whilst b) is not. There is no syn-
tactic reason to believe that these examples are syntactically ambiguous, but
nevertheless they are semantically ambiguous. This is a problem for the the-
ory we have been developing because it predicts that sentences should only be
semantically ambiguous if they are syntactically or lexically ambiguous. Thus
we can produce two logical forms for Kim sat by the bank because we can as-
sociate bank with two concepts (financial institution and river side) and with
Kim hit the woman with the umbrella because PPs can function adverbially or
adjectivally (attaching to NP or VP).
The examples above force us to weaken the claim that syntax determines in-
terpretation and undermine our initial proposal that syntactic and semantic
rules are paired one-to-one in the grammar. Furthermore, nobody has come up
with precise and accurate rules for resolving scope ambiguities (we saw above
that this is complex and can involve word order, the meaning of the rest of the
sentence, prosody or intonation, and general world knowledge. (For more on
(generalised quantifiers, compositionality, etc see J&M p626f or Cann’s book
– we will look at recent statistically-based approaches to resolving scope in
Advanced Syntax and Semantics.)
Exercises

Does anything analogous occur in the semantics of logics or programming lan-
guages?

2.4 Intensionality

Embedded propositions cause problems for our semantics. For instance, believe
takes a sentential complement, as in Kim believes (that) Sandy loves Fred which
we might ‘translate’ into:

16

believe1(Kim1, love1(Sandy1 Fred1))

However, there is a problem with this analysis because it is quite possible for
the two examples in (14) to correctly characterise Kim’s beliefs.

(14) a Kim believes Sandy loves Fred
b Kim doesn’t believe Miss UK loves Fred

If Sandy is Miss UK, then we must assume that Kim is unaware of this, oth-
erwise he would modify his beliefs appropriately. The translation of Miss UK
will be something like ∃ x miss-uk1(x) . . . , so in a world where Sandy is Miss
UK, the referent of this NP and Sandy will be Sandy1 and we will end up say-
ing that Kim both does and doesn’t believe that Sandy1 loves Fred. The way
out of this problem is to say that Kim believes the proposition Miss UK loves
Fred and not its denotation (ie. its truth-value t/f) in the actual world. Or
in other words, that Kim’s belief is about the sense of the embedded sentence.
This example shows then that not all meaning can be reduced to the extended
notion of reference that we have called denotation.
One way of approaching this problem is to switch from an extensional logic
whose model-theoretic interpretation concerns only actual states of affairs to
an intensional logic whose model-theoretic semantics is characterised in terms
of ‘possible worlds’. In this approach, the extension of an expression can vary
depending on which world we are considering, so in the actual world the ex-
tension of Miss UK may be Sandy1 but in another possible world it may be
different. We will define the intension of an expression as the set of extensions
that it has in every possible world. Names are usually treated as having the
same extension in every possible world. Since the extensions of Sandy and Miss
UK will differ between possible worlds, the intensions or propositions conveyed
by these two embedded sentences will also differ. The intension of a proposi-
tion will be the set of truth-value assignments defined by evaluating its truth
in every possible world. Thus, if Kim’s beliefs are about the intensions of the
embedded sentences, they will be logical (rather than contradictory) but possi-
bly inaccurate in the actual world. All verbs which take embedded sentences as
arguments denote some relation between an individual and (the intension of) a
proposition.
This analysis of embedded propositions predicts that examples such as Kim
believes Miss UK is not a feminist should be ambiguous. It could convey a
proposition telling us that Kim believes that Sandy (who she knows is Miss
UK) is not a feminist or one telling us that Kim believes that whoever Miss UK
is she is not a feminist. These two alternative logical forms can be notated as:

a) ∃ x Miss-uk1(x) ∧ Believe1(Kim1 ^[¬ Feminist(x)]
b) Believe1(Kim1 ^[∃ x Miss-uk1(x) ∧ ¬ Feminist(x)])

The ‘hat’ sign indicates that what is believed is the intension (rather than
extension) of the formula in square brackets. If the existential variable is in
the scope of the intension operator, we get the so-called de dicto reading where
Kim believes that whoever Miss UK is, she is not a feminist. If the existential

17

has wide scope, then we get the so-called de re reading where Kim believes a
particular proposition about Sandy (or whoever happens to be the extension of
Miss UK in the actual world).
However, one consequence of this analysis of believe is that if Kim believes
any necessarily true propositions, then Kim must believe every necessarily true
proposition. For example, if (15a) is true, then b) must be true (if we assume
that bachelor just means ‘unmarried man’).

(15) a Kim believes it is raining or it isn’t raining
b Kim believes all bachelors are unmarried men

However, this seems wrong because it is not a consequence of Kim’s beliefs
about rain that he believes things about bachelors. To see why we get into this
bind, it is necessary to think about the denotation of a proposition in possible
world semantics. The intension of a proposition is just a set of truth-value
assignments derived by evaluating its truth in every possible world. However,
every necessarily true proposition will be true in all worlds, so their intensions
will be identical.
It seems that the notion of intension defined by possible world semantics is
not adequate to capture the sense (as opposed to reference) of a linguistic
expression. In any case, a direct interpretation of possible world semantics
in a computational context would be difficult. (See Cann’s book for more on
possible worlds, intensionality, etc.)
Exercises

Can you see why? – How many possible worlds are there? How many facts are
there in one world?
Instead we will ignore these problems and do theorem proving with the FOL
formulas for these examples. This works (to some extent) because we are
keeping propositions distinct by utilising their syntactic form – believe1 (Kim1
love1(Kim1 Sandy1)) is structurally distinct from ∃ x miss-uk1(x) ∧ believe1(Kim1
(love1 Kim1 x)). Why is this not really adequate?

2.5 Word Meaning

So far we have said very little about word meaning. However, we have made
a couple of assumptions in order to get our account of sentence meaning off
the ground. The first assumption is that word meaning divides into a number
of distinct senses (much as in a conventional dictionary). So we have written
Snore1 as the translation of the first (main) sense of snore. In cases of lexical
ambiguity, we can create further senses – Bank1, Bank2, etc. This approach
is fine providing that we agree that word senses are really distinct in this way.
However, many words exhibit polysemy; that is, they have a variety of closely
related meanings which shade off into each other. Consider, for example, the
meaning of strike in (16).

18

(16) a Kim struck Sandy
b Kim struck a match
c Kim struck a bargain
d Kim struck Sandy as ridiculous

Different dictionaries will make different decisions on how to ‘divide up’ the
meaning of strike into distinct senses, underlining the rather arbitrary nature
of this activity. Truth-conditional semantics offers no insights into this issue, so
we will not dwell on it further. However, it is important to remember that when
we discuss word meaning, we are discussing word sense meaning (or equivalently,
the meaning of a predicate or lexical item).
The second assumption is central to the principle of compositionality and the
account of semantic productivity which is incorporated into truth-conditional
semantics. The contribution of word meaning to sentence meaning must take
the form of an invariant contribution to the truth-conditions of each sentence.
Otherwise, compositionality will be undermined, because the rules which com-
bine the meanings of words, phrases and clauses to form sentence meanings do
not modify the units which they combine. Of course, this does not prevent
selection of an appropriate sense in a particular context, but it does imply that
word meaning is not unpredictably altered by context. Some linguists argue
that word meaning is partially determined by the context of occurrence – id-
ioms and metaphors usually figure largely in this type of debate. For example,
in (17) it is implausible to argue that productive semantic rules combining the
meanings of the individual words produce the most likely interpretation.

(17) a Truth-conditional semantics is dead wood
b Kim is rapidly sliding into a moral cesspool

How serious a problem you think this is will depend a) on how common and
central to language you feel idiomatic and metaphorical usage to be and b) on
whether you believe a theory of idioms and metaphors can be derived from a
theory of ‘literal’ meaning.

2.6 Theorem Proving

So far, we have not considered the computational implementation of a truth-
conditional approach to semantics. We cannot transport model theory (or proof
theory) onto a machine directly, because of the problems connected with com-
pleteness of the model and with obtaining just those inferences we want (as
opposed to an infinite number of mostly useless ones). For example, in model-
theoretic semantics we can characterise the truth of Kim doesn’t love Sandy
relative to some model on the basis of the denotation of love1 not containing
the ordered pair <Kim1 Sandy1>. However, this only works if the model is
complete in the sense that it represents every fact (and non-fact) about the
world. It is not practical to implement complete, closed models. For this rea-
son, automated theorem proving takes place in the context of a database of
known facts represented as formulas in some logic (ie. a partial model). Fur-

19

thermore, it is not possible to apply proof-theoretic rules in an unconstrained
way to such a database.
Exercises

What would happen if you freely applied the rule of ∧-Introduction (p, q |= p
∧ q). (easy)
The techniques of automated theorem proving provide ways of applying a subset
of proof-theoretic rules in a constrained and goal-directed way. Mostly, such
techniques are restricted to a subset of FOL, so it follows that a computational
implementation of NL semantics will need to (at least) restrict itself to FOL
analyses.
Our approach will look something like this: NL Semantics→ [Lambda-reduction]
→ FOL → [Skolemisation, etc.] → Clausal Form → Query/Assert in Database.
Forward chaining is a technique for doing goal-directed inference. It is a tech-
nique for implementing Modus (Ponendo) Ponens (MPP) or implication elim-
ination (p → q, p |= q) which doesn’t result in making many ‘unnecessary’
inferences. For example, if we store (18a) in our database and apply MPP and
Universal Elimination, we will infer as many formulas like (18b) as there are
men in the database and instantiate (18a) to as many useless formulas like c)
as there are individuals (who are not men) in the database.

(18) a (all (x) (if (man1 x) (snore1 x)))
b (snore1 Kim1)
c (if (man1 felix1) (snore1 felix1))
d (man1 Kim1)

Forward chaining is a technique which dispenses with the step of Universal
Elimination and inferring formulas like c). Instead, formulas like a) have no
effect until an assertion like d) is added to the database and only then is b)
inferred. To do this formulas like a) must be represented in implicit-quantifier
form:

(if (man1 X) (snore1 X))

Now we replace UE with unification (i.e. term matching, see section 1.4 and
J&M, ch15 and ch18) and state the forward chaining rule as follows: from p′

and p → q infer q′ where p′ unifies with p and q′ is the result of making the
same substitution(s) in q. Thus we have converted UE + MPP into unification
and search in a database of formulas expressed in a notational variant of FOL.
Most of the time forward chaining is still too undirected to be efficient. The
effect of adding any universally quantified statement to the database will be to
also add all the valid inferences which follow from it (by UE + MPP) in the
database. Backward chaining is an alternative technique which performs these
inferences at ‘query time’ rather than ‘assertion time’. That is, inferences are
only performed when they are needed.
For example, if we query the database with (19a) and the database contains b)

20

and c), then backward chaining will attempt to unify a) with all the variable-
free, ground propositions in the database and, if this fails, with all the con-
sequents of implications like b). The latter will succeed, but before we can
answer ‘yes’, it is necessary to prove the truth of the antecedent with identical
variable substitutions. This can be done by unifying the resulting variable-free
proposition with the identical formula c).

(19) a (snore1 Kim1)
b (if (man1 X) (snore1 X)
c (man1 Kim1)

We need to distinguish queries from assertions because the variables in the
implicitly-quantified queries behave more like existential than universal vari-
ables. So the alternative query (20) means ‘is there a value for X which results
in a true proposition?’

(20) (snore1 Y)

In this case backward chaining will produce the sub-query (man1 Y) which will
unify with the ground proposition, again signifying success with Y=Kim1. In-
tuitively, querying with a variable-free formula is like a yes/no-question, whilst
one containing variables is like a wh-question.
We can describe backward chaining more precisely now as follows: Given Query:
q′ where p → q is in the database and q′ and q unify with substitutions t, then
Query: pt (ie. the result of making the same substitutions in p) and if this
unifies with p′′ with substitutions t′ then t u t′ is the answer.
There is much more to theorem proving than this; eg. negation as failure,
skolemisation, etc (see J&M and references therein).

3 Discourse Processing

The problem with the truth-conditional semantics plus theorem proving ap-
proach to language understanding is that we have no notion of the goals of the
speaker/user, what speech acts s/he is attempting; for example, asserting, re-
questing, asking. The system will simply assume that all declarative sentences
are assertions and all interrogative sentences are requests for information.
Exercises

Can you construct a situation / dialogue in which this would lead to a system
misinterpreting some input?
Below I survey some ways of augmenting deduction (entailment) with tech-
niques able to handle some of the phenomena described in the Intro to Linguis-
tics handout.

21

3.1 Abductive Inference

A form of plausible inference which often looks like the ‘structural opposite of
MPP’ and involves reasoning from consequent to antecedent, as in (21).

(21) a (if (drunk x) (not (walk-straight x)))
b (not (walk-straight john))
c (drunk john)

This is not deduction and the truth of the ‘conclusion’ c) is not guaranteed by
the truth of the premises a) and b). It is often an inference about causation
to find explanations for events. Various forms of abductive inference have been
proposed as a way of recognising speaker intentions or goals and modelling the
defeasible nature of these inferences. For example, the discourse in (22a) can
be interpreted using abductive inferences.

(22) a Kim can open the safe. He knows the combination.
b (can Kim1 (open safe1))
c (know he (combination-of x c))
d (if (can x state) (know x (cause (act x) state)))
e (if (combination-of x c) (cause (dial z x c) (open

x)))
f (plausibly-if (and (know x p) (if p q)) (know x q))
g (know Kim1 (cause (act Kim1) (open safe1)))
h (know he (cause (dial z x c) (open x)))
i (know Kim1 (cause (dial Kim1 safe1 c) (open

safe1)))

I have given a FOL-like representation (in which variables are implicitly uni-
versally quantified) of how to do this. b) and c) are the formulas associated
with the two sentences (by parsing / semantic interpretation). d), e) and f)
are background knowledge. g) is inferred from b) and d) by MPP / forward
chaining. h) is inferred from c), e) and f), where e) is first ‘embedded in’ f)
by replacing the propositional variables p and q by e). i) is derived by match-
ing g) and h) and represents recognition of the elaboration relation, because
‘dial’ is more specific than ‘act’ and Kim1 more specific than ‘he’. The details
of the matching process are complex, and must involve more than first-order
unification of (individual) variables. A ‘side-effect’ is that the antecedent of the
pronoun is found, as is the link between the combination and safe1.
Exercises

Can you see any disadvantages to this technique as a general approach to dis-
course understanding?

22

3.2 Scripts and Plans

Scripts can supply default inferences, aid pronoun resolution, etc. In fact they
are just another way of representing the world knowledge necessary to do the
sorts of reasoning required in discourse processing. For example, here is a
‘restaurant’ script:

restaurant : X enters R
X sits at table
X reads menu
X orders food from W
W brings food
X eats food
W brings invoice
X pays W
X leaves R

This looks fairly trivial, but can be used to resolve sense ambiguities, eg. bill (=
invoice), pronoun reference he eats quickly (= X eats), infer that certain things
have happened even though they haven’t been mentioned eg. he examined the
menu (X is sitting at a table), deal with definite reference like the bill, the
menu, etc. Obviously, a useful script representation would need to use a richer
notation than that above.
Problems with scripts arise with temporal and sequential reasoning (matching
bits of dialogue to relevant bits of script), script selection (a business lunch),
and script decomposition (arbitrary depending on focus of attention). One way
to get round these problems with scripts (hopefully) is to hang on to the notion
of a stereotypical schema but give up the idea of analysis by matching (into
a script) and instead try to dynamically construct the appropriate script from
‘smaller’ units representing individual actions, states, and goals.

3.3 Shallow, Knowledge-Poor Anaphora Resolution

The approaches outlined in the previous sections all require a system to be
capable of sophisticated inference over, in principle, large quantities of wide
ranging information. Therefore, systems of this kind are restricted to very cir-
cumscribed domains and, even so, produce extremely brittle performance. Such
systems are quite inappropriate, for example, for tasks like information extrac-
tion from documents, say, on the web, where neither language nor domain is
circumscribed. However, a task like information extraction crucially requires
the tracking of anaphoric links to accrue information about discourse referents.
For example, if a user is interested in finding news reports discussing President
Clinton’s impeachment defense, a system returning all documents containing
these words will require the user to sort through many irrelevant documents
(low precision). For example, documents containing sentences like President

23

Clinton’s decision to use cruise missiles in the Gulf was undoubtedly motivated
by his twin desires to avoid vote-losing loss of American life and to distract the
American public from the weakness of his defence against impeachment for per-
jury. are unlikely to be very relevant. A relevant document, on the other hand,
might contain sentences like The president will today appear before the Senate
judicial committee to answer their questions concerning the Monica Lewinsky
case. His defense is likely to be that he did not knowingly commit perjury in
answering earlier questions about the affair, though his answers did not reveal
full details of the relationship. The relevance of this document might be deter-
mined if president, His, he and the affair could all be linked to the discourse
referent ‘Clinton’.
One way to try to robustly recognise discourse referents and their coreference
links in a documents is to firstly identify all the NPs in a document, secondly to
identify their grammatical relation to the verb in their clause (subject, object,
indirect object, temporal adjunct, etc), thirdly to record their relative positions
in the document, and fourthly, to identify the discourse segment in which they
occur. The first and second might be achieved by syntactic parsing, the third
by simply indexing the linear position of each identified NP, and the fourth
approximated by making use of superficial textual clues such as paragraph
boundaries and cue words for discourse segment boundaries (e.g. anyway).
The coreference resolution procedure forms a set of coreference classes by step-
ping through the NPs ‘from-left-to-right’, according to their positional index,
and either assigning them to a new or existing class. Initially, impossible links
are pruned on syntactic and morphological grounds; for example, if the current
NP does not agree in number or gender with a coreference class or occurs inside
a NP coreferential with a class. Then the link to one of the remaining existing
classes is determined by a salience weight which integrates various factors as a
weighted sum, representing the relative salience of the class on the basis of the
salience of the existing member NPs. This is recalculated whenever the current
NP is determined to be coreferential with a class. The salience factors and their
weights are listed below:

1) Discourse Segment (DS) Recency (50): iff current NP is in current DS
2) Sentence Recency (100): iff current NP is in current sentence
3) Subject Emphasis (80): iff current NP is subject
4) Existential Emphasis (70): iff current NP is pivot of existential sent.
5) Possessive Emphasis (65): iff current NP is possessive
6) Accusative Emphasis (50): iff current NP is direct object
7) Dative Emphasis (40): iff current NP is indirect object
8) Oblique Emphasis (30): iff current NP is contained in a NP
9) Head Emphasis (80): iff current NP is not contained in a NP
10) Argument Emphasis (50): iff current NP not in an adjunct

The class with greatest salience is always chosen as coreferential. Adding a new
NP to a class always increases its salience weight and thus the likelihood of
further coreference to this class.

24

Testing algorithms like this on documents from various genres and domains
extracted from the web has produced accuracy rates between 75%-85% correctly
resolved NPs over all NPs in a document. (For further discussion of anaphora
resolution see Jurafsky and Martin, ch21.)
Once a set of coreference classes has been discovered, a document can be
mapped to a structure which represents what has been predicated of any given
discourse referent, This provides a more satisfactory starting point for finding
documents relevant to user queries, or for summarisation. Much of current NLP
research is focussed on sidestepping the ‘knowledge bottleneck’ which results
from the knowledge-based perspective on NLP by using ‘shallower’ statistical
approximations determined from empirical work with large corpora.

25

